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Abstract

Introduction—The common predominant clinical features of cholangiopathies such as primary 

sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are 

biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver 

transplantation is only option. An understanding of the mechanisms and pathogenesis is needed to 

develop novel therapies. Previous studies have developed various disease-based research models 

and have identified candidate therapeutic targets.

Areas covered—This review summarizes recent studies performed in preclinical models of 

cholangiopathies and the current understanding of the pathophysiology representing potential 

targets for novel therapies. A literature search was conducted in PubMed using the combination of 

the searched term “cholangiopathies” with one or two keywords including “model”, 

“cholangiocyte”, “animal”, or “fibrosis”. Papers published within five years were obtained.

Expert opinion—Access to appropriate research models is a key challenge in cholangiopathy 

research; establishing more appropriate models for PBC is an important goal. Several preclinical 

studies have demonstrated promising results and have led to novel therapeutic approaches, 

especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to 

identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have 

been introduced, and those therapies could be applied to PSC, PBC, and BA.
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1. Introduction

Cholangiopathies are bile duct disorders that include primary sclerosing cholangitis (PSC), 

primary biliary cholangitis (PBC), and biliary atresia (BA). The key clinical features of PSC 

are chronic biliary inflammation, liver fibrosis, and destruction of intrahepatic/extrahepatic 

bile ducts [1, 2]. Approximately 70% of PSC patients have concurrent inflammatory bowel 

disease (IBD) with higher risks of developing cholangiocarcinoma and colorectal cancer [3, 

4, 5]. PBC, formerly known as primary biliary cirrhosis, is an autoimmune disorder that is 

characterized by intrahepatic bile duct destruction, cholestasis, and lymphocyte infiltration. 

The immune responses triggered in PBC specifically target cholangiocytes [6, 7, 8]. BA is 

characterized by neonatal cholestasis and jaundice resulting from biliary damage, 

inflammation or insufficient bile duct development [9, 10, 11]. To date, cholangiopathies 

typically require liver transplantation for treatment, and hence effective and less invasive 

therapies are needed.

Establishing research models for the development of novel therapies is critical to understand 

the pathogenesis of these diseases. There are several preclinical models available for 

cholangiopathies, and studies using these models have identified signaling pathways and 

target genes that are associated with the disease development and progression. Drugs that 

can target these pathways could be a promising therapeutic strategy for the management of 

cholangiopathies. This review summarizes preclinical research in cholestatic liver disease 

models and potential candidate therapeutic targets. A literature search was performed using 

PubMed. The keywords used were “cholangiopathies” or the name of specific 

cholangiopathies such as “primary sclerosing cholangitis” with one or two other keywords 

such as “model”, “cholangiocyte”, “bile duct”, “animal”, “fibrosis”, “ductular reaction”, or 

“proliferation” (e.g., “biliary atresia animal model”). Work published during 2013–2018 

were obtained for reading and citation. Highly cited or important literatures were also 

considered, regardless of published dates.

2. Research models of cholangiopathies

2.1. PSC models

A common strategy for the development of preclinical animal models for cholangiopathies is 

to mimic genetic and environmental risk factors that generate animals with similar 

characteristics of human diseases [12, 13, 14]. Patients with PSC typically exhibit bile duct 

hyperplasia or ductular reaction, cholestasis, and cirrhosis leading to jaundice, hepatocellular 

injury, and elevated serum bile acid levels [1, 2]. Animal models for PSC have been 

evaluated based on these characteristics: (i) increased ductular reaction detected by 

immunohistochemistry for cytokeratin (CK) 7 or CK19 (only expressed by cholangiocytes in 

the liver); (ii) serum chemistry profiles based upon elevated levels of alkaline phosphatase 

(ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), or bilirubin as a 
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marker of hepatic damage; (iii) hepatic damage and inflammation; (iv) elevated levels of bile 

acids in serum or plasma as a sign of cholestasis; (v) elevated serum levels of 

proinflammatory cytokines such as interleukin-6 (IL-6) as a sign of inflammation; or (vi) 

increased hepatic fibrosis. Table 1 lists common PSC models and expression of these 

parameters.

2.1.1. Bile duct ligation model—Bile duct ligation (BDL) is surgical obstruction of 

the common bile duct and widely utilized as a model of cholestatic liver injury in rodents 

[15, 16]. The BDL model is one of the most common animal models of cholangiopathies, as 

well as biliary fibrosis. Rodent models of BDL mimic some typical liver abnormalities of 

PSC such as ductular reaction, liver fibrosis and inflammation. BDL allows for the study of 

characteristics and functional roles of cells or signaling pathways that are associated with the 

pathogenesis of liver diseases during cholestasis. For example, expression levels of secretin 

receptor, which is associated with cholangiocyte proliferation and fibrogenesis (see below), 

are elevated in cholangiocytes following BDL [17]. Although BDL can be performed in rats 

and mice regardless of their strains and backgrounds representing its flexibility, it requires 

major surgery and can be technically challenging. The degree of cholestasis and liver 

damage may vary significantly depending on surgical procedures and individual animal 

response to ligation. In addition, BDL mimics cholestasis in rodents, but does not mimic the 

disease state which induces cholestasis in humans. Therefore, researchers have employed 

less invasive and technically challenging transgenic mouse models in recent studies.

2.1.2. Chemically induced models—Administration of certain chemicals can damage 

bile ducts and mimic conditions of cholestatic liver injury in rodents. For example, 3,5-

diethoxycarbonyl-1,4-dihydrocollidine (DDC) damages bile ducts resulting in cholestasis, 

liver damage and fibrosis [18]. The DDC model is widely utilized for studies of functional 

roles of cholangiocytes or other liver cells during liver damage; a previous study has 

demonstrated that cholangiocytes act as liver stem cells during liver damage induced by 

DDC with impaired hepatocyte regeneration [19, 20].

Thioacetamide (TAA) is a carcinogen that induces liver fibrosis followed by 

cholangiocarcinoma in rodents suggesting that TAA is another model leading to the damage 

of bile ducts in vivo [21, 22]. A previous study using this model has demonstrated that 

ADP55, an adiponectin-based active short peptide, reduces TAA-induced liver damage and 

fibrosis in mice [23]. The TAA model can be used as a model for biliary injury and 

cholangiocarcinoma.

Carbon tetrachloride (CCl4) induces liver damage and fibrosis, both in rats and mice [24, 

25]. A previous study using this model has studied the functional role of hepatitis C virus 

protein using short and long term treatment of CCl4-induced liver damage [26]. These 

chemically induced models are technically more feasible and provide thesame flexibility as 

the BDL model. However, administration of these chemicals damages not only 

cholangiocytes, but also other liver cells such as hepatocytes, indicating that liver conditions 

induced by these chemicals may not mimic the pathogenesis of human cholestatic liver 

diseases such as PSC. In addition, the effects of chemicals can vary significantly from case 

to case depending on the dose and duration of administration. Acute treatment with a high 
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dose may produce different results from chronic treatment with a lower dose, and there are 

no gold-standard administration procedures for each chemical; hence procedures and their 

effects in animals may vary depending on studies.

2.1.3. Genetic models—Multi-drug resistance 2 (Mdr2−/−) mice are the most common 

transgenic animal model utilized as a preclinical model of PSC. Mdr2−/− mice lack MDR2 

protein which functions in phospholipid transport from hepatocytes into the bile ducts 

resulting in accumulation of toxic bile in the liver [27]. Mdr2−/− mice have liver conditions 

resembling human PSC, such as increased bile duct mass and liver fibrosis [28, 29]. Mdr2−/− 

mice are widely used to study the pathophysiology of cholestatic liver injury and functional 

roles of signaling pathways that may lead to the development of novel therapeutic 

approaches [30, 31].

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride transporter 

located on the apical membrane of cholangiocytes regulating bile secretion. CFTR plays a 

crucial role in biliary inflammation [32], and functional abnormalities in CFTR are 

associated with PSC in humans [33, 34]. Cftr−/− mice suffer biliary damage and liver fibrosis 

similar to Mdr2−/− mice, representing another possibility as a PSC mouse model [35, 36]. 

Although these knockout mice are powerful research models, they do not exhibit 

complications or concurrent IBD development similar to human PSC patients. In addition, 

Mdr2−/− mice can develop hepatocellular carcinoma (HCC), but rarely develop 

cholangiocarcinoma which is common in patients with PSC [37].

A previous study has generated liver specific E-cadherin knockout mice (CDH1ΔL) and has 

demonstrated that these mice develop portal inflammation and liver fibrosis resembling 

human PSC [38]. This study further demonstrated that the loss of E-cadherin in 

cholangiocytes, but not in hepatocytes, leads to portal inflammation and fibrosis using 

CK19-Cre-mediated cholangiocyte specific E-cadherin knockout mice. Some previous 

studies suggest that quiescent cholangiocytes and hepatocytes become reactive and 

transdifferentiate into fibrogenic myofibroblasts during disease via epithelial-mesenchymal 

transition (EMT) [39, 40, 41, 42]. The loss of E-cadherin is the hallmark sign of EMT [43, 

44]. Therefore, E-cadherin knockout mice may produce more fibrogenic myofibroblasts that 

are derived from hepatocytes or cholangiocytes in CDH1ΔL mice. However, the role of EMT 

in liver fibrosis is still unclear and controversial [45, 46, 47]. The detailed mechanisms of 

inflammatory and fibrogenic conditions of this CDH1ΔL mouse liver are unknown, and 

hence more studies will be required to use these mice as a PSC model.

Ezrin is a membrane cytoskeletal crosslinker protein that interacts with transporters. Hatano 

et al. have demonstrated that ezrin knockdown (Vil2kd/kd) mice have decreased expression 

levels of CFTR and Cl−/HCO3
− anion exchanger (AE2) on the apical membrane of 

cholangiocytes leading to poor bile flow and cholestasis in vivo [48]. These Vil2kd/kd mice 

had enhanced ductular reaction, liver inflammation, and fibrosis representing characteristics 

as another model of cholestatic liver injury [48]. Unfortunately, these mice are hard to 

maintain because of high mortality and only approximately 7% of Vil2kd/kd mice can survive 

to adulthood [49].
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2.1.4. In vitro models—In vitro cell culture models may be a useful counterpart to in 
vivo animal models for PSC research. Cellular senescence in cholangiocytes is characteristic 

in PSC patients, and senescent cholangiocytes secrete elevated levels of senescence-

associated secretory phenotype (SASP) markers such as IL-1β, IL-6 and IL-8 compared to 

normal cholangiocytes [50]. Therefore, targeting senescent cholangiocytes may be a strategy 

to develop novel therapies [31]. Previous studies have established the in vitro PSC model by 

culturing cholangiocytes isolated from PSC patient’s liver and found that these PSC-derived 

cholangiocytes are senescent [51, 52]. This in vitro model may produce better 

understandings of the pathophysiology of senescent cholangiocytes in cholangiopathies as 

well as drug validation for targeted pathways. There is a limitation in this model; however, 

since senescent cholangiocytes have a low proliferation rate, making them difficult to obtain 

and maintain a steady population of cells [51].

Previous studies have transdifferentiated human induced pluripotent stem (iPS) cells into 

cholangiocyte-like cells, representing another insight for in vitro models [53, 54]. Although 

this iPS-derived cholangiocyte cell line may allow the testing of drugs or candidate 

compounds for the treatment of PSC, it is still unclear whether iPS-derived cholangiocyte-

like cells are physiologically and functionally identical to human cholangiocytes in vivo. 

Further studies are required to establish the use of iPS-derived cholangiocyte models in 

preclinical studies.

2.2. PBC models

PBC is a chronic autoimmune disorder characterized by female dominance, high titer 

autoantibodies, and bile duct inflammation and destruction leading to cholestasis [55]. PBC 

models are evaluated primarily on the following parameters: (i) detection of anti-nuclear 

antibodies (ANA) or anti-mitochondrial antibodies (AMA) as a sign of autoimmune 

disorder; (ii) abnormal lymphocyte infiltration in portal area as a sign of inflammatory 

responses; or (iii)the presence of biliary cyst as a sign of cholestasis evaluated histologically. 

Some PBC patients exhibit bile duct hyperplasia or proliferation, although bile duct 

destruction is observed in other patients [55]. Since PBC is a progressive disorder, bile duct 

responses may differ depending on the stage of the disease. The levels of bile duct 

hyperplasia or dilation followed by bile duct destruction according to PBC stages remain 

undefined. Table 2 lists common PBC animal models and the presence of human disease 

characteristics.

2.2.1. Genetic models—The use of non-obese diabetic (NOD) mice is a well-

established approach for studies on type I diabetes. The NOD.c3c4 mouse model was 

generated from NOD background with insulin-dependent diabetes-resistant alleles from B6 

and B10 mice replacing NOD alleles on chromosome 3 and 4 [56]. NOD.c3c4 mice do not 

have obesity regardless of their background but do possess PBC-like features such as high 

titer ANA, biliary cysts, and lymphocyte infiltration into portal areas [56, 57, 58]. Recent 

studies utilized NOD.c3c4 mice as a PBC model to study the functional role of gut bacteria, 

natural killer T cells, and a mutation in polycystic kidney and hepatic disease 1 (Pkhd1) [59, 

60, 61]. Although these mice have liver conditions resembling human PBC, the association 
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of diabetes with PBC and its pathophysiology is undefined, and hence it is unclear whether 

this mouse model is suitable to study human PBC.

Mice that express a dominant-negative form of transforming growth factor (TGF)-β receptor 

type II in CD4+ T cells (dnTGFβRII mice) are another genetic animal model for PBC [62]. 

These mice exhibit bile duct destruction as well as high serum levels of autoimmune 

antibodies and proinflammatory cytokines such as IL-6 and tumor necrosis factor alpha 

(TNFα) indicating biliary damage and inflammation [62, 63]. Previous studies have 

demonstrated critical roles of gut bacteria and CD8+ T cells in autoimmune cholangitis in 

this model [64, 65]. However, the limitation of this animal model is that disease conditions 

are not female dominant, which does not mimic human PBC [62, 63].

The anion exchanger AE2 is located on the apical membrane of cholangiocytes in the liver, 

andit has been reported that PBC patients have decreased expression of AE2, indicating the 

association of the loss of AE2 with the pathophysiology of PBC [66]. Ae2a,b
−/− mice lack 

three AE2 isoforms (Ae2a, Ae2b1, and Ae2b2) and have PBC-like features such as portal 

lymphocyte infiltration, high levels of AMA, and cholestasis followed by high ALP levels 

[67]. However, this model is difficult to maintain because male Ae2a,b
−/− mice are infertile 

[68].

Interferon (IFN)-γ is known to be associated with autoimmune diseases, including BA [69, 

70]. Hodge et al. have generated transgenic mice with the deletion of AU-rich element 

(ARE) in the 3’-untranslated region (UTR) of the IFN-γ gene leading to high serum levels 

of IFN-γ [71]. This ARE-Del−/− mouse model has autoimmunity with high ANA levels as 

well as portal infiltration, liver fibrosis, and female dominance [72]. A recent study using 

this model has demonstrated that type I IFN signaling plays a key role for the 

pathophysiology of autoimmunity indicating the potential usefulness of this model [73]. 

This model may offer a better understanding in the mechanisms and the cause of disease 

conditions in mice compared to NOD.c3c4 mice, and this model also has female dominance 

that dnTGFβRII mice and Ae2a,b
−/− mice do not.

2.2.2. Chemically induced models—As PBC is an autoimmune disorder, 

Immunization has been conducted in mice to disrupt immune tolerance against autoantigen 

leading to autoimmunity. In a previous study, mice were immunized using a chemical 

xenobiotic, 2-octynoic acid (2-OA) [74, 75]. The 2-OA-immunized mice expressed 

autoantibodies against the mitochondrial pyruvate dehydrogenase E-2 subunit [74]. This 

model exhibits high levels of AMA, TNFα, and IFN-γ as well as portal lymphocyte 

infiltration, resembling PBC [74, 75]. Although this model does not have female dominance, 

2-OA immunization can be carried out for various mouse strains and transgenic mice, 

representing the flexibility of this model [76, 77].

Previous studies have demonstrated that injection of the viral mimetic 

polyinosinic:polycytidylic acid (poly I:C), which is a type I IFN inducer, causes PBC-like 

liver conditions in mice including elevated lymphocyte infiltration around the portal area and 

high serum levels of AMA [78, 79]. Although PBC studies using this model are limited and 
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further studies are required, these findings suggest that chemically induced models could be 

utilized as an alternative model of transgenic animal PBC models.

2.3. BA models

BA is a form of neonatal cholestasis caused by various factors such as viral infection or 

insufficient bile duct development [9, 10, 11]. The preclinical animal models available for 

BA research are limited. Previous studies have performed BDL utilizing 3-week-old rats, 

which resembled some features of BA [80]. Due to its technical difficulties, BDL is not 

widely performed in young mice, as should be done in the BA model to better mimic human 

pathology. It is well known that perinatal viral infection is associated with BA development 

in children [81]. Injection of rhesus rotavirus into newborn mice is the most established 

animal model for BA research [82, 83]. Although the effects of virus injection differ 

depending on the strain of rotavirus, the injected virus can be delivered into cholangiocytes, 

thereby causing biliary damage, high serum levels of proinflammatory cytokines, and portal 

lymphocyte infiltration in neonatal mice [82, 83]. This model has progressive jaundice, 

growth failure and high mortality because of obstruction of extrahepatic bile ducts [84]. This 

technique can be performed in various strains of mice. Recent studies using this model have 

demonstrated the functional roles of the gut microbiome and bone marrow-derived 

mesenchymal stem cells in BA [85, 86]. The viral injection model is the sole well-

established BA model currently available, and studies using this model are limited.

3. Candidate signaling pathways of novel therapies for cholangiopathies

The pathophysiology of cholangiopathies remains largely unknown especially for PBC and 

BA. However, previous studies for PSC have demonstrated that several signaling pathways 

play a crucial role in the pathogenesis of PSC resulting in ductular reaction, biliary damage, 

and liver fibrosis. These candidate pathways may represent novel therapeutic targets for 

PSC. As described previously, PSC patients generally exhibit ductular reaction, which 

represents bile duct hyperplasia as well as reactions around bile ducts and the portal area 

such as lymphocyte infiltration and fibrogenesis. Quiescent cholangiocytes respond to 

biliary damage and acquire an activated neuroendocrine phenotype [87]. Active 

cholangiocytes secrete profibrogenic cytokines and factors such as TGF-β1 leading to 

activation of hepatic stellate cells (HSCs) and portal myofibroblasts that are the primary 

source of production for extracellular matrix resulting in liver fibrosis [88]. Therefore, it is a 

strategy for novel therapies to target cholangiocytes regulating excessive and reactive 

proliferation for the management of disease conditions in cholangiopathies (Figure 1). 

Although previous studies have identified numbers of signaling pathways in cholangiocytes 

associated with cholangiocyte proliferation and liver fibrogenesis, this review summarizes 

recent emerging candidate pathways that could lead to the development of novel therapies 

for PSC.

3.1. Secretin and secretin receptor

Secretin (Sct) is a hormone that binds to secretin receptor (SR) thereby regulating 

cholangiocyte proliferation during cholestatic liver diseases [89, 90]. SR is expressed in the 

basolateral domain of cholangiocytes in the liver, and the Sct/SR axis plays a critical role in 
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the pathophysiology of cholangiopathies [91]. A recent study using Sct−/−, SR−/−, and Sct
−/−SR−/− transgenic mice has demonstrated that these knockout mice have attenuated 

ductular reaction and liver fibrosis compared to wild-type during BDL-induced liver injury 

resulting from decreased secretion of TGF-β1 from cholangiocytes [92]. Another study has 

generated Mdr2−/−SR−/− mice and has demonstrated that these mice have improved liver 

pathology and reduced fibrosis compared to Mdr2−/− mice [93]. Knockout of SR decreased 

cellular senescence and secretion of SASP markers from cholangiocytes, such as CCL2 [93]. 

Administration of an SR antagonist, Sec 5–27, ameliorated ductular reaction and liver 

fibrosis in Mdr2−/− mice and BDL mice in vivo [94]. In PBC; however, functional roles of 

Sct may differ from those in PSC. A preliminary study has demonstrated that administration 

of Sct improves liver conditions by helping cholangiocyte functions in dnTGFβRII mice 

although effects of Sct may differ between early stage and late stage of PBC and further 

studies are needed [95]. These studies suggest that inhibition or activation of the Sct/SR axis 

using inhibitors or agonists could be a novel therapeutic tool for PSC or PBC, respectively.

3.2. Mast cells and histamine signaling

Previous studies have demonstrated that mast cell numbers are increased around the portal 

area and are associated with liver fibrosis in patients with PSC [96]. Francis and colleagues 

have demonstrated that mast cell-deficient KitW-sh mice have attenuated liver damage, 

fibrosis, and ductular reaction following BDL compared to wild-type mice, illustrating an 

vital role for mast cells in cholangiopathies [97]. Following activation during biliary 

diseases, mast cells release histamine triggering inflammatory responses. The asthma drug, 

cromolyn sodium, inhibits histamine release from mast cells. Administration of cromolyn 

sodium into BDL mice or Mdr2−/− mice decreased histamine secretion and subsequently 

improved the disease conditions of cholestatic liver damage in vivo [30, 98]. Activation of 

histamine receptors is associated with cholangiocyte proliferation, and administration of 

antagonists for histamine receptors decreased liver damage and fibrosis in Mdr2−/− mice [99, 

100]. These studies suggest that targeting histamine secretion or histamine receptor signaling 

could lead to the development of novel therapies for PSC. Although functional roles of mast 

cells and histamine signaling are undefined in PBC, a previous study has reported increased 

mast cell infiltration around the portal area in PBC patients, suggesting that similar strategies 

could be applied to PBC therapies as well as PSC [101].

3.3. Bile acids and bile acid receptors

Bile acids regulate ductular reaction and the response to cholestatic liver injury. 

Ursodeoxycholic acid (UDCA) inhibits cholangiocyte proliferation and secretion in vivo 
[102]. UDCA is used as an approved drug for PBC to date, suggesting the potential use for 

other cholangiopathies including PSC and BA [103]. Hatano et al. have demonstrated that 

oral administration of UDCA attenuated liver damage and fibrosis in cholestatic Vil2kd/kd 

mice [104]. A recent study has also reported that UDCA administration inhibits mast cell 

activation leading to improved liver conditions in Mdr2−/− mice [105]. Although these 

studies indicate therapeutic potentials of UDCA for PSC and cholestatic liver injury in 

animal models, trials of UDCA administration for PSC patients provide controversial 

results. Lindor et al. administered PSC patients with UDCA and reported that UDCA-treated 

patients did not exhibit improved survival rates compared to untreated patients [106].
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TGR5 is a plasma membrane-bound G coupled bile acid receptor located on the primary 

cilium of cholangiocytes [107]. TGR5 regulates cholangiocyte functions and bile acid 

signaling, and TGR5 is required for bile acid-dependent cholangiocyte proliferation in vivo, 

indicating the association of TGR5 with cholangiocyte activation [108, 109]. Hov et al. have 

sequenced the gene of TGR5 from 276 PSC patients and 274 healthy individuals, and have 

identified five nonsynonymous mutations [110]. These mutations are associated with the loss 

of TGR5 functions and PSC. Another study has demonstrated that TGR5−/− mice have 

exacerbated liver conditions during BDL such as higher ALT and ALP levels and higher 

concentrations of proinflammatory cytokines including IL-6 and TNFα compared to wild-

type mice [111]. Although these findings suggest that TGR5 could be a potential therapeutic 

target of PSC, it is still unclear whether activation or inhibition of TGR5 leads to inhibition 

of cholangiocyte proliferation as well as the management of diseased liver conditions during 

PSC.

Farnesoid X receptor (FXR) is another bile acid receptor highly expressed in the liver and 

intestine. Similar to TGR5, FXR is associated with bile acid metabolism and secretion. A 

previous study has demonstrated that PSC patients express decreased levels of FXR in 

colonic mucosa, indicating the disruption of bile acid metabolism leading to disease 

conditions in cholangiopathies [112]. Administration of INT-767, which is an agonist for 

both TGR5 and FXR ameliorated liver inflammation and restored bile flow in Mdr2−/− mice 

[113]. It has been demonstrated that FXR agonist PX20606 decreases liver fibrosis and 

expression levels of fibrogenic markers including TGF-β1 and collagen type I using CCl4 

model rats [114]. Obeticholic acid is an FXR agonist and may have a potential benefit in 

patients with cholangiopathies. A trial of obeticholic acid for PBC patients has demonstrated 

that 12-month administration of obeticholic acid improves serum levels of ALP and bilirubin 

compared to the placebo group [115]. Another trial has also reported that obeticholic acid 

administration improves ALP levels and long-term clinical outcomes in PBC patients [116]. 

A clinical trial of obeticholic acid for PBC patients is currently ongoing (NCT03633227). 

Obeticholic acid may be beneficial for PSC. In a clinical trial (NCT02177136), 

administration of obeticholic acid improved serum ALP and bilirubin levels in PSC patients 

compared to the placebo group. However, Wagner et al. have previously demonstrated 

controversial results that FXR−/− mice have reduced ductular reaction after BDL while there 

are no significant differences found in levels of ALT and ALP compared to wild-type mice 

[117]. Further studies are needed to elucidate whether FXR activation or inhibition will lead 

to the management of liver conditions in PSC and PBC.

Apical sodium-dependent bile acid transporter (ASBT) is located in the terminal ileum and 

plays a critical role in the enterohepatic circulation of bile acids. Ileal ASBT determines 

hepatocellular bile acid reuptake and subsequent biliary bile acid concentrations. A previous 

study has demonstrated that the ASBT inhibitor, A4250 decreases intestinal bile acid 

absorption leading to decreased serum bile acid concentrations, indicating the potential 

therapeutic effects of ASBT inhibition in cholestatic liver diseases [118]. Baghdasaryan et 
al. have demonstrated that diet supplementation of A4250 decreases ductular reaction, liver 

damage, and fibrosis in Mdr2−/− mice [119]. A pilot study administered nine PBC patients 

with A4250 and reported that all nine patients had improved conditions of pruritus in PBC 
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[120]. Although there are only limited studies available to date, these findings suggest that 

inhibition of ASBT could lead to the development of treatments for both PSC and PBC.

Sphingosine-1-phosphate receptor 2 (S1PR2) is a G protein-coupled receptor that can be 

activated by bile acids. S1PR2 is expressed in the liver and intestine and is associated with 

lipid and sterol metabolism in the liver [121]. Wang et al. have demonstrated that 

cholangiocytes express S1PR2, and its expression levels are elevated during BDL in mice 

[122]. Knockout of S1PR2 or administration of S1PR2 antagonist JTE-013 decreased ALT 

and ALP levels, ductular reaction, and liver fibrosis during BDL-induced chronic liver 

injury, indicating that S1PR2 is another promising therapeutic target for PSC treatments 

[122]. Together, these studies suggest that administration of agonists/antagonists for bile 

acid receptors or supplementation of specific bile acids could be utilized to regulate 

cholangiocyte proliferation and functions leading to the management of liver conditions.

3.4. Melatonin

Melatonin is a hormone secreted from the pineal gland, intestine, and liver. Melatonin has 

been known to regulate cholangiocyte proliferation [123]. Administration of melatonin 

decreased BDL-induced liver damage and serum levels of ALT and AST in rats [124, 125]. 

Renzi et al. have demonstrated that cholangiocytes express melatonin receptors MT1 and 

MT2, and melatonin administration attenuates ductular reaction and liver fibrosis in BDL 

rats via activation of MT1 receptor but not MT2 receptor [126]. The expression levels of 

genes associated with circadian rhythms, such as CLOCK, PER1, CRY1, and BMAL1, were 

significantly elevated during BDL and were decreased by melatonin administration, 

suggesting that the circadian rhythm and expression of clock genes may be associated with 

the pathogenesis of PSC [126]. Patients with PBC often exhibit disturbed circadian rhythms, 

and this could be related to the pathogenesis of PBC. A pilot study has demonstrated that 

morning bright light treatment for PBC patients is effective to improve sleep quality and to 

maintain circadian rhythms although it is still undefined whether bright light treatment 

improves liver conditions of PBC [127]. Another study has demonstrated that prolonged 

exposure of BDL rats to darkness induces melatonin production in vivo leading to decreased 

ductular reaction and liver fibrosis compared to BDL rats in normal housing conditions 

[128]. Melatonin administration or prolonged darkness improved liver conditions in Mdr2−/− 

mice [28]. These findings suggest that melatonin supplementation or dark therapy helping 

melatonin production could represent a novel therapy for cholangiopathies. Further studies 

are required to elucidate the functional roles of circadian rhythms as well as therapeutic 

effects of bright light therapy to maintain the circadian rhythm in patients with 

cholangiopathies.

3.5. Neurokinin-1 receptor

Cholangiocytes express neurokinin-1 receptor (NK-1R) that is a G-protein coupled receptor 

associated with immune response. Expression levels of NK-1R in cholangiocytes were 

elevated during BDL-induced liver injury, and NK-1R−/− mice had improved ductular 

reaction, liver damage and fibrogenesis following BDL compared to wild-type mice [129]. 

Wan et al. have demonstrated that PSC patients have elevated NK-1R expression in the liver 

compared to healthy individuals, and administration of NK-1R antagonist L-733,060 
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attenuates liver fibrosis, cholangiocyte senescence, and SASP marker expression in 

cholangiocytes from Mdr2−/− mice [130]. Administration of drugs that disrupt NK-1R 

signaling may be useful for the management of diseased conditions in PSC.

4. Stem cell therapy

Transplantation of stem cells has been utilized to improve conditions in various diseases 

including liver cirrhosis [131]. Wang et al. have demonstrated that transplantation of bone 

marrow-derived mesenchymal stem cells significantly decreases serum levels of ALP and 

AMA, as well as lymphocyte infiltration around portal area compared to control using poly 

I:C-induced PBC model mice [132]. Lei et al. have utilized rhesus rotavirus BA models and 

demonstrated that intraperitoneal injection of bone marrow-derived mesenchymal stem cells 

decreases serum levels of AST and ALT, liver fibrosis, and expression of fibrogenic markers 

such as TGF-β1 and collagen type I [86].

Cholangiocytes are heterogeneous with small and large cholangiocytes displaying different 

cell size and functions [133]. Small cholangiocytes have a larger nucleus to cytosol ratio 

compared to large cholangiocytes, and previous studies have demonstrated that during CCl4-

induced large cholangiocyte damage, small cholangiocytes de novo proliferate and 

differentiate into large to compensate the damaged population of large cholangiocytes 

indicating the possible stem cell-like features of small cholangiocytes [134, 135]. A previous 

study has demonstrated that transplantation of small cholangiocytes decreases ductular 

reaction and liver fibrosis in BDL mice, but large cholangiocyte transplantation exhibits no 

effects [136]. Although further studies are needed to elucidate whether small cholangiocytes 

are liver stem cells or have stem cell-like abilities to differentiate into large cholangiocytes 

or other liver cells, these previous studies suggest that stem cell transplantation could be a 

therapeutic tool for cholangiopathies.

5. Extracellular vesicle therapy

Extracellular vesicles (EVs), membrane-bound vesicles secreted from various types of cells, 

contain cargo mediators such as DNAs, RNAs, and proteins. EVs play an important role in 

cell to cell communications as they can be transferred from one cell to another regulating 

physiological cell events in recipient cells, indicating the potential use as a drug or mediator 

carrier to manage disease conditions in liver diseases [137, 138]. A previous study has 

demonstrated that isolated EVs from rat bile can interact with cholangiocyte cilia and 

decrease cholangiocyte proliferation in vitro [139]. Another study has isolated EVs from 

culture media of cholangiocytes treated with lipopolysaccharide (LPS) stimulation and has 

demonstrated that these LPS-derived EVs drive inflammatory reactions in other 

cholangiocytes [140]. Chaiyadet et al. isolated EVs from excretory/secretory products of 

liver fluke Opisthorchis veverrini obtained from experimentally infected hamsters, and those 

EVs drove cell proliferation and IL-6 expression in human normal cholangiocyte line H69 

cells [141]. These studies indicate that secretory EVs can regulate cholangiocyte 

proliferation and functions. Decreased levels of microRNA (miRNA) let-7 are associated 

with cholangiocyte proliferation during cholangiopathies [91, 142]. A recent study has 

demonstrated that injection of liver stem cell-derived EVs, which carry higher levels of let-7 
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as cargo compared to hepatocyte-derived EVs, attenuates liver damage and fibrosis by 

delivering cargo let-7 into cholangiocytes of Mdr2−/− mice and inhibits ductular reaction in 
vivo [143]. These findings suggest that EV injection may be utilized as another treatment for 

PSC and could be used as a carrier of beneficial drugs or mediators.

6. Conclusion

The majority of cholangiopathy research focuses on PSC because of well-established 

research models with limited preclinical and therapeutic studies for PBC and BA. However, 

the techniques and strategies utilized for PSC could potentially be useful for PBC or BA. For 

example, culturing cholangiocytes isolated from PBC and BA patients may establish in vitro 
models for these diseases using techniques of the in vitro model for PSC. Current 

therapeutic approaches utilize agonists or antagonists to regulate signaling pathways in 

cholangiocytes that are associated with ductular reaction, fibrogenic marker expression such 

as TGF-β1 and collagen type I that lead to portal fibrosis, senescence-induced SASP marker 

secretion such as IL-6 and CCL2 that contribute to liver inflammation, and activation of 

other liver cells by cholangiocytes such as HSCs leading to further liver damage and fibrosis. 

Recent studies have introduced novel therapeutic tools for cholangiopathies. Injection of 

stem cells or stem cell-derived EVs leads to improved liver conditions in animal models, and 

stem cell therapy has demonstrated its therapeutic effects in mouse models of PSC, PBC, 

and BA, indicating the promising potential as a novel therapy for cholangiopathies. 

Although further studies are required, various preclinical models and injection therapies 

could lead to the development of novel treatments for cholestatic liver injuries.

7. Expert opinion

Current therapeutic approaches for cholangiopathies mainly focus on PSC because of 

limited studies for PBC and BA. Detailed mechanisms of pathophysiology in PBC and BA 

are not elucidated, and further studies are needed to identify preclinical candidate targets. 

For PSC, targeting specific pathways or receptors has demonstrated promising therapeutic 

effects in animal models. Antagonists against SR or NK-1R decreased liver damage and 

fibrosis, and asthma drug cromolyn sodium or over-the-counter histamine blockers could be 

used as a drug for PSC. It is critical to understand the pathological mechanisms of the 

disorder to identify potential targets, and then develop the drugs for those targets. 

Investigations to find agonists or antagonists targeting receptors that are associated with 

cholangiocyte activation and proliferation will facilitate the development of treatments for 

PSC. In other words, therapies for PBC and BA will require more studies to accumulate 

evidence for identification of targets compared to PSC-targeted therapies. However, 

methodology and techniques utilized in PSC therapies could also be performed for PBC and 

BA. Drugs that are developed for PSC to stabilize cholangiocytes could be useful for other 

disorders. Future studies will try and evaluate promising drugs not only in PSC models, but 

also using PBC and BA models. Figure 1 represents the strategy for the development of 

novel cholangiopathy therapies.

Difficulties in studies for PBC and BA are due to the orchestration of various cells in the 

pathogenesis of the human disorder. PSC is a bile duct disorder and hence cholangiocytes 
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are a primary target. However, previous studies have suggested that not only cholangiocytes 

but also other liver cells such as Kupffer cells are involved in the pathophysiology of PSC 

[144]. PBC is an autoimmune disorder and lymphocytes, especially T cells, are critical in 

pathophysiology of PBC [61, 62, 65]. However, the association between T cells and 

cholangiocytes is largely unknown, and detailed mechanisms of autoimmunity against bile 

ducts are unclear. One of the major characteristic features of PBC is female dominance 

suggesting female hormones such as estrogen may be involved. Future studies may target 

lymphocytes or other cells, but not cholangiocytes for the development of PBC therapies.

Another difficulty in translational cholangiopathy study is the complexity of its 

pathophysiology. The cause of the disorder could differ depending on variations of patients, 

such as genetic factors, bacterial or viral infections, or environmental factors. Secretion 

levels of hormones vary depending on individuals, and this may also affect the susceptibility 

of the disorder. In addition, cholangiopathies are progressive disorders and their 

pathophysiology may differ depending on the stage of the disease. A preliminary study has 

observed ductular reaction and bile duct hyperplasia in early stage of PBC, but in later stage, 

bile ducts are destructed and disappeared [95]. In this case, administration of drugs, such as 

an agonist to SR, may provide different effects at different stages of patients. This indicates 

that treatments need to be designed or adjusted for each patient according to the disease-

causing factors and liver conditions or stages. Future studies may need to consider various 

factors as the cause as well as individual varieties in disease conditions or progression.

The goal of the studies summarized in this review is to develop novel therapies replacing 

liver transplantation. It may not be feasible to develop a complete cure for cholangiopathies 

especially for autoimmune disease PBC, and hence it is important to manage acceptable 

liver conditions to allow patients to avoid liver transplantation. Access to appropriate 

research models is one of the biggest challenges in the design of cholangiopathy research. 

Future studies will try to establish more appropriate models especially for PBC that have 

resembling liver conditions and fewer difficulties to maintain the strain.

Injection of stem cells or stem cell-derived EVs is another approach for treatments of 

cholangiopathies. Stem cell transplantation had therapeutic effects for all PSC, PBC, and BA 

models although previous studies are limited, and mechanisms of the effects are unclear. 

There will be more studies available in the future to establish injection therapies. EVs 

contain cargo proteins, mRNAs, and miRNAs, and those cargo mediators could be 

therapeutic when delivered into the diseased liver. Stem cell-derived EVs may contain 

specific mediators, such as let-7, resulting in therapeutic effects. This indicates that EV 

cargo could be designed and modified to create EVs that regulate specific target cell events. 

Future studies will identify mediators that regulate cholangiocyte functions leading to 

improved liver conditions and could generate transfected cells to express therapeutic 

proteins or RNAs and secrete EVs carrying those mediators. An advantage of injection 

therapy is less possibility of rejection or side effects compared to drug administration. Stem 

cells or EVs will be isolated from human tissues or cells, and it could be carried out using 

patients’ own samples. Drug administration could induce side effects, and injected mRNAs 

or miRNAs could be degraded rapidly before being delivered to the target tissues or cells. 

EVs could solve these problems by carrying drugs or mediators inside and protect them 
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from degradation or detection by immune cells. Techniques and procedures for EV therapy 

could be used not only for cholangiopathies but also for other diseases.
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Abbreviations

2-OA 2-octynoic acid

AE2 Cl−/HCO3- anion exchanger

ALP alkaline phosphatase

ALT alanine aminotransferase

AMA anti-mitochondrial antibody

ANA anti-nuclear antibody

ARE AU-rich element

ASBT apical sodium-dependent bile acid transporter

AST aspartate aminotransferase

BA biliary atresia

BDL bile duct ligation

CCl4 carbon tetrachloride

CFTR cystic fibrosis transmembrane conductance regulator

CK cytokeratin

DDC 3,5-diethoxycarbonyl-1,4-dihydrocollidine

EMT epithelial-mesenchymal transition

EV extracellular vesicle

FXR farnesoid X receptor

HCC hepatocellular carcinoma

HSC hepatic stellate cell

IBD inflammatory bowel disease
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IFN interferon

IL interleukin

iPS induced pluripotent stem

LPS lipopolysaccharide

miRNA microRNA

NK-1R neurokinin-1 receptor

NOD non-obese diabetic

PBC primary biliary cholangitis

poly I:C polyinosinic:polycytidylic acid

PSC primary sclerosing cholangitis

S1PR2 sphingosine-1-phosphate receptor 2

SASP senescence-associated secretory phenotype

Sct secretin

SR secretin receptor

TAA thioacetamide

TGF transforming growth factor

TNFα tumor necrosis factor alpha

UDCA ursodeoxycholic acid

UTR untranslated region
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Article Highlights

• Cholangiopathies are bile duct disorders characterized by bile duct damage 

and inflammation

• Treatments for cholangiopathies are limited to liver transplantation

• Various animal models have been established and are available for researchers

• Previous studies have identified candidate signaling pathways that could be 

targets for novel therapies

• Injection of stem cells or extracellular vesicles could be utilized as a novel 

therapeutic approach for cholangiopathies
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Figure 1. The strategy for novel therapies in cholangiopathies.
Cholangiocytes express various membrane receptors such as G protein-coupled bile acid 

receptor (TGR5), secretin receptor (SR), and sphingosine-1-phosphate receptor 2 (S1PR2). 

During cholangiopathies, secreted levels of triggering agents including bile acids and 

secretin (Sct) are increased and they bind to those receptors. This activates specific signaling 

pathways inducing cholangiocyte proliferation, ductular reaction, and fibrogenesis. Current 

studies target those signaling pathways to interrupt activation of signaling by administration 

of drugs binding those receptors. JTE-013 and Sec 5–27 are antagonists for S1PR2 and SR, 

respectively that bind to these receptors inhibiting downstream signaling. However, 

functional roles of some receptors such as TGR5 are still undefined during cholangiopathies; 

therefore, further studies are required to elucidate the potential utilization of agonists/

antagonists as novel therapies targeting those receptors. Extracellular vesicles (EVs) can 

carry mediators such as RNAs and proteins that can be delivered into cholangiocytes. 

Internalized EVs transfer cargo mediators into recipient cholangiocytes and regulate 

physiological events leading to improved liver conditions, representing promising potentials 

of EVs as a tool of novel therapies.
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Table 1.

Selected PSC models.

Research model Background/source Inflammation (ALP/ALT/AST) Ductular reaction Liver fibrosis References

BDL Various Yes Yes Yes [15, 16]

DDC Various Yes Yes Yes [18]

TAA Various Yes Yes Yes [23]

CCl4 Various Yes Yes Yes [24, 25, 26]

Mdr2−/− mice FVB/NJ mice Yes Yes Yes [28, 29]

Cftr−/− mice C57BL/6J mice Yes Yes Yes [35, 36]

CDH1ΔL mice C57BL/6J mice Yes Unknown Yes [38]

Vil2kd/kd mice Unknown Yes Yes Yes [48]

Primary PSC cholangiocytes Humans N/A N/A N/A [51, 52]

ALP = alkaline phosphatase; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BDL=bile duct ligation; CCl4 = carbon 

tetrachloride; DDC=3,5-deithoxycarbonyl-1,4-dihydrocollidine; TAA=thioacetamide; PSC = primary sclerosing cholangitis.
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Table 2.

Selected PBC models.

Research model Background Female dominance High titer ANA/AMA Portal infiltration Bile duct 
dilation or 

proliferation

References

NOD.c3c4 mice NOD mice Yes Yes Yes Yes [56, 57, 58]

dnTGFβRII mice C57BL/6J mice No Yes Yes Yes [62, 63]

Ae2a,b
−/− mice FVB/NJ mice No Yes Yes Unknown [67]

ARE-Del−/− mouse C57BL/6J mice Yes Yes Yes Unknown [71, 72]

2-OA immunization Various No Yes Yes Unknown [74]

Poly I:C injection C57BL/6J mice Unknown Yes Yes Unknown [78, 79]

2-OA = 2-octynoic acid; AMA = anti-mitochondrial antibody; ANA = anti-nuclear antibody; Poly I:C = polyinosinic:polycytidylic acid
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