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Abstract

Purpose: To develop and evaluate a novel deep learning-based reconstruction framework called 

SANTIS (Sampling-Augmented Neural neTwork with Incoherent Structure) for efficient MR 

image reconstruction with improved robustness against sampling pattern discrepancy.

Methods: With a combination of data cycle-consistent adversarial network, end-to-end 

convolutional neural network mapping, and data fidelity enforcement for reconstructing 

undersampled MR data, SANTIS additionally employs a sampling-augmented training strategy by 

extensively varying undersampling patterns during training, so that the network is capable of 

learning various aliasing structures and thereby removing undersampling artifacts more effectively 

and robustly. The performance of SANTIS was demonstrated for accelerated knee imaging and 

liver imaging using a Cartesian trajectory and a golden-angle radial trajectory, respectively. 

Quantitative metrics were used to assess its performance against different references. The 

feasibility of SANTIS in reconstructing dynamic contrast-enhanced images was also demonstrated 

using transfer learning.

Results: Compared to conventional reconstruction that exploits image sparsity, SANTIS 

achieved consistently improved reconstruction performance (lower errors and greater image 

sharpness). Compared to standard learning-based methods without sampling augmentation (e.g., 

training with a fixed undersampling pattern), SANTIS provides comparable reconstruction 

performance but significantly improved robustness against sampling pattern discrepancy. SANTIS 

also achieved encouraging results for reconstructing liver images acquired at different contrast 

phases.

Conclusion: By extensively varying undersampling patterns, the sampling-augmented training 

strategy in SANTIS can remove undersampling artifacts more robustly. The novel concept behind 

SANTIS can particularly be useful for improving the robustness of deep learning-based image 

reconstruction against discrepancy between training and inference, an important but currently less 

explored topic.
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INTRODUCTION

There has been much recent interest in applying deep learning to a wide range of medical 

imaging applications, including disease classification (1,2), tissue segmentation (3–8), and 

lesion detection and recognition (9–12). Deep learning also holds great promise for 

reconstructing undersampled MRI data, providing new opportunities to further improve the 

performance of rapid MRI. Preliminary studies performed over the past few years (13–22) 

have demonstrated the ability of deep learning-based reconstruction methods to provide 

improved image quality with reduced reconstruction time. Compared to conventional rapid 

imaging techniques, such as parallel imaging (23–25) and compressed sensing (26–28), deep 

learning-based reconstruction uses a data-driven approach to characterize image features and 

removes undersampling artifacts by inferencing features from a large image database. For 

example, a straightforward end-to-end mapping using convolutional neural networks 

(CNNs) has been shown to efficiently remove artifacts from undersampled images (16–18), 

translate k-space information into images (19), estimate missing k-space data (20,21), and 

reconstruct MR parameter maps(22). More importantly, upon completion of the CNN 

training for a particular application, a deep learning system can reconstruct newly-acquired 

undersampled images efficiently, generally in order of seconds (13–22).

In existing deep learning-based reconstruction methods, supervised training is performed 

using high-quality reference images and their corresponding undersampled pairs (13–22). 

The undersampled images are typically generated by a fixed undersampling pattern for 

network training, and the trained network is then applied to reconstruct new images acquired 

with the same undersampling pattern. While such a training strategy can achieve a favorable 

reconstruction performance for a pre-selected undersampling pattern, the robustness of the 

trained network against any discrepancy of undersampling schemes is typically poor. For 

example, a recent study has shown that a deviation of undersampling patterns between the 

training and inference can degrade image quality (29). This observation emphasizes the need 

for better network training strategies that can more robustly remove image artifacts from a 

wide variety of undersampling patterns.

The main contribution of this work is to propose a new training strategy for improving the 

robustness of a trained network against discrepancies of undersampling schemes that may 

occur between training and inference. The hypothesis was that deep learning-based 

reconstruction could benefit from extensively varying undersampling patterns during the 

training process, leading to better generalization and performance of the trained network for 

removing undersampling artifacts. Such a training strategy enforces sampling or k-space 

trajectory augmentation, providing an optimal method for highly efficient and robust image 

reconstruction. The technique may also be better suited for applications that employ non-

repeating continuous k-space undersampling. This new framework, termed as Sampling-
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Augmented Neural neTwork with Incoherent Structure (SANTIS), was implemented using a 

novel data cycle-consistent adversarial network(30) and was evaluated in retrospectively 

undersampled knee and liver MR image datasets using variable-density Cartesian sampling 

and golden-angle radial sampling, respectively.

THEORY

CNN-Regularized Image Reconstruction

In MR image reconstruction, an image is estimated from a discrete set of k-space 

measurements that can be expressed as:

d = Ex + ε (1)

Here, d is a vector of length N for measured k-space data and N = Nx×Ny is the total number 

of k-space samples. x is the image to be reconstructed, and ε represents complex noise in the 

measurements. In a general case, the encoding matrix E can be expanded as:

E = UℑC (2)

where ℑ is the Fourier transform operator and C represents coil sensitivities. In the case of 

undersampling, U is an undersampling mask to select desired k-space data points. An SNR-

optimized reconstruction can be accomplished in the least squares sense as:

x = arg min
x

1
2‖Ex − d‖2

2 (3)

where ∥.∥2 is the l2 norm. Eq.[3] can be poorly-conditioned with a high undersampling 

factor, and thus, a regularization term can be additionally incorporated as:

x = arg min
x

1
2‖Ex − d‖2

2 + λℜ(x) (4)

The design of the penalty function ℜ is governed by prior knowledge about the image x, 

with a regularization parameter λ controlling the trade-off between the data fidelity (the left 

term) and prior information assumptions (the right term). In conventional MR 

reconstruction, ℜ is often chosen as

ℜ(x) = ‖Tx‖P (5)

where ∥.∥P represents a p-norm and T is a specific transform operator, which, for example, is 

often selected as the wavelet transform or finite differences in the context of compressed 

sensing (26).
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In contrast to conventional regularizations, the penalty function can be implemented by 

learning an end-to-end deep CNN mapping from an undersampled image to its 

corresponding fully sampled pair, similar to many recent proposals (13–15,17). In other 

words, CNN can serve as a spatial or spatial-temporal regularizer in constrained image 

reconstruction, and Eq.[4] can be rewritten as:

x = arg min
x

1
2‖Ex − d‖2

2 + λ‖F(xu) − x‖P (6)

Here, F : f gen(xu ∣ θ) x is a generator function using a deep CNN conditioned on network 

parameters θ, and the xu is an undersampled image to be reconstructed.

In a practical implementation from recent CNN reconstruction studies (14,31), a data fidelity 

loss can be incorporated to enforce data fidelity in combination with the CNN-regularization 

as shown in Figure 1. The image reconstruction, expressed in Eq.[6] can then be 

approximated as:

F = arg min
F

λloss 2𝔼xu ∼ P(xu) ΦuF(xu) − xu P
+ λloss 1𝔼xu ∼ P(xu) F(xu) − x

P
(7)

where two loss functions were generated including a CNN generator term for CNN-

regularization (pixel-wise loss 1: the right term) and a data fidelity loss term for data 

consistency (pixel-wise loss 2: the left term). Φu = CHℑHUℑC is the undersampling 

encoding operator and Φux = CHℑHUℑCx xu generates undersampled images using the 

undersampling mask and coil sensitivities. Exu ∼ P(xu)[ ⋅ ] is the expectation of a probability 

function given xu belongs to the data distribution of the undersampled image domain P(xu). 

λloss1 and λloss2 are corresponding weighting parameters controlling the balance between 

the two loss terms. More specifically, the first loss term (pixel-wise loss 1) removes aliasing 

artifacts such that the reconstructed images look like their reference, while the second loss 

term (pixel-wise loss 2) ensures that the reconstructed images from the CNN generator 

produce undersampled images matching the acquired k-space measurements.

Adversarial Loss

A l1 norm or a l2 norm is often chosen for the pixel-wise loss terms (loss 1 and 2) of Eq.[7] 

in most studies. While either of these two norms can ensure good reconstruction 

performance by suppressing noise and artifacts, such a reconstruction scheme has been 

demonstrated to be suboptimal for restoring undersampled images with a ‘natural’ 

appearance as in corresponding fully sampled images (14,15). Several studies have shown 

that using CNN mapping only with pixel-wise losses can result in image blurring, detail 

loss, and degraded perceptional quality (14,15). Therefore, Generative Adversarial Network 

(GAN) has been recently proposed to overcome the drawbacks of l1 or l2 norm, where an 

adversarial loss is used to promote image texture preservation in image restoration (32). In 
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the context of image reconstruction as shown in Eq.[7], an adversarial loss can be 

incorporated into the CNN generator as an additional loss term to promote texture 

preservation as shown in Figure 1. In other words, in addition to the CNN generator function 

F, another multiple layer CNN discriminator D:fdis(x∣δ) → 1 conditioned on network 

parameters δ is designed to distinguish reconstructed images versus corresponding reference 

images in the fully sampled image domain P(x). Mathematically, this discriminator D(x) 

outputs a scalar representing the probability that x comes from the fully sampled image 

domain rather than the CNN generator output F(xu). The adversarial loss is formatted as:

Lgan(F, D) = Ex ∼ P(x) log D(x) + Exu ∼ P(xu) log(1 − D(F(xu))) (8)

Data Cycle-Consistent Adversarial Network

Following all loss terms mentioned above, a Data Cycle-Consistent Adversarial Network 

(30) can be formulated for reconstructing undersampled MR images using a multi-loss joint 

training model as shown in Figure 1. This model consists of a CNN generator that generates 

a pixel-wise loss term (loss 1) and an adversarial loss term as CNN regularization. An 

additional data fidelity loss path creates another pixel-wise loss term (loss 2) for enforcing 

data fidelity. Therefore, a full objective function can be written as:

L full = Lcyc + Lgan = λloss 2Exu ∼ P(xu) ΦuF(xu) − xu P
+ λloss 1Exu ∼ P(xu) F(xu) − x

P

+ λgan Ex ∼ P(x) log D(x) + Exu ∼ P(xu) log(1 − D(F(xu)))

(9)

Here, λgan is a weighting factor to control the contribution of the GAN regularization to the 

reconstruction. The overall aim of the training is to solve the full objective function in a two-

player minimax fashion (32) as:

F, D = arg min
F

max
D

L full(F, D) (10)

Namely, F aims to minimize this objective function against the adversary D that seeks to 

maximize it. In other words, F tries to reconstruct undersampled images to look similar to 

corresponding fully sampled images, while D aims to distinguish reconstructed images from 

real fully sampled images. As demonstrated in the studies for natural image-to-image 

translation (32–34), successful training using such a competing scheme can result in an 

optimal CNN generator capable of generating artificial images indistinguishable from the 

original images. It should be noted that optimizing Eq.[10] aims to search for optimal 

network parameters θ  for F : f gen(xu ∣ θ) xduring the training phase, so that once the 

training is completed and satisfied, θ  can be fixed for the CNN generator and directly 
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applied to reconstruct a new undersampled image by using the CNN mapping F to the 

undersampled image as:

xcnn = f gen(xu ∣ θ ), xu ∈ P(xu) (11)

Sampling-Augmented Data Cycle-Consistent Adversarial Network

To strengthen the robustness of the trained network towards sampling pattern discrepancy, 

the training of Eq.[10] can be further augmented in a manner where xu is generated to have 

different artifact patterns at each training iteration. Once the training is successful, the 

trained network is capable of learning a variety of aliasing artifact patterns and can then be 

generalized towards removing a broad range of artifacts. This can be achieved by varying the 

undersampling mask for generating each training data pair throughout the entire training 

iterations. Eq.[9] is then updated as:

L full = Lcyc + Lgan = λloss 1Exu, i j ∼ P(xu) Φu, i jF(xu, i j) − xu, i j P

+ λloss 2Exu, i j ∼ P(xu) F(xu . i j) − x
P

+ λgan Ex ∼ P(x) log D(x) + Exu, i j ∼ P(xu) log(1 − D(F(xu, i j)))

(12)

where i denotes the ith image in the training dataset and j denotes the jth training iteration. In 

other words, xu has a different aliasing artifact pattern in each image of the dataset (xu,i), and 

the artifact is also changing for different iterations (xu,ij). Accordingly, the undersampling 

operator Φu,ij is rewritten as:

Φu . i j = CHℑHUi jℑC
Φu . i jx = CHℑHUi jℑCx xu . i j

(13)

to reflect the variation of undersampling patterns Uij during training.

METHODS

In-Vivo Image Datasets

The study was performed in compliance with the Health Insurance Portability and 

Accountability Act (HIPPA) regulations and was approved by the local Institutional Review 

Boards (IRB). Knee datasets were acquired on 30 patients undergoing a clinical knee MRI 

examination, with a waiver of written informed consent. The datasets were acquired on a 

3.0T scanner (Signa Premier, GE Healthcare, USA) equipped with an 18-element knee coil 

array using a clinical two-dimensional (2D) coronal proton density-weighted fast spin-echo 

(Cor-PD-FSE) sequence. Relevant imaging parameters included: matrix size = 420×448, 

FOV = 15×15 cm2, TR/TE = 2500/20ms, flip angle = 111°, echo train length = 5, slice 

thickness = 3mm, number of slices = 30-38, and scan time of 210 seconds
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Liver datasets were acquired on 63 patients undergoing a clinical liver MRI examination, 

with written informed consent. The datasets were acquired approximately 20 minutes after 

the injection of Gd-EOB-DTPA contrast (Eovist) on a 3.0T scanner (TimTrio, Siemens 

Medical Systems, Germany) equipped with a 12-element body matrix coil using a prototype 

fat-saturated stack-of-stars golden-angle radial sequence (35,36). Relevant imaging 

parameters included: matrix size = 256×256, FOV = 33×33cm2, TR/TE = 3.40/1.68ms, flip 

angle = 10°, slice thickness = 5mm, number of slices = 44, 80% partial Fourier along the 

slice dimension, 1000 spokes acquired in each partition, and scan time of 178 seconds.

In addition, a dynamic contrast-enhanced liver image dataset was also acquired on one 

healthy volunteer, with written informed consent. This dataset was acquired during contrast 

injection using the same golden angle radial sequence with a similar protocol as previously 

described except 1222 spokes for each partition and longer scan time of 190 seconds to 

ensure capture of contrast dynamics from a pre-contrast phase to a delayed phase.

Implementation of Neural Network

A U-Net architecture (Supporting Information Figure S1) with residual learning was adapted 

from previous image-to-image translation studies (5,34) (https://github.com/phillipi/pix2pix) 

for the CNN generator (F) to map undersampled image domain into corresponding fully 

sample image domain. This U-Net structure is composed of an encoder network and a 

decoder network with multiple shortcut connections between them (37). The encoder is used 

to achieve efficient data compression while probing robust and spatial invariant image 

features of input images. A decoder network with a mirrored structure of the encoder is 

applied for restoring image features and increasing image resolution using the output of the 

encoder network. Multiple shortcut connections are incorporated to concatenate entire 

feature maps from encoder to decoder to enhance mapping performance. Residual learning 

is implemented to further boost learning robustness and accuracy (38,39). Such a network 

structure and its variants have shown promising results for image-to-image translation in 

many recent deep learning studies (5,37–39). For the adversarial configuration, a network 

architecture developed in PatchGAN (34) was used for the discriminator network (D), which 

aims to differentiate real from artificial images in the adversarial process using image patch-

based assessment on input images. An illustration of the applied PatchGAN is shown in 

Supporting Information Figure S1. Such a patch-level discriminator architecture provides 

efficient network training with fewer network parameters and has demonstrated favorable 

results at differentiating real from artificial images in many recent GAN studies 

(5,34,40,41).

Network Training

In our framework, the complex MR image x ∈ ℂM is converted into a new representation 

x ∈ ℝ 2M so that the real and imaginary components are treated as two individual image 

channels for the network input (14,17). Twenty-two of the 30 knee datasets were randomly 

selected and used for training the deep learning network, while the remaining eight datasets 

were used for evaluation. Similarly, 55 of the 63 liver datasets were randomly selected and 

used for training, while the remaining eight datasets were used for evaluation.
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The network weights for the training were initialized using the initialization scheme as 

described in (42) and were updated using Adam algorithm (43) with a fixed learning rate of 

0.0002. The training was performed in a mini-batch manner with three image slices in a 

single mini-batch (5). The l1 norm was applied for the pixel-wise loss terms in Eq. [12] to 

promote image sharpness following recent GAN studies (15). Total iteration steps 

corresponding to 200 epochs were carried out to ensure convergence of the training (see 

Supporting Information Figure S2). During each iteration, a two-step training strategy was 

applied where the CNN generator (F) and adversarial discriminator (D) were updated 

alternatively (5). After qualitative evaluation with a broad range of combinations, the 

parameters for the weight factors in the full objective function of Eq. [12] were empirically 

selected as λloss1 = 10, λloss2 = 10 and λgan =0.1 for our study.

All the proposed algorithms were implemented in Python (v2.7, Python Software 

Foundation, Wilmington, DE). The CNNs were designed using the Keras package (44) 

running Tensorflow computing backend (45) on a 64-bit Ubuntu Linux system. All the 

training and evaluation were performed on a computer server with an Intel Xeon W3520 

quad-core CPU, 32GB RAM, and an Nvidia GeForce GTX 1080Ti graphic card with a total 

of 3584 CUDA cores and 11GB GDDR5 RAM.

Fixed Training vs. Sampling-Augmented Training

Two training strategies were investigated in the study for both knee and liver imaging, 

including 1) the fixed training strategy (referred to as CNN-Fix hereafter) and 2) the 

sampling-augmented training strategy (SANTIS).

A library of one-dimensional (1D) variable-density Cartesian random undersampling 

patterns (26), consisting of 3000 different undersampling masks, were generated for the knee 

datasets as shown in Figure 2a. Each random sampling pattern was generated using Monte-

Carlo simulation with a fixed probability density function, and corresponding sampling 

pattern lines were selected randomly according to this density. For each undersampling 

mask, the k-space center (5% of the total measurements) was consistently fully sampled. For 

the training of CNN-Fix, only the first undersampling mask was used throughout the entire 

training process as outlined in Eq. [9]. For the training of SANTIS, in contrast, an 

undersampling mask was randomly selected from this library for each image in each training 

iteration, as shown in Eq. [12]. This operation ensures that different artifacts can be created 

for each image at each training iteration so that the network can learn a wide range of 

undersampling artifact structures during training. As a pre-processing step, all the knee 

datasets were compressed into eight virtual coils to fit into GPU memory, and corresponding 

coil sensitivity maps were estimated using the adaptive combination approach (46). To test 

the acceleration performance, two acceleration rates (R=3 and R=5) were investigated for 

knee imaging. In addition, experiments for the uniform Cartesian undersampling patterns 

were also performed and described in the Supporting Information.

The training for the liver datasets was performed using the following steps. First, all the 

datasets were compressed into four virtual coils, and a multi-coil three-dimensional (3D) 

liver image (e.g., without coil combination) was reconstructed using a standard gridding 

algorithm for each dataset. Corresponding coil sensitivity maps were estimated using the 
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adaptive combination approach (46). Second, a library of radial trajectories consisting of 

3000 consecutive golden-angle rotations was calculated, from which different undersampled 

golden-angle patterns could then be generated by combining a subset of consecutive radial 

trajectories (89 consecutive spokes in this study). Third, using these radial undersampling 

patterns, corresponding undersampled radial spokes and radial images could then be 

generated using non-uniform fast Fourier transform (NUFFT) and inverse NUFFT, 

respective. Fourth, similar to knee imaging, the training of CNN-Fix was performed with 

only the first undersampling pattern (e.g., the 1st to the 89th spokes), while the training of 

SANTIS was performed by random selection of a radial undersampling pattern from the 

trajectory library. Due to the GPU memory limit, the 3D liver datasets were treated as multi-

slice 2D images, so that both the training and reconstruction were performed slice-by-slice. 

As a pre-processing step, self-calibrating GRAPPA Operator Gridding (GROG) (47,48) was 

applied to all the generated reference-undersampled radial data pairs, so that the subsequent 

training could be performed entirely on a Cartesian grid.

Evaluation of Reconstruction Methods

In the first experiment, the robustness of the different training strategies was compared. 

Specifically, the trained networks from CNN-Fix and SANTIS were applied to reconstruct 

(the inference step) undersampled images generated with two undersampling masks/

patterns, including the one used for CNN-Fix training (denoted as MaskC1 for knee imaging 

and MaskR1 for liver imaging hereafter) and a newly-generated one not used for training 

(denoted as MaskC2 for knee imaging and MaskR2 for liver imaging hereafter). It was 

ensured that both undersampling patterns were not included in the training of SANTIS to 

fully assess its robustness.

In the second experiment, both CNN-Fix and SANTIS were compared with conventional 

reconstruction methods, including a combination of compressed sensing and parallel 

imaging (CS-PI) (49) and a recently proposed Variational Network (VN) (13,29) that 

represents the current state-of-the-art deep learning-based reconstruction approach. For the 

CS-PI method, reconstruction was performed slice by slice, and coil sensitivity maps were 

generated as previously described. A Daubechies-4 wavelet transform was selected as the 

sparsifying transform. The VN method was implemented using the source code provided by 

the original developers (https://github.com/VLOGroup/mri-variationalnetwork) using 

reconstruction parameters previously configurated for accelerated knee imaging (13,29). The 

VN approach was used as a reference for knee imaging as it has been previously described 

for this application. The undersampling patterns MaskC1 and MaskR1 were used for the 

comparison for knee and liver imaging, respectively.

Reconstruction performance was evaluated using quantitative metrics focusing on different 

aspects of the reconstruction quality. The normalized Root Mean Squared Error (nRMSE) 

was used to assess the overall reconstructed image errors. The Structural Similarity Index 

(SSIM) was used to estimate the overall image similarity with respect to the reference. The 

image sharpness was evaluated by calculating the relative reduction of Tenengrad measure 

(50) between the reconstructed and reference images, where local characteristics of 

pronounced image edges were explored. Differences were evaluated using a paired non-
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parametric Wilcoxon signed-rank test with statistical significance defined as p-value less 

than 0.05.

In the third experiment, the trained network was evaluated on the dynamic contrast-

enhanced liver dataset with retrospective undersampling to test the robustness of SANTIS 

for reconstructing images with different image contrasts. Specifically, the liver dataset was 

reconstructed using RACER-GRASP (51) with a temporal resolution of 15 seconds, 

resulting in a pre-contrast phase, three arterial phases, two venous phases, and several 

delayed phases. Undersampled radial images were then generated from these reconstructed 

contrast phases using different newly-generated golden-angle radial sampling patterns with 

89 consecutive spokes each.

RESULTS

Figure 3 shows a comparison of different reconstruction methods for a representative knee 

dataset at R=3 with MaskC1. Compared to the CS-PI, learning-based reconstruction 

methods (VN, CNN-Fix-MaskC1, and SANTIS) provided better removal of aliasing artifacts 

in the bone and cartilage, as illustrated in the zoomed images. SANTIS showed the best 

reconstruction performance, creating a high-quality reconstructed image. A sharp texture, as 

indicated by the green arrows, was better preserved in SANTIS compared to the other 

methods. Similar result for uniform undersampling patterns is shown in Supporting 

Information Figure S4.

Figure 4 shows a comparison of different reconstruction methods for another knee dataset at 

R=5. Similar improvement in image quality was observed for SANTIS, with better 

representation of the layered structure of the femoral and tibial cartilage (green arrows). At 

this acceleration, CS-PI failed to effectively reconstruct the undersampled image, and both 

VN and CNN-Fix suffered from notable residual blurring and loss of image details, as 

shown by the red arrows in the zoomed bone and subcutaneous fat regions.

Figure 5 shows knee images comparing CNN-Fix with SANTIS using both MaskC1 (top 

row) and MaskC2 (bottom row) at R=3. As described in the Methods, MaskC1 was only 

used for the training of CNN-Fix training, while neither MaskC1 or MaskC2 were used for 

the SANTIS training. As expected, MaskC1 and MaskC2 created different aliasing artifacts, 

as highlighted by the green arrows in the zero-filling images. While CNN-Fix-MaskC1 

showed decent image quality, CNN-Fix-MaskC2 failed to effectively reconstruct the 

undersampled image generated with MaskC2, with noticeable residual aliasing artifacts in 

the zoomed image, as indicated by the green arrows. In contrast, SANTIS demonstrated 

consistent reconstruction performance for both MaskC1 and MaskC2. Similar result for 

uniform undersampling patterns is shown in Supporting Information Figure S5.

Figure 6 shows a comparison of different reconstruction methods for radial liver imaging 

with MaskR1. Similar to knee imaging, SANTIS achieved the best image quality with better 

removal of streaking artifacts and preservation of tissue texture. CS-PI generated pseudo 

residual structures (hollow green arrows), which were potentially caused by the use of 

wavelet constraint. Meanwhile, CNN-Fix-MaskR1 suffered from noticeable residual 
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blurring as indicated by the green arrows. For both CS-PI and CNN-Fix-MaskR1, residual 

streaking artifacts were present, as illustrated by the red arrows in the zoomed region.

Figure 7 shows zoomed liver images with a tumor (green box in the reference image) 

comparing CNN-Fix and SANTIS using both MaskR1 and MaskR2. CNN-Fix-MaskR1 and 

CNN-Fix-MaskR2 suffered from residual streaking artifacts. SANTIS provided improved 

image quality for both sampling patterns, with a reduced level of residual streaking artifacts 

and a better delineation of the tumor. Corresponding full FOV images of this comparison are 

shown in Supporting Information Figure S3.

The group-wise quantitative analyses further confirmed the qualitative observations in the 

exemplary figures. The comparisons of reconstruction methods using different metrics, 

including the nRMSE, SSIM and Tenengrad, are summarized in Table 1 and Table 2 for all 

the testing knee and liver datasets. For knee imaging at both R=3 and R=5 (Table 1), all the 

deep learning-based reconstruction methods (VN, CNN-Fix-MaskC1, and SANTIS) 

achieved significantly better image quality (p<0.05) than CS-PI. Among different deep 

learning-based methods, SANTIS achieved significantly better image quality than CNN-Fix-

MaskC1 for nRMSE (p=0.003) and Tenegrad (p=0.001) at R=3 and significantly better 

image quality (p<0.003) than CNN-Fix-MaskC1 at R=5. Image quality was significantly 

degraded (p<0.003) from CNN-Fix-MaskC1 to CNN-Fix-MaskC2 when an unmatched 

undersampling mask (MaskC2) was used for inference, while SANTIS achieved more 

consistent performance for both MaskC1 and MaskC2 (p>0.05).

For liver imaging (Table 2), CNN-Fix-MaskR1 and SANTIS also achieved significantly 

better image quality (p<0.001) than CS-PI for nRMSE and SSIM. However, different from 

Cartesian imaging, the results of CNN-Fix-MaskR2 was only marginally (p= 0.01 for 

nRMSE and SSIM; p=0.03 for Tenengrad) degraded compared to CNN-Fix-MaskR1, which 

was likely due to the more incoherent undersampling behavior of radial sampling. 

Nevertheless, SANTIS produced significantly better image quality than CNN-Fix-MaskR1 

for SSIM (p=0.01) and Tenengrad (p=0.001).

For both knee and liver imaging, although SANTIS was better than CNN-Fix in general, 

there was no significant difference between SANTIS and CNN-Fix-MaskC1 for SSIM 

(p=0.1) in knee datasets at R=3 and there was no significant difference between SANTIS 

and CNN-Fix-MaskR1 for nRMSE (p=0.07) in liver imaging. These observations indicated 

that CNN-Fix can provide reconstruction quality that is statistically comparable to SANTIS 

at certain aspects. Regarding reconstruction time, deep learning-based methods provided 

faster reconstruction speed compared to CS-PI. Both SANTIS and CNN-Fix reconstruction 

could be completed in approximately 60ms per image slice.

Figure 8 demonstrates the performance of SANTIS for reconstructing accelerated dynamic 

contrast-enhanced liver images at different contrast phases. Although the SANTIS training 

was performed using images acquired in a delayed contrast phase, the method was able to 

effectively reconstruct images in a different contrast phases (e.g., pre-contrast phase, arterial 

phase, or venous phase) without affecting image contrast. The recovery of image quality 

from the zero-filling results could be clearly noted.
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DISCUSSION

The main contribution of this work is a new training strategy for improving the robustness of 

a trained network against discrepancies of undersampling schemes that may occur between 

training and inference. The performance of SANTIS was demonstrated for accelerating 

Cartesian-based knee imaging and radial-based liver imaging by comparing with fully 

sampled references images and different reference reconstruction approaches. Utilizing a 

network architecture combining end-to-end CNN mapping, data fidelity enforcement, and 

adversarial training using GAN, the SANTIS approach additionally performs an extensive 

variation of undersampling patterns during training, referred to as sampling or k-space 

trajectory augmentation. Such a training strategy allows the network to explore a variety of 

aliasing artifact structures during the training process, thus providing more effective and 

robust removal of undersampling artifacts during reconstruction compared to network 

trained with a fixed undersampling pattern, as demonstrated for the accelerated knee and 

liver imaging in this work. Moreover, the SANTIS framework might be particularly useful in 

imaging applications where a non-repeating sampling scheme is performed. An example of 

this application scenario is the combination of continuous golden-angle radial sampling 

scheme(35,52) with SANTIS, in which a trained network can be employed to reconstruct 

undersampled images acquired with varying patterns in different time points, as 

demonstrated for the accelerated liver imaging in this study. Meanwhile, the SANTIS 

framework may also be useful to better handle trajectory variations caused by system 

imperfections (e.g. eddy current and field inhomogeneity) that are often different from 

scanner to scanner.

Despite the recent interest in deep learning-based reconstruction, most existing work has 

focused on improving reconstruction accuracy, applicability, and efficiency (13–21). The 

robustness of the reconstruction methods, despite its importance, has been less studied but 

remains an essential component in the emerging era of deep learning-based reconstruction. 

Here, a general open question is whether a trained network that performs well on one image 

dataset can be effectively used for reconstructing different image datasets with varying 

image contrasts, noise levels, imaging hardware, or acquisition protocols. A pilot study by 

Knoll et al. has investigated this question using a variational network (29). Although their 

findings were insightful, a practical solution was not provided. The SANTIS framework 

represents a first attempt to solve this challenging question in deep learning-based 

reconstruction. Although our current study focused on the robustness of acquisition 

trajectories, the framework could be potentially extended to handle different types of image 

contrasts and even different noise levels.

The performance of CNN-Fix and SANTIS was compared for accelerated knee imaging 

using Cartesian trajectories and accelerated liver imaging using radial trajectories. While 

SANTIS achieved relatively consistent performance, our results found that the differences 

between CNN-Fix-MaskC1 and CNN-Fix-MaskC2 were more pronounced than the 

differences between CNN-Fix-MaskR1 and CNN-Fix-MaskR2. This can be attributed to the 

fact that radial sampling is more incoherent, resulting in more benign undersampling 

artifacts. As a result, the change of undersampling mask has less of an influence on radial 

sampling than Cartesian sampling. Our results also showed that the performance of SANTIS 
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was better than CNN-Fix for both Cartesian and radial sampling in general. The superior 

performance of SANTIS may be due to two factors. On the one hand, when the number of 

training datasets is relatively small, successful training does not ensure good reconstruction 

performance in the testing datasets. Although datasets were acquired on the same organ, 

corresponding images likely show substantial variations between patients. Thus, when image 

features are limited, the network may be over-adapted to the training datasets and may not 

be well-generalized to the testing datasets. The variation of undersampling patterns in 

SANTIS creates abundant image features, which allow the trained network to better 

characterize undersampling artifacts for improved image reconstruction. On the other hand, 

the variation of the undersampling pattern can introduce additional incoherence, thereby 

facilitating better recognition of undersampled artifacts from underlying image structure. 

This is similar to the effect of time-varying incoherent sampling in temporal compressed 

sensing methods (26) and randomized acquisitions in MR fingerprinting (53). However, it 

should be noted that CNN-Fix also yielded comparable results to SANTIS at certain aspects, 

indicating that the sampling augmentation might have preferably more contribution to 

certain image features than others. It is also anticipated that the effectiveness of the data 

augmentation in image reconstruction is dependent on the deep learning model complexity, 

the training accuracy and the data size. Further investigations to better understand the 

comprehensive relationship of the reconstruction improvement via sampling augmentation 

and penitential affecting factors are needed in future work.

This study also investigated whether the SANTIS framework could be used for 

reconstructing liver images acquired in different contrast phases during dynamic contrast-

enhanced imaging. Our proof-of-concept investigation on a single patient showed 

encouraging results for reconstructing a rapid contrast wash-in phase (e.g., arterial phase) 

image using image features learned from a delayed phase image. This suggests the potential 

to reconstruct accelerated dynamic contrast-enhanced images using transfer learning. Our 

example showed that SANTIS is capable of learning essential image features that are 

uniquely dependent on the undersampling pattern with the reconstruction less affected by the 

change in image contrast caused by contrast injection. In addition to the sampling-

augmented training, such performance is also partly due to the use of a combination of 

residual learning and data fidelity loss. The data fidelity consistency ensures that the 

reconstructed image matches the acquired undersampled measurement. The residual 

learning strategy aims to directly subtract image artifacts from undersampled input images, 

which is advantageous in identifying artifacts without affecting image contrast and anatomy 

(38,39). However, additional studies on larger image datasets are needed to more thoroughly 

investigate the applicability and utility of this intriguing feature of SANTIS.

The application of adversarial training has proven to be quite successful in preserving 

perceptional image structure and texture in reconstructed images, as shown in (14,15). In 

contrast to the reconstruction methods using solely pixel-wise losses that may alter 

underlying image texture and noise spectrum, the reconstructed images using adversarial 

loss is more advantageous for maintaining a visually plausible image appearance. The 

adversarial learning ensures that the restored images fall into the same data distribution as 

the fully sampled reference images in a transformed high dimensional image manifold 

(32,54). The data cycle consistency enforces data fidelity and further prevents degradation of 
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the adversarial process from generating hallucinated image features (33). The combination 

of these two components in SANTIS imposes both high-quality image feature learning and 

information consistency to provide efficient and accurate CNN end-to-end mapping. 

Although the data cycle-consistent network implemented in the current study is similar to 

that in our previous report (30), the intriguing contribution of this work is the idea of 

SANTIS, which is expected to be a generalizable framework that can be combined with 

other network structures. Moreover, our experiments were performed on multi-coil k-space 

data in both Cartesian and golden-angle radial trajectories in the context of parallel imaging, 

which is also different from prior works that have used adversarial training on simulated 

single-coil k-space datasets. Further investigation will also focus on incorporating dedicated 

network structures (such as deep cascade network(17), KIKI-net(20) and RAKI(21)) into the 

data cycle-consistent network to maximize the benefits of both the database feature learning 

and case-specific feature estimation with multi-coil data.

Our study has several limitations. First, although the SANTIS training was performed using 

a library of different undersampling patterns, they were generated to have the same variable-

density distribution in Cartesian imaging. The robustness of the trained network for 

reconstructing a completely different sampling scheme remains to be explored. However, it 

is straightforward to extend the SANTIS training to incorporate different undersampling 

schemes with varying distributions of sampling and different acceleration rates, so that the 

generalization of the network can be further extended. However, such a training scheme may 

require an increased number of iterations to achieve convergence. Second, our study did not 

analyze the speed of training convergence between CNN-Fix and SANTIS. For both 

networks, the training was performed with a sufficient number of epochs to ensure training 

convergence. Thus, further studies are needed to evaluate the influence of sampling-

augmented training and training parameters on convergence speed. Third, the reconstruction 

parameters, as shown in Eq. [12], were empirically determined in our study. The weight of 

the GAN regularization, in particular, is vital to ensure good reconstruction performance 

(14,15). However, the selection of reconstruction parameters is not only a challenge for our 

work but remains an open question in constrained image reconstruction in general. Finally, 

due to the need for large training datasets, the SANTIS approach was evaluated on a 

relatively small number of knee and liver image testing datasets and only a single dynamic 

contrast-enhanced liver testing dataset. Additional studies with larger testing datasets are 

needed to further evaluate SANTIS before the approach can be used in clinical practice to 

accelerate knee and liver imaging.

CONCLUSIONS

SANTIS represents a novel concept for deep learning-based image reconstruction. With 

sampling or k-space trajectory-augmented training by extensively varying undersampling 

pattern, SANTIS can recognize more aliasing artifact structures and thereby provide more 

robust and effective removal of image artifacts. The SANTIS framework can be particularly 

useful for improving the robustness of deep learning-based image reconstruction against 

discrepancies of undersampling schemes that may occur between training and inference.
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Figure 1. 
Illustration of the SANTIS reconstruction using a data cycle-consistent adversarial network, 

which features three loss components. The first loss term (pixel-wise loss 1) removes 

aliasing artifacts such that the reconstructed image x looks like their reference (x). The 

second loss term (pixel-wise loss 2) ensures that the reconstructed images from CNN 

generator (e.g., Residual U-Net) produce undersampled images xu matching the acquired k-

space measurements (xu). The adversarial loss term enforces a high perceptional quality for 

the reconstructed image to maintain image details and texture using a CNN discriminator 

(e.g., PatchGAN). The notation in this figure follows the main text description.
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Figure 2. 
Schematic demonstration of the undersampling patterns used in the study. (a) Examples of 

the 1D variable-density Cartesian random undersampling patterns used for knee imaging. (b) 
Example of the gold-angle radial undersampling masks used for liver imaging. The 

undersampling mask was varying for each iteration during the network training to augment 

the training data for SANTIS framework.
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Figure 3. 
Representative examples of knee images obtained using the different reconstruction methods 

at R=3. SANTIS showed the highest image quality with favorable preservation of tissue 

sharpness (green arrows) and texture comparable to the reference.
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Figure 4. 
Representative examples of knee images obtained using the different reconstruction methods 

at R=5. SANTIS showed the highest image quality with a better representation of the 

layered structure of the femoral and tibial cartilage (green arrows) with favorable 

preservation of tissue sharpness and texture (red arrows) comparable to the reference.
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Figure 5. 
Evaluation of reconstruction robustness at different undersampling masks for MaskC1 and 

MaskC2. The fixed training CNN-Fix failed to reconstruct MaskC2 with noticeable residual 

artifacts, as indicated by the green arrows. SANTIS provided a consistent high-quality 

reconstruction for both masks.

Liu et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
A representative comparison of different reconstruction methods in radial liver imaging with 

MaskR1. SANTIS showed the highest image quality with successful removal of streaking 

artifacts and with favorable preservation of tissue sharpness and texture. CS-PI showed 

pseudo residual structures (hollow green arrows). Meanwhile, CNN-Fix-MaskR1 suffered 

from noticeable residual blurring, as indicated by the green arrows. For both CS-PI and 

CNN-Fix-MaskR1, residual streaking artifacts could be noted, as highlighted by the red 

arrows in the zoomed region.
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Figure 7. 
Example of zoomed liver images with a tumor comparing CNN-Fix and SANTIS using both 

MaskR1 and MaskR2 for inference. Both CNN-Fix-MaskR1 and CNN-Fix-MaskR2 

suffered from residual artifacts (red arrows), while SANTIS consistently showed improved 

image quality for both MaskR1 and MaskR2, with a reduced level of residual streaking 

artifacts and a delineation of the tumor that is closer to the reference.

Liu et al. Page 24

Magn Reson Med. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Examples demonstrating the performance of SANTIS in reconstructing accelerated dynamic 

contrast-enhanced liver images at different contrast phases. SANTIS effectively 

reconstructed images at a different contrast phase (e.g., pre-contrast phase, arterial phase, or 

venous phase) without affecting image contrast, and the recovery of image quality from the 

zero-filling results could be clearly noted.

Liu et al. Page 25

Magn Reson Med. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 26

Table 1

Quantitative metrics comparing the reference fully sampled images and the reconstructed images from 

different reconstruction methods for Cartesian knee imaging. Results were averaged over the eight test datasets 

and represent mean value ± standard deviation. SANTIS achieved the highest and most robust reconstruction 

performance at both R=3 and 5.

Method

R=3 R=5

nRMSE
[%]

SSIM
[%]

Tenengrad
[%]

Average
Recon
Time 

[s]

nRMSE
[%]

SSIM
[%]

Tenengrad
[%]

Average
Recon
Time 

[s]

ZF 9.87 ± 1.16 82.25 ± 3.77 43.75 ± 2.69 0.001 13.58 ± 1.75 75.38 ± 4.92 55.19 ± 3.52 0.001

CS-PI 6.74 ± 0.63 87.64 ± 2.22 15.66 ± 1.99 2.12 10.91 ± 1.13 83.78 ± 3.80 33.01 ± 2.99 2.21

VN 6.01 ± 1.12 90.21 ± 2.54 10.11 ± 2.06 0.11 10.61 ± 1.67 85.11 ± 3.96 20.13 ± 3.10 0.12

CNN-Fix
MaskC1 (match training) 5.67 ± 0.94 90.78 ± 2.89 10.30 ± 2.34 0.06 10.48 ± 1.41 85.06 ± 4.79 19.63 ± 4.10 0.06

MaskC2 (unmatch training) 6.92 ± 1.09 86.33 ± 2.91 10.67 ± 2.86 0.06 11.56 ± 1.94 82.98 ± 4.84 20.59 ± 4.95 0.06

SANTIS
MaskC1 5.15 ± 1.07 91.41 ± 2.82 8.67 ± 2.45 0.06 9.60 ± 1.81 89.06 ± 4.97 17.29 ± 3.79 0.06

MaskC2 5.10 ± 1.02 91.96 ± 2.90 8.51 ± 2.38 0.06 9.66 ± 1.40 88.66 ± 4.62 17.11 ± 3.84 0.06
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Table 2

Quantitative metrics comparing the reference fully sampled images and the reconstructed images from 

different reconstruction methods for golden-angle radial liver imaging. Results were averaged over the eight 

test datasets and represent mean value ± standard deviation. SANTIS achieved the highest and most robust 

reconstruction performance.

Method

89 spokes

nRMSE
[%]

SSIM
[%]

Tenengrad
[%]

Average
Recon

time [s]

ZF 11.69 ± 1.39 85.80 ± 2.38 37.98 ± 2.92 0.001

CS-PI 9.50 ± 1.56 87.42 ± 3.14 3.55 ± 2.75 2.32

CNN-Fix
MaskR1 (match training) 9.00 ± 1.32 91.07 ± 2.27 6.16 ± 2.33 0.06

MaskR2 (unmatch training) 9.29 ± 1.32 89.80 ± 2.24 6.76 ± 2.43 0.06

SANTIS
MaskR1 8.82 ± 1.31 92.66 ± 2.00 2.00 ± 2.72 0.06

MaskR2 8.78 ± 1.29 92.17 ± 2.00 1.77 ± 3.19 0.06
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