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Abstract

Exposures to endocrine disrupting chemicals and metals are near ubiquitous worldwide, and their 

potential impact on children is a major public health concern. This pilot study was designed to 

characterize exposures to phthalates, phenols, and metals among pregnant women in the first 

trimester, and to examine associations with fetal biometrics and birth weight. Forty-one chemicals 

and elements were analyzed in urine from 56 mothers with full-term newborns from the Michigan 

Mother-Infant Pairs (MMIP) study. Bivariate analyses identified predictors of exposure 

biomarkers. Associations between birth weight, Fenton z-scores, and second trimester fetal 

biometrics with toxicants were examined via multivariable linear regression. An average of 30 

toxicants was detected in maternal urine. Fast food consumption was associated with several 

phthalate metabolites, phenols and metals, and canned food consumption with bisphenol F 

(p<0.05). Mono (3-carboxypropyl) phthalate (MCPP) was significantly associated with higher 

birthweight and Fenton z-score while the opposite was observed for bisphenol S. Estimated femur 

length from ultrasonography was significantly inversely associated with arsenic, barium, and lead. 

While limited by sample size, this study is one of the first to evaluate birth outcomes with respect 
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to emerging endocrine disrupting chemicals and to examine associations between toxicants and 

fetal biometrics. Exposure assessment was provided by the National Institute of Environmental 

Health Sciences’ Children’s Health Exposure Analysis Resource (NIEHS CHEAR), a resource 

available to children’s studies with the goal of combining data across cohorts in an effort to 

characterize the impact of toxicants on child health from birth and beyond.
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Introduction

Endocrine disrupting chemicals including phthalates and phenols and metals are toxicant 

classes of global concern, especially to pregnant women and children [1–4]. In recent years, 

studies in the United States, Canada, and Denmark have measured dozens to hundreds of 

chemicals among pregnant women or women planning pregnancies and found phthalates, 

phenols, and metals to be among the most widely detected [1–3, 5–7]. For example, in the 

Canadian Maternal-Infant Research on Environmental Chemicals (MIREC) study, the 

phenols triclosan (TCS) and bisphenol a (BPA) as well as metabolites of di (2-ethylhexyl) 

phthalate (DEHP) were detected in >95% of first trimester maternal urine samples [3, 7]. 

While the exposure landscape varies by region, diet, occupation, and cultural practices 

around the globe, phenols, phthalates, and metals are near ubiquitous. Electronic waste 

recycling in African, South American, and Asian countries leads to community-wide 

exposures to toxic metals [8]. In thirty countries with available data, water supplies were 

found to be contaminated by phenols, reflecting widespread use of personal care products 

[9]. These examples suggest that endocrine disrupting chemical and metal exposures will 

remain a public health concern for the foreseeable future. As such it is imperative that the 

extent of exposure and its adverse effects on vulnerable populations (e.g., developing 

children) are known.

In line with the developmental origins of health and disease (DOHaD) hypothesis, prenatal 

exposures to endocrine disrupting chemicals and metals are associated with offspring health 

in animal and epidemiological studies, with effects on anthropometry, puberty, 

neurodevelopment, and more often observed years after the exposure [10–17]. Birth weight, 

a routinely collected clinical measure, is considered an indicator of future health with 

extremes at the low or high end correlated with cardiovascular and metabolic disease risk 

and other complications later in life [18–20]. Prenatal exposures to toxicants including lead, 

arsenic, cadmium, DEHP, and butylparaben (BuPB), are associated with lower birth weight 

individually or in combination [21–24]. Examining relationships between early gestational 

exposures with fetal biometrics from standard prenatal ultrasound screening could provide 

further insight into windows of susceptibility for effects on growth. Significant associations 

between decreased estimated fetal weight from ultrasonography and DEHP metabolites [25] 

were observed in a Boston birth cohort (n=482), suggesting metrics of fetal growth as a 

promising yet largely unexplored outcome for environmental epidemiology.
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This study was designed to characterize three classes of prevalent toxicants of concern to 

pregnant women and developing children – phthalates, phenols, and metals – using first 

trimester urine samples from a subset of 56 mothers with full-term and healthy newborns 

from the Michigan Mother-Infant Pairs (MMIP) study. We conducted exploratory analyses 

to identify exposure predictors and associations of exposures with birth weight and second 

trimester fetal biometrics. These analyses were conducted as an initial exposome pilot study 

through support from the US National Institute of Environmental Health Sciences’ 

Children’s Health Exposure Analysis Resource (NIEHS CHEAR).

Methods

Study population

The MMIP project is an ongoing birth cohort study based out of the University of Michigan 

Von Voigtlander Women’s Hospital. Women were recruited between 2010 to 2017 during 

their first prenatal visit and were eligible to participate if they were at least 18 years old, 

conceived naturally, had a singleton pregnancy, were between 8 and 14 weeks gestation, and 

intended to deliver at the University of Michigan hospital. Approximately 250 MMIP 

subjects have delivered as of 2017, and findings from a subset of these subjects were 

previously published [26–28]. For the analyses described herein, a subset of mothers 

recruited between 2012 and 2015 were selected for extensive exposure assessment of 

endocrine disrupting chemicals and metals and planned epigenomic and metabolomics 

analyses as a CHEAR pilot study. To be included in this subset of 56, inclusion criteria for 

the mother-infant pairs were: complete survey data, availability of all biospecimen from 

mother and child, and family not included in previous exposure assessment. Due to low 

prevalence of racial or ethnic minorities and maternal smoking, in an effort to reduce 

confounding factors in a relatively small sample size, only Caucasian, non-Hispanic, non-

smoking mothers with full term newborns (>37 weeks gestation) were included.

Women provided informed, written consent prior to participation. The University of 

Michigan Medical School Institutional Review Board approved all study procedures.

Survey data and sample collection

At the first trimester study visit, women were administered a survey to collect information 

on demographics, smoking status, and potential exposure sources for endocrine disrupting 

chemicals in the past three months (fast food, canned food, haircare products, perfumes and 

cosmetics). Spot urine and venous blood samples were collected from MMIP mothers during 

the first trimester prenatal visit and upon arrival at the hospital for delivery. Urine samples 

were collected in polypropylene containers, transferred into glass vials, and stored at −80 °C 

prior to analysis.

Birth outcomes

Data were collected from the health records on gestational age, birth weight (measured at 

delivery), birth length, and head circumference measured the day after delivery. Gestational 

age was recorded as the healthcare provider’s best estimate from either the last menstrual 

period or ultrasound, as recommended by the American Congress of Obstetricians and 
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Gynecologists. Fenton z-scores were calculated to standardize birth weight by completed 

gestational weeks and by sex using the Fenton Growth Chart updated in 2013 [29].

Fetal anthropometry

Fetal morphometrics including biparietal diameter, head circumference, abdominal 

circumference, and femur length were abstracted from a clinical ultrasound performed in the 

second trimester at the time of fetal survey. Published growth reference curves were used to 

standardize measurements based on gestational age [30].

Exposure assessment: Endocrine disrupting chemicals

Panels of 12 phthalate metabolites and 12 environmental phenols were quantified in 

maternal urine samples collected during the first trimester study visit at the NSF 

International Applied Research Center Laboratory (Ann Arbor, MI, USA) via isotope 

dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS). Methods were 

modified from our previously published work [28, 31] to include more analytes. The 

analytical methods are based on the Centers for Disease Control and Prevention Laboratory 

Procedure Manuals for phthalate metabolites and environmental phenols (method no. 

6306.03 and 6306.01, respectively), and analysis was conducted on a TSQ Vantage triple 

quad/Transcend II instrument with Ultimate 3000 HPLC Pumps. For phthalates, the analytes 

included metabolites of DEHP: mono (2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono 

(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono (2-ethylhexyl) phthalate (MEHP), and 

mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) and dibutyl phthalates (DBP): mono-

isobutyl phthalate (MIBP) and mono n-butyl phthalate (MnBP). Concentrations of mono-

benzyl phthalate (MBzP), mono-carboxy isononyl phthalate (mCINP), mono (3-

carboxypropyl) phthalate (MCPP), mono (6-COOH-2-methylheptyl) phthalate (MCOMHP), 

monoethyl phthalate (MEP), and mono-isononyl phthalate (mINP) were also determined. 

For environmental phenols, analytes were bisphenols (BPA, BPF, BPS), parabens (butyl, 

ethyl, methyl, and propyl paraben [BuPB, EtPB, MePB, PrPB]), 2,4 and 2,5-dichlorophenol 

(DCP24, DCP25), benzophenone-3 (BP3), triclocarban (TCC), and TCS.

Exposure assessment: Metals and metalloids

Metals were quantified in first trimester maternal urine samples at the NSF International 

Laboratory via isotope chromatography plasma tandem mass spectrometry (ICPMS) 

following a protocol based on CDC method 3018.3 with modifications for an expanded 

metal panel and a iCAP RQ instrument (Thermo Scientific). The seventeen metals analyzed 

were arsenic, barium, beryllium, cadmium, chromium, copper, mercury, manganese, 

molybedenum, nickel, lead, selenium, tin, thallium, uranium, tungsten, and zinc (As, Ba, Be, 

Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sn, Tl, U, W, and Zn). One sample with insufficient 

urine quality and quantity was excluded from metals analysis.

Quality control procedures during the exposure assessment of all toxicants included 

assessing intra- and inter-day variability and accuracy through replicates spiked at different 

concentrations. The laboratory also participates in external proficiency testing programs for 

many of the measured analytes. Concentrations below the limit of detection (LOD) were 

assigned a value of LOD/ 2. Specific gravity of maternal urine samples were measured via a 
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handheld device (ATAGO Company, Ltd., Tokyo, Japan) to account for variability due to 

urinary dilution [32].

Statistical analysis

Descriptive statistics were computed for demographics, birth outcomes, survey responses, 

and toxicant concentrations. The molar sums for metabolites of DEHP (MECPP, MEHHP, 

MEHP, and MEOHP) and DBP (MIBP and MnBP) were calculated by summing metabolite 

concentrations divided by their respective molar mass. Exposure sum variables were 

calculated by first ranking concentrations of each toxicant into tertiles, assigning 0, 1, or 2 to 

the first, second, and third tertiles, respectively, followed by taking the sum of assigned 

integers within each class (phthalate, phenol, or metal), as well as a comprehensive sum of 

all chemical agents. Continuous variables failing to depict a normal distribution were 

transformed by the natural logarithm for further analysis.

Toxicants that were not detected in at least 30% of samples (mINP, TCC, Be, U, and W) 

were excluded from multivariate and bivariate single-exposure analyses. Bivariate 

associations were evaluated between chemical agents and birth outcomes, survey responses, 

and demographic factors using Spearman correlation coefficients, Wilcoxon rank-sum tests, 

and Kruskal-Wallis tests as appropriate. Multiple linear regression models, adjusting for 

specific gravity, gestational age, and infant gender (when appropriate), were used to regress 

chemical agents on birthweight, Fenton z-scores, and fetal biometrics. Toxicants were 

analyzed individually, summed within their respective class (phthalate, phenol, and metal), 

and all-inclusive sum of agents measured based on tertiles as described above. Phenols BPF 

and BPS were also described and analyzed as detect / non-detect due to a high percentage of 

concentrations below LOD. All statistical analyses were conducted using SAS 9.4 (Cary, 

N.C.).

Results

Demographics and birth outcomes

Characteristics of women and infants of the MMIP cohort subset are displayed in Table 1. 

The cohort is comprised of (n=56) non-Hispanic Caucasian women, with a median age of 

31.5 years (IQR=6). Prior to pregnancy, women were typically within the normal BMI range 

(median=23.41 kg/m2). The homogeneous group were primarily married (89%), never 

smokers (89%), and reported some degree of undergraduate college education or higher 

(92%). The majority of women currently had at least one child (parity ≥ 1). All births were 

full term by design and of normal birthweight (median=3,520 g). After adjusting for 

gestational age, infants were average in size compared to the general population (Fenton z-

score median percentile = 59.7). When separated by sex, females had a median percentile of 

54.4 while males were slightly larger (median percentile = 62.7; see S1 Table for sex-

stratified anthropometry). Most births were vaginal (66.1%).

Exposure assessment

Distributions of phthalate, phenol, and metal concentrations from first trimester maternal 

urinary samples are depicted in Table 2. All phthalate metabolites except MEHP and mINP 
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were highly detected (> 90%) and most metabolites were moderate to highly correlated (S2 

Table). Fewer phenols were above the LOD and were weakly to moderately correlated with 

one another (S3 Table). Most metal concentrations were highly detected (> 60%), and were 

significantly correlated with one another, except Hg (S4 Table).

Out of 41 toxicants analyzed, women in this cohort had an average of 30 detected, (range 17 

to 38) during their first trimester of pregnancy including an average of 11 phthalate 

metabolites, 8 phenols, and 13 metals. Summed scores based on tertiles of exposures for 

each toxicant reveal a distribution across the sample ranging from mothers in the lowest 

tertile for nearly all the toxicants to mothers in the highest tertile for almost all analytes (S5 

Table).

Predictors of exposure biomarkers

Frequency of survey responses to possible endocrine disrupting chemical sources including 

diet and personal care products during the first trimester can be found in Table 3. 

Concentrations for metabolites, mCINP (Wilcoxon rank-sum test p = 0.002), MCPP (p = 

0.04), meCPP (p = 0.02), and MiBP (p = 0.01) were higher for those who ate fast food, 

while an inverse relationship was detected for MnBP (p=0.004; S6 Table). With phenols, 

2,5-DCP, MeBP, and TCS (p = 0.03) were higher among those who consumed fast food (S7 

Table). Concentrations of BPF were higher for those who not only consumed canned food (p 

= 0.03), but also for those who reported higher frequency of consumption per week (p=0.02; 

S8 Table). Few significant relationships were detected among survey responses and metals 

(S9 Table). However, concentrations of Se (p=0.01), Sn (p=0.02), and Zn (p=0.02) were 

higher in those who reported fast food consumption.

Exposures and size at birth

The associations of phthalates, phenols, and metals that were detected in at least 30% of 

samples with birthweight and Fenton z-scores are displayed in Table 4. Several significant 

associations were observed (p<0.05). One unit of natural log-transformed MCPP 

concentration was associated with a 78.48 g increase in birthweight (95% CI: 2.95, 154.01; 

p = 0.04) and a 0.19 increase in Fenton z-score (95% CI: 0.02, 0.35; p = 0.02). We identified 

a significant decrease in birthweight (β= −150.42 g, 95% CI: −294.85; −6.00; p=0.04) and 

Fenton z-score (β= −0.31; 95% CI: −0.62, 0.002; p = 0.05) with increasing BPS 

concentrations. Since BPS was only detected in 37% of samples, we examined this 

association with dichotomized BPS (detect vs. non-detect, see S10 Table) and the 

relationship with lower birth weight (p=0.04) and Fenton z-score remained (p=0.02) among 

mother-infant pairs with detectable BPS. No significant relationships were observed between 

metals or summed scores of phthalates, phenols or metals with birth weight or Fenton z-

score.

Exposures and fetal size

Regression analyses for toxicants with standardized fetal anthropometry are depicted in 

Table 5. MEP was positively associated with abdominal circumference (β = 0.53, 95% CI: 

0.05, 1.01, p = 0.03) while the metals As (β = −0.26, 95% CI: −0.46, −0.07; p = 0.01), Ba (β 
= −0.25, 95% CI: −0.55, −0.15; p = 0.001), and Pb (β = −0.28, 95% CI: −0.51, −0.04; p = 
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0.02) were all negatively associated with femur length. Relationships between fetal 

anthropometry measurements and summed exposures were not statistically significant.

Discussion

In the MMIP cohort, we report widespread exposure to endocrine disrupting chemicals and 

metals in first trimester maternal urine samples with an average of 30 toxicants detected out 

of 41. Some toxicants were near ubiquitous with detection in >90% of samples including all 

essential elements, non-essential elements (As, Ba, Tl), 10 phthalate metabolites, BP-3, 

MePB, PrPB, and TCS. Toxicants that are increasingly being detected in humans in recent 

decades, MCPP and BPS [33, 34], were significantly associated with higher and lower birth 

weight, respectively, among this pilot sample from MMIP. We also observed associations 

between decreased second trimester femur length and metals, suggesting the potential utility 

of fetal biometrics in understanding windows of susceptibility.

MMIP along with other recent environmental epidemiology studies is moving beyond 

assessment of highly studied toxicants (e.g., As, Cd, BPA) to characterize trends in the ever-

changing exposome and ultimately adverse health outcomes associated with these exposures. 

We detected an average of 30 out of 41 endocrine disrupting chemicals and metals measured 

in urine with a maximum of 38 detected in an individual. Similarly, Woodruff et al. observed 

high detection levels amongst many chemical classes including phenols, phthalates, metals, 

and pesticides measured in biological samples from 268 pregnant women who participated 

in the 2003–2004 cycle of NHANES [1]. In the Canadian MIREC study, multiple classes of 

chemicals were detected in maternal first trimester urine samples with socio-demographic 

characteristics predicting concentrations of some chemicals but not all [3, 35]. For example, 

DEHP metabolites were detected in 98% of participants, and concentrations were 

independent of socio-demographic characteristics [3].

The MMIP sample in this study was comprised of a well-educated and healthy group of 

Caucasian women with exposure levels similar to or lower than those reported in NHANES. 

The toxic burden carried by pregnant women in vulnerable populations and the subsequent 

health effects on mother and child are likely to be greater due to region-specific, SES-related 

and/or environmental justice issues such as urban air pollution, access to fresh produce or 

clean water, proximity to industrial operations, consumer product use patterns and more. For 

example, in a sample of predominantly black pregnant women from New York, MePB and 

PrPB urinary concentrations were >4 times greater than that observed in MMIP [36]. 

Exposure to metals is a global concern with disproportionate burdens posed on many 

populations including those living near outsourced electronic waste recycling sites [8] or 

populations with As or Pb contaminated water supplies [37, 38].

In the MMIP study and NHANES, fast food consumption was associated with higher 

exposures to parent phthalates such as DEHP and DiNP [39]. We also observed associations 

between fast food consumption and 2,5-DCP, MePB, TCS, Se, Sn, and Zn, but the extent to 

which frequent consumers of fast food are exposed to these chemicals and elements is 

unknown. While canned food consumption and BPA were not significantly correlated, we 

did observe higher BPF concentrations by frequency of canned food consumption. This 
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reflects the changing landscape of bisphenols in consumer products with BPA being 

replaced by other bisphenols with endocrine-disrupting potential [34]. Overall, there is a 

need to characterize the recent exposome of diverse maternal populations – by global region, 

race, ethnicity, and socio-economic status – to better understand the relevant chemical 

mixtures of most concern for maternal and child health.

We observed an association between higher birth weight and first trimester MCPP, a 

phthalate metabolite on the rise in the US according to trends in NHANES data from 2000–

2012 [33, 40]. MCPP is a metabolite of the parent di-n-octyl phthalate (DOP) and other high 

molecular weight phthalates. These parent chemicals are widely used as plasticizers in 

diverse products including flooring, vinyl gloves, adhesives, and food packaging. While few 

animal studies to date have modeled prenatal exposure to the primary parent compound 

(DOP) or to MCPP directly, epidemiological studies suggest that MCPP exposure in early 

pregnancy affects the mother. For example, lower free triiodothyronine (T3) and higher BMI 

were associated with higher urine MCPP among pregnant women [41, 42]. Lower maternal 

thyroid hormone levels and higher BMI increase the risk for larger offspring [43, 44]. In a 

different subset of MMIP participants recruited in the study’s early years, we previously 

reported significant associations among female newborns between first trimester MCPP and 

increased birth length, as well as maternal urinary MCPP at delivery and higher birth weight 

[28]. However, in the Infant Development and the Environment Study (TIDES, n=753), no 

significant associations between first trimester maternal MCPP and birthweight were 

observed among male or female infants [45]. The association between average MCPP 

throughout pregnancy and birthweight was also not significant among newborns from the 

LIFECODES study [25]. Given the mixed evidence for MCPP’s effects on fetal growth, the 

potential impact of MCPP on pregnant women, and the timing-specificity of this 

relationship, the influence of MCPP on birth outcomes requires further research.

While the pool of research on birth outcomes and phthalate or BPA exposures is growing, 

few studies apart from MMIP have investigated emerging chemicals of concern such as 

parabens and TCS with birth outcomes. Associations between parabens and decreased 

gestational age at birth, increased odds for preterm birth and low birth weight with 

increasing BuPB concentrations in cord blood plasma were observed among immigrants 

living in Brooklyn, New York as well as an association between TCC and decreased 

gestational age at birth [24]. While our study only includes term neonates by design, we 

observed a similar trend of lower birth weight with increasing maternal first trimester BuPB 

(p=0.12). We also observed a significant association between decreased birth weight and 

BPS – a replacement chemical for BPA with endocrine-disrupting potential that has recently 

been detected in populations from around the world [34]. Prior evidence suggests that BPS 

crosses the placenta in humans [46], and this is one of the first studies to our knowledge to 

examine associations between birth outcomes and BPS. Rodent models of perinatal BPS 

exposure have identified health effects manifesting later in life, including at dose levels 

below the recommended daily intake for humans. Health effects observed were altered 

maternal behavior in mice [47], overweight and metabolic complications in adult male mice 

[48], and altered gene expression in the prefrontal cortex of juvenile female rats [49]. Thus 

the short- and long-term effects of prenatal exposures to BPA replacements merit further 

investigation in human populations.
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Second trimester fetal biometry measurements are part of standard prenatal care in the U.S. 

and elsewhere, and accessing this data provides an additional window of susceptibility to 

examine the influence of environmental exposures [50]. While work in this area is limited to 

date, positive associations between maternal BMI and adiposity with fetal biometrics [50, 

51] as well as decreased estimated fetal weight with DEHP metabolites [25] have been 

reported. Metals (As, Ba, Pb) were negatively associated with femur length in this study. In 
vitro, human exposure relevant doses of arsenic inhibit osteoblast differentiation [52]. 

Prenatal lead exposure has previously been associated with decreased birth weight and 

length and higher risk of small-for-gestational-age [22, 53, 54] as well as decreased 

osteoblastogenesis [55]. Findings in the MMIP cohort may reflect an earlier window to 

detect effects on fetal growth that should be considered in future research.

This study involved extensive first trimester exposure assessment of emerging endocrine 

disrupting chemicals (e.g., parabens, BP-3), and we are the first to our knowledge to report 

associations between BPS and birth weight as well as between metals and fetal biometrics. 

These relationships merit future exploration in large and diverse cohorts since this pilot 

study had several limitations. The sample size was small, and associations would not have 

remained statistically significant after accounting for multiple comparisons. Low statistical 

power, the relatively small range of exposure levels among MMIP participants, inability to 

perform sex-stratified analyses, and exclusion of preterm infants may have biased our results 

towards the null. Urinary measures from the first trimester were available, yet blood is a 

better biomarker for some metals (e.g., Pb, methyl-Hg), and exposures later in pregnancy 

may also influence birth size [24, 28]. Due to the sample size, statistical analyses tested for 

linear relationships between outcomes and exposure biomarkers. We did not additionally test 

for non-monotonic relationships (e.g., U-shaped response with health effects observed in 

cases of deficiency and excess) that might occur for essential elements such as Se, Zn, or Cu 

[56]. We did not replicate a previously reported association from a different subset of MMIP 

participants between first trimester maternal BPA and lower birthweight [27]. This is likely 

due to a difference in biomarkers as unconjugated BPA and BPA glucuronide were measured 

in plasma in the previous study while total urinary BPA was measured in this set of MMIP 

participants. The homogenous sample is a limitation for generalizability of results but a 

strength for reducing confounding (e.g., from maternal smoking and race). Characterization 

of the MMIP exposome lays the groundwork for future in-depth exploration supported by 

CHEAR of biophysiological mechanisms (epigenomics, metabolomics, oxidative stress 

markers) by which metals, phenols, and phthalates may ultimately influence child health.

In conclusion, associations between first trimester exposure biomarkers with birth weight 

(increased with MCPP; decreased with BPS) and with femur length estimated during 

ultrasonography (decreased with As, Ba, and Pb) were observed in the MMIP cohort. While 

this study had several limitations, it serves as an introduction to the future of comprehensive 

exposure assessment in children’s health research, and in particular, through the NIEHS 

CHEAR program. Exposure measures were provided by CHEAR, a resource that fulfills the 

need for sophisticated and thorough exposure assessment within multiple children’s health 

cohorts that can ultimately be combined. The data generated from CHEAR will be made 

publically available and will be used to assess relationships between toxicant exposures with 

outcomes such as birth weight in a large and diverse sample from multiple studies. This will 
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allow for sufficient power to accommodate more sophisticated statistical analysis of the 

health impacts of exposure to mixtures in addition to individual chemicals or classes of 

chemicals. The CHEAR program will add not only exposure biomarker data but also 

measures of biological responses including metabolomics, epigenomics, endocrine function, 

inflammation, oxidative stress, and others in an effort to advance risk assessment and 

increase mechanistic understanding of toxicity in children.

Supplementary Material
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Table 1.

Demographic Characteristics of the Michigan Mother Infant Pairs (MMIP) Study (n=56)

Median or N (%) Range (Min – Max)

Mother

    Age 31.5 (26 – 40)

    Pre-pregnancy BMI 
a 23.41 (19.24 – 48.41)

Parity

0 14 (25.0)

1 21 (37.5)

2 14 (25.0)

3 5 (8.9)

4 2 (3.6)

    Smoking status

        Never 49 (89.1)

        Past smoker 6 (10.9)

    Education

        High School 4 (7.1)

        Some college 34 (60.7)

         ≥ Bachelor’s 18 (32.1)

    Marital status

        Married 50 (89.3)

        Single 6 (10.7)

Infant

Gestational age (weeks) 39.9 (37.6 – 41.7)

Infant gender

        Female 29 (51.8)

        Male 27 (48.2)

    Route of delivery

        Cesarean 19 (33.9)

        Vaginal 37 (66.1)

    Birthweight (g) 3520 (2805 – 4685)

    Fenton z-score % tile 59.65 (6.58 – 95.14)

    Fetal Anthropometry
b

    Abdominal circ. 138.7 (111 – 242)

    Biparietal diameter 43.85 (36 – 70)

    Femur length 29.5 (23 – 51)

    Head circ.
c 162.25 (135 – 265)

a
n=53

b
Units= mm

c
Circ: circumference
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Table 3.

Maternal Self-Reported Product Use, Fast Food and Vegetable Consumption

N (%)

Uses perfume & cosmetics

    No 13 (23.2)

    Yes 43 (76.8)

Uses haircare products

    No 13 (23.2)

    Yes 43 (76.8)

Canned food consumption

    None 25 (44.6)

    Yes 31 (55.4)

Canned food frequency

    None 25 (44.6)

    1 serving or less per day 30 (53.6)

    2–3 servings per day 1 (1.8)

    4 servings or more per day 0 (0)

Fast food consumption

    None 36 (64.3)

    Yes 20 (35.7)

Fast food frequency

    None 36 (64.3)

    Once per week 15 (26.8)

    2–3 times per week 3 (5.4)

    4 or more times per week 2 (3.6)

Fresh vegetable consumption

    None 2 (3.6)

    Yes 54 (96.4)

Fresh vegetable frequency

    None 2 (3.7)

    1–3 servings per day 38 (70.4)

    4–5 servings per day 13 (24.1)

    6 or more servings per day 1 (1.9)
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Table 4.

Associations between Exposure Biomarkers (μg/L) and Birth Outcomes (n=56)

Birth-weight (g) 
a

Fenton z score 
b

Exposure 
c β (95% CI) p-value β (95% CI) p-value

Phthalates

    MnBP 39.25 (−78.24, 156.73) 0.51 0.12 (−0.13, 0.37) 0.34

    MBzP 11.02 (−75.68, 97.72) 0.80 0.06 (−0.12, 0.24) 0.52

    MCOMHP 11.57 (−74.68, 97.82) 0.79 0.06 (−0.12, 0.24) 0.51

    mCINP 92.52 (−22.70, 207.73) 0.11 0.21 −0.03, 0.46) 0.08

    MCPP 78.48 (2.95, 154.01) 0.04 0.19 (0.02, 0.35) 0.02

    meCPP 22.62 (−88.83, 134.08) 0.69 0.05 (−0.19, 0.29) 0.68

    MEHHP −3.38 (−119.37, 112.61) 0.96 −0.02 (−0.27, 0.23) 0.86

    MEHP 66.05 (−70.10, 202.19) 0.33 0.04 (−0.25, 0.34) 0.76

    MEOHP 6.30 (−108.48, 121.07) 0.91 −0.01 (−0.25, 0.24) 0.95

    MEP 3.80 (−72.02, 79.62) 0.92 0.02 (−0.14, 0.18) 0.82

    MiBP 31.42 (−65.96, 128.80) 0.52 0.04 (−0.17, 0.25) 0.69

    ΣDEHP 
d 17.77 (−106.54, 142.08) 0.78 0.02 (−0.25, 0.28) 0.91

    ΣDBP 
e 38.37 (−81.32, 158.07) 0.52 0.10 (−0.15, 0.36) 0.43

Phenols

    2,4-DCP −52.80 (−159.59, 53.99) 0.32 −0.10 (−0.32, 0.14) 0.44

    2,5-DCP 7.26 (−65.24, 79.75) 0.84 0.01 (−0.15, 0.16) 0.93

    BP-3 15.11 (−38.41, 68.64) 0.57 0.02 (−0.10, 0.13) 0.75

    BPA 13.18 (−88.64, 115.00) 0.80 0.01 (−0.21, 0.23) 0.94

    BPF 54.14 (−47.73, 156.00) 0.29 0.02 (−0.20, 0.23) 0.87

    BPS −150.42 (−294.85, −6.00) 0.04 −0.31 (−0.62, 0.002) 0.05

    BuPB −62.66 (−142.67,17.35) 0.12 −0.12 (−0.29, 0.05) 0.16

    EtPB 12.29 (−34.25, 58.83) 0.60 0.01 (−0.09, 0.10) 0.91

    MePB −31.87 (−90.54, 26.80) 0.28 −0.05 (−0.17, 0.07) 0.43

    PrPB −16.60 (−64.77, 31.56) 0.49 −0.03 (−0.13, 0.07) 0.51

    TCS −4.01 (−60.50, 52.48) 0.89 0.04 (−0.06, 0.16) 0.39

Metals 
f

    As 9.03 (−92.34, 110.39) 0.86 −0.002 (−0.22, 0.21) 0.98

    Ba 26.31 (−81.92, 134.54) 0.63 −0.08 (−0.16, 0.31) 0.52

    Cd 45.91 (−111.43, 203.26) 0.56 −0.07 (−0.38, 0.24) 0.65

    Cr 80.83 (−131.60, 293.26) 0.76 0.10 (−0.36, 0.55) 0.67

    Cu 20.83 (−146.22, 187.89) 0.80 −0.05 (−0.40, 0.30) 0.79

    Hg −46.59 (−165.60,72.43) 0.44 −0.08 (−0.34, 0.17) 0.51

    Mn −36.68 (−231.23, 157.87) 0.71 −0.18 (−0.59, 0.23) 0.39

    Mo 65.84 (−82.23, 213.92) 0.38 0.17 (−0.15, 0.48) 0.29

    Ni 72.87 (−90.92, 236.65) 0.38 0.10 (−0.25, 0.45) 0.58

    Pb 13.46 (−107.64, 134.57) 0.82 −0.07 (−0.31, 0.18) 0.60
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Birth-weight (g) 
a

Fenton z score 
b

Exposure 
c β (95% CI) p-value β (95% CI) p-value

    Se −29.09 (−254.83, 196.65) 0.80 0.01 (−0.46, 0.49) 0.96

    Sn −25.45 (−140.31, 89.42) 0.67 −0.07 (−0.31, 0.17) 0.55

    Tl 4.42 (−139.64, 148.48) 0.95 0.00 (−0.31, 0.30) 0.99

    Zn 36.69 (−94.83, 168.21) 0.58 0.08 (−0.20, 0.36) 0.55

Σ scores

    Phthalates 9.46 (−3.71, 22.63) 0.16 0.01 (−0.01, 0.04) 0.33

    Phenols 0.48 (−18.07, 19.04) 0.96 −0.01 (−0.04, 0.03) 0.82

    Metals 
f 4.13 (−4.81, 19.11) 0.24 0.01 (−0.02, 0.03) 0.67

    Total 
f 0.82 (−2.45, 7.56) 0.31 0.00 (−0.01, 0.01) 0.62

a
Multiple linear regression models were run for each toxicant/element adjusting for specific gravity, gestational age, and gender

b
Multiple linear regression models were run for each toxicant/element adjusting for Specific gravity

c
Natural log transformation

d
ΣDEHP includes metabolites: MeCPP, MeHHP, MEHP & MEOHP

e
ΣDBP includes metabolites: MnBP & MiBP

f
n=55
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