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Abstract

Major depressive disorder is a heterogeneous disease involving widespread disruptions in 

functional brain networks, the neurobiological mechanisms of which are poorly understood. 

Amassing evidence supports innate immune activation as one pathophysiologic mechanism 

contributing to depression in a subgroup of patients with elevated inflammatory markers. Although 

inflammation is known to alter monoamine and glutamate neurotransmitters, little work has been 

done to understand its role in network dysfunction in patients with depression. Here we conducted 

a large-scale network-based analyses of resting-state functional magnetic resonance imaging 

(rfMRI) data acquired from depressed patients with varying levels of inflammation to develop a 
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comprehensive characterization of network alterations as an effect of inflammation. 

Complementary approaches of global brain connectivity and parcellation-based network analysis 

applied to the whole brain revealed that increased plasma C-reactive protein (CRP) was associated 

with reduced functional connectivity in a widely-distributed network including ventral striatum, 

parahippocampal gyrus/amygdala, orbitofrontal and insular cortices, and posterior cingulate 

cortex. These broad alterations were centralized in the ventral medial prefrontal cortex (vmPFC), 

representing a hub for the effects of inflammation on network function in the whole brain. When 

feeding the identified multivariate network features into a machine learning algorithm of support 

vector regression, we achieved high prediction accuracies for depressive symptoms that have been 

associated with inflammation in previous studies including anhedonia and motor slowing. These 

findings extend and broaden previous observations from hypothesis-driven studies, providing 

further support for inflammation as a distinct contributing factor to network dysfunction and 

symptom severity in depression.
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1. Introduction

Depression is a devastating illness with social, personal, and global health consequences, 

affecting 322 million people worldwide (WorldHealthOrganization, 2017). While current 

pharmacological therapies are effective for many patients, more than 30% fail to achieve 

remission, and even responders exhibit significant residual symptoms such as anhedonia, a 

core symptom of depression that reflects a lack of motivation (Dunlop and Nemeroff, 2007; 

Rush et al., 2006; Trivedi et al., 2008; Vrieze et al., 2014). Development of new therapies for 

depression has been hindered by a fundamental lack of knowledge of the pathophysiological 

pathways that drive circuit dysfunction and contribute to individual differences in the 

severity of difficult-to-treat symptoms like anhedonia. Therefore, new conceptual 

frameworks integrating established neurobiological alterations with neural network changes 

are needed to better understand and personalize the treatment of major depressive disorder 

(MDD).

Relevant in this regard, one pathophysiological pathway thought to contribute to symptoms 

of depression is inflammation (Chamberlain et al., 2018; Felger and Treadway, 2017; Miller 

et al., 2017). A significant proportion of patients with MDD are reliably found to exhibit 

increased inflammatory markers in both the periphery and central nervous system, as 

measured by inflammatory cytokines and acute phase reactants such as C-reactive protein 

(CRP) (Dantzer et al., 2008; Felger et al., 2018; Shelton et al., 2011; Zunszain et al., 2013). 

Elevated CRP and other peripheral blood markers of inflammation have also been found to 

predict future development of depression (Au et al., 2015; Gimeno et al., 2009; Wium-

Andersen et al., 2013), and to be associated with resistance to standard antidepressant 

therapies (Cattaneo et al., 2013; Cattaneo et al., 2016; Chamberlain et al., 2018; Haroon et 

al., 2018b; Strawbridge et al., 2015). Furthermore, administration of inflammatory stimuli 
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and cytokines induces depressive symptoms, particularly those related to reduced motivation 

and motor slowing (Capuron et al., 2012; Eisenberger et al., 2010; Harrison et al., 2009a), 

and anti-inflammatory treatments have been effective in reducing such symptoms in patients 

with high inflammation (Kohler et al., 2014; Miller et al., 2017; Raison et al., 2013). Indeed, 

exogenous administration of cytokines (e.g. interferon-alpha) or cytokine inducers (e.g. 

endotoxin or typhoid vaccine), either as therapy in patients with medical illnesses or in 

laboratory experiments in healthy controls, respectively, has been shown to impact neural 

activation and functional connectivity (FC) in corticostriatal and limbic circuits that are 

altered in MDD (Capuron et al., 2012; Eisenberger et al., 2010; Harrison et al., 2009a; 

Harrison et al., 2016; Inagaki et al., 2012). Moreover, mechanistic work in humans and 

laboratory animals suggests that these inflammation-induced changes in circuit function are 

due to cytokine effects on dopaminergic and glutamatergic neurotransmission, especially in 

corticostriatal pathways, which correlate with symptoms of reduced motivation and motor 

slowing (Capuron et al., 2012; Felger et al., 2013; Felger et al., 2015; Haroon et al., 2015; 

Haroon et al., 2016).

Our recent work indicates that endogenous systemic inflammation, which can be increased 

by stress, trauma, aging, diet, obesity, and sedentary lifestyle, may similarly affect the brain 

to contribute to corticostriatal and limbic circuit dysfunction and symptom severity in MDD 

(Felger et al., 2016; Felger, 2018; Mehta et al., 2018; Miller et al., 2017). Using resting-state 

functional magnetic resonance imaging (rfMRI), we recently reported that medically-stable 

and medication free MDD patients with increased plasma CRP and inflammatory cytokine 

concentrations exhibited decreased FC within corticostriatal reward and motor circuits in 

association with anhedonia and motor slowing (Felger et al., 2016). However, this 

hypothesis-driven analysis was restricted to circuits relevant to the neurotransmitter 

pathways and behaviors known to be affected by peripheral inflammation, thus more 

widespread consequences of these effects on broadly distributed networks have yet been 

characterized (Leisman et al., 2014; Salamone et al., 2016). Without considering 

inflammation, network-based approaches have uncovered dysfunction across large-scale 

functional networks in MDD. For example, Sheline et al. reported increased FC across key 

regions of the cognitive control network (CCN), default mode network (DMN) and affective 

network (AN) in MDD patients compared to controls; and this increased FC overlapped in a 

hub region in the dorsal medial prefrontal cortex (dmPFC) termed the “dorsal nexus” (DN) 

(Sheline et al., 2010). More recent approaches such as global brain connectivity analysis 

(GBCA), which derives the mean of each voxel’s time series correlation with every other 

voxel in the brain, have revealed hubs of altered FC in MDD in ventral regions of the mPFC 

(Wu et al., 2016), or in both mPFC and lateral PFC (Murrough et al., 2016). However, 

whether inflammation contributes to these patterns or whether it is associated with a unique 

signature of network dysfunction in MDD is unknown.

To gain a more comprehensive understanding of how inflammation impacts functional brain 

networks to contribute to symptom severity, we analyzed rfMRI data acquired from patients 

with MDD and varying levels of inflammation using network-based strategies. Consistent 

with our previous studies (Felger et al., 2016; Haroon et al., 2018a; Mehta et al., 2018), and 

because higher levels of plasma CRP predicted increased concentrations of inflammatory 

cytokines and their soluble receptors in both plasma and cerebrospinal fluid of patients with 
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MDD (Felger et al., 2018), plasma concentrations of CRP were used to determine the effects 

of inflammation on network function by identifying significant correlations with FC features 

across participants. First, we employed complementary approaches of voxel-wise GBCA 

(Murrough et al., 2016) and parcellation-based network analysis (PBNA) (Chen et al., 2018; 

Chen et al., 2019; Craddock et al., 2012) to identify hub regions where variations in FC with 

other brain regions were associated with inflammation (plasma CRP). Second, a follow-up 

analysis was conducted to explore relationships between high inflammation and FC within 

key regions of the CCN, DMN, and AN as well as the DN, the region identified to represent 

a joint network effect in MDD, as reported by (Sheline et al., 2010). Based on our previous 

work revealing decreased FC between subcortical structures and ventral medial (vm) PFC in 

association with inflammation (Felger et al., 2016; Mehta et al., 2018), we hypothesized that 

the hub region for inflammation would be identified in ventral rather than dorsal regions of 

mPFC, and that this ventral hub would exhibit decreased FC with extensively distributed 

cortical and limbic regions as a function of increasing CRP. Finally, we examined whether 

the identified FC network features predicted inflammation-related symptoms of anhedonia 

and motor slowing using a machine-learning algorithm of support vector regression (SVR) 

(Dosenbach et al., 2010; Drucker et al., 1996).

2. Materials and Methods

2.1 Participants

Forty-four participants (Table 1) were recruited from a parent study on phenotyping 

depression with increased inflammation (ClinicalTrials.gov ). They were a subsample from 

our previous studies of n=48 (Felger et al., 2016; Mehta et al., 2018) with 4 participants 

excluded due to more rigorous data censoring (Power et al., 2014). Among these 4 

participants, 3 were excluded for more than 15% of time points censored (see preprocessing 

methods below) and 1 for more than 2.5mm of max pairwise displacement in motion 

parameters. Specific criteria for participant inclusion were described previously (Felger et 

al., 2016). Briefly, all participants had a primary diagnosis of major depressive disorder or 

bipolar disorder current episode depressed (n=2), as determined by Structured Clinical 

Interview for Diagnostic and Statistical Manual-IV-TR. Participants were free of 

psychotropic medications (e.g. antidepressants, mood stabilizers, antipsychotics, stimulants, 

sedative hypnotics, and benzodiazepines) for at least 4 weeks (8 weeks for fluoxetine). 

Participants were also free of medications known to affect the immune system including 

nonsteroidal or steroidal anti-inflammatories, statins or angiotensin-II receptor inhibitors, 

and were tested for drugs of abuse at screening and on the day of the scan. Medications for 

other medical conditions were allowed as dictated by the patients’ treating physicians, 

although patients were required to be medically stable as determined by medical history, 

physical exam and laboratory testing (Felger et al., 2016). Participants with evidence of 

active infections were excluded until medically stable. CRP was measured over 2-4 

screening visits spaced 1-4 weeks apart to ensure stable levels of inflammation (values 

within 25% of each other on two occasions) and to rule out infection. All procedures were 

approved a priori by the Institutional Review Board of Emory University. All participants 

provided written informed consent according to the Declaration of Helsinki.
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2.2 Plasma CRP

Blood was collected for batched analysis of plasma high-sensitivity (hs) CRP as described 

(Felger et al., 2016). The immunoturbidometric method was used to measure hsCRP 

concentrations with a Beckman AU480 chemistry analyzer (Beckman Coulter, Brea, CA, 

USA) and Ultra WR CRP kit (Sekisui Diagnostics, San Diego, CA, USA).

2.3 Behavioral assessments

As with our previous work, symptom severity for anhedonia and psychomotor slowing was 

assessed using two scales to probe anhedonia and two tests measuring psychomotor 

retardation (Felger et al., 2016). The anhedonia subscale of the Inventory of Depressive 

Symptomatology-Self-Report (Rush et al., 1996) (IDS-SR-Anhedonia; including items #8 

response of mood to good or desired events, #19 general interest in people and activities, and 

#21 capacity for pleasure) (Ameli et al., 2014; Felger et al., 2016; Haroon et al., 2016; 

Haroon et al., 2018a) and the Snaith-Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995) 

were used to assess participants’ severity scores for anhedonia. Motor speed was assessed 

using the Finger Tapping Test (FTT) as the number of taps/trial (dominant hand) (Spreen 

and Strauss, 1991), and psychomotor processing speed was measured as the time to 

complete the Trail Making Test-A (TMT-A) (Shindo et al., 2013).

2.4 MRI data acquisition

MRI scans were performed on a 3T Siemens Magnetom Trio scanner (Siemens, Malvern, 

PA, USA) with a 20-channel head coil at the Emory-GaTech BME Biomedical Imaging 

Technology Center. Anatomic images were acquired using a T1-weighted, magnetization 

prepared rapid gradient echo sequence (TR=2300 ms, TE=3.02 ms, FOV=256×256 mm2, 

FA=8°, voxel size=1×1×1 mm3). Resting-state (wakeful with eye fixation) fMRI data were 

acquired with a Z-SAGA gradient echo sequence (Heberlein and Hu, 2004) for recovering 

ventral-frontal signal losses due to field inhomogeneity (TR=2950 ms, TE1/TE2=30/67 ms, 

FOV=220×220 mm2, flip angle=90°, volumes=150, voxel size=3.4×3.4×4 mm3).

2.5 Preprocessing of rfMRI data

Analysis of rfMRI data was conducted with AFNI (http://afni.nimh.nih.gov/). Preprocessing 

steps included outlier detection (~5.5 times median absolute deviation), despiking, slice 

timing correction, motion correction, anatomy-to-functional image co-registration, nuisance 

signal (head motion parameters and derivatives, cerebral spinal fluid, and white matter) 

regression, band pass filtering (0.009<f<0.08 Hz) and 5 mm full-width half-maximum 

spatial smoothing. Time points with more than 10% of voxels as temporal outliers as well as 

with excessive head motion (frame displacement>0.3 mm) were excluded (also referred to as 

censoring or scrubbing) from the subsequent FC analysis (Power et al., 2014). Excluded 

time points were less than 23 (15%) in all the 44 participants analyzed. After the 

preprocessing pipeline, individual’s 4D fMRI data were transformed into the standard MNI 

space. Of note, global signal regression (GSR) was not used in the present preprocessing due 

to potential artifacts and biases it may introduce (Saad et al., 2012; Yang et al., 2014). 

However, our new analysis strategy of Bayesian multilevel modeling (as described below) 

pools effects shared across different regions thus does take global variations into account in 
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the model. In other words, GSR was somewhat considered implicitly in the present analysis 

and global FC variation was statistically controlled.

2.6 Statistical Analyses

Descriptive variables for demographic and clinical information were processed with the IBM 

SPSS® software platform (https://www.ibm.com/analytics/spss-statistics-software), and 

their associations with inflammation were assessed with Pearson correlation with CRP. 

Statistical analyses involving imaging data are described below.

2.6.1 Global brain connectivity analysis (GBCA)—For GBCA, FC maps were 

derived by voxel-wise correlation between the time course of each voxel and the time 

courses of all the other voxels in the brain. GBC was computed as the mean of each voxel’s 

FC value with all other voxels in the brain (Murrough et al., 2016). All correlation 

coefficients were transformed to Fisher’s Z-scores (0.5*ln((1+r)/(1-r))) before group level 

analysis. At the group level, voxel-wise Z-sores were correlated with individual CRP values 

for assessment of the effect of inflammation. The resultant statistical map was corrected for 

multiple comparisons using Monte-Carlo simulations implemented in AFNI’s 3dClustSim 

with the spatial smoothness estimated by a spatial auto-correlation function (Cox et al., 

2017).

2.6.2 Parcellation-based network analysis (PBNA)—The PBNA was used as a 

complementary approach to further confirm and provide additional information regarding 

network change in hubs identified by GBCA. This method complemented the GBCA 

because of (i) its higher signal to noise ratio due to signal averaging within regions of 

interest (ROIs); (ii) its direct assessment of inter-regional FCs, so potential cancellations 

between positive and negative FCs were avoided; and more importantly, (iii) its improved 

statistical efficiency with a novel Bayesian multilevel (BML) modeling (Chen et al., 2018; 

Chen et al., 2019). The PBNA involved two steps. First, a data-driven method of spatially 

constrained spectral clustering was used to parcellate the brain into ROIs based on rfMRI 

signal homogeneity. Second, BML was implemented to explore associations between FC 

and plasma CRP.

For obtaining sample-specific ROIs with minimized intraregional homogeneity and 

maximized interregional independence, the whole brain was parcellated into 100 regions 

with a data-driven approach of spatially constrained spectral clustering (Craddock et al., 

2012) implemented in pyClusterROI (http://ccraddock.github.io/cluster_roi). Based on 

“normalized cut spectral clustering” (NCUT) (Shi and Malik, 2000), this approach classified 

brain voxels based on their signals’ temporal similarity at the individual level; then derived 

the group-level parcellation by applying NCUT again to the adjacency matrix averaged 

across participants. Compared with atlases derived from anatomical or cyto-architectonic 

parcellations, ROIs thus defined directly from rfMRI exhibited higher functional 

homogeneity and reproducibility (Craddock et al., 2012). At the end of this parcellation, 

preprocessed rfMRI signals were extracted from each ROI and a symmetric connectivity 

matrix of 100×100 was obtained individually by pairwise signal correlation across these 

ROIs.
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Investigation of the relationship with CRP was performed by BML implemented in AFNI 

with the following ROI-based formulation (Chen et al., 2018; Chen et al., 2019).

zi jk a, bi, b j, xk, πk N(a0 + a1xk + b0i + b1ixk + b0 j + b1 jxk + πk, σ2)

where zijk is the Fisher-transformed z-score that reflects the signal similarity between the ith 

and the jth ROIs of the kth participant; xk is the kth participant’s CRP level; πk is the effect 

attributable to the kth participant; a = (a0,a1), bi = (b0i,b1i); a0, b0i, and b0j are the overall and 

region-specific effect while a1, b1i, and b1j are the overall and region-specific CRP effect; i, j 
= 1, 2, …, 100, k = 1,2, …, 44. With a Gaussian assumption for cross-subjects’ variability 

πk and a bivariate Gaussian assumption for both a and bi, the BML was analyzed, with the 

100×100 connectivity matrix from the 44 participants as input, through Bayesian inferences 

implemented in Stan (http://mc-stan.org). Besides the integrative consideration of all ROIs 

simultaneously in a single step (thus alleviating the burden of multiple comparison), this 

model also decomposes CRP effect on connectivity values between the ith and jth ROI into a 

linear combination of (b1ixk + b1jxk), so that b1i and b1j represent summarized (hub) CRP 

effect across all connections at the ith and jth ROI. These nodal measures of the “hub” effect 

were used to rank their FC association with CRP.

2.6.3 Exploring associations between CRP and FC within three brain 
networks and the “dorsal nexus”—The dorsal nexus (DN) was previously reported in 

patients with MDD as a region exhibiting increased FC with key regions of three major 

functional networks, the CCN, DMN and AN (Sheline et al., 2010). To explore potential 

inflammation effects in the same framework, bilateral seeds for dorsolateral prefrontal cortex 

(dlPFC, ±36, 27, 29, probing CCN), precuneus (pCu, ±7, −60, 21, probing DMN), 

subgenual anterior cingulate cortex (sgACC, ±10, 35, −2, probing AN), and the DN (left 

−24, 35, 28, right 18, 34, 29, probing the joint effect), as reported by Sheline et al. (Sheline 

et al., 2010), were used to examine FC alterations in these networks as a function of 

increasing CRP. These seeding regions were spheres (r=5 mm) drawn at the listed 

coordinates, and CRP correlations were subsequently performed in each functional network 

probed by these seeds. This part of the analysis was performed in the Talairach space in 

which the coordinates were originally reported.

2.6.4 Behavioral prediction with support vector regression (SVR)—The SVR 

algorism (Drucker et al., 1996) implemented in LibSVM (https://www.csie.ntu.edu.tw/

~cjlin/libsvm) was used for prediction of the behavioral measurements of IDS-SR-

Anhedonia, SHAPS, FTT, and TMT-A described above. Predictions were performed with 

FC features derived from GBCA, BPNA, or a combination of features from both analyses. 

To control for potential confounding factors, variance contributions from age, body mass 

index (BMI), gender, race, smoking status, and CRP were regressed out of the FC features 

before they were entered into the SVR.

A specific model of epsilon-SVR was used with a kernel of radial basis function (RBF) 

(Dosenbach et al., 2010). In this procedure, the two SVR parameters of C and γ were 
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estimated by heuristic grid searching in the training data with a 5-fold cross validation. The 

software’s default searching parameters were used with log2C ranging from −5 to 15 in steps 

of 2, and log2γ ranging from 3 to −15 in steps of −2.

The prediction performance of SVR was assessed by an iterative procedure of leave-one-out 

cross validation (LOOCV). In 44 iterations, each participant took turns being designated as 

the testing sample and the remaining participants as the training sample. A decision function 

was derived from the training sample, and this function was used to predict the behavioral 

score of the testing participant. At the end of these LOOCV folds, the coefficient of 

determination (R2) was calculated measuring the proportion of variance in the true scores 

explained by the predicted score; or in other words, the prediction accuracy.

To identify FC features with the strongest prediction of behavioral scores, the LOOCV was 

wrapped with another outer loop of recursive feature elimination (RFE). It recursively 

eliminates the least useful FC feature, and a prediction R2 was calculated upon each 

elimination. This procedure identified for each behavioral score an FC set that maximized 

the prediction accuracy. In each one of such FC sets, individual features were also ranked by 

the degradation of R2 had that feature been removed from the set. A greater degradation 

indicates a higher contribution, thus a higher rank for an FC feature. For each behavioral 

score predicted, the associated FC feature set was visualized by BrainNet Viewer (https://

www.nitrc.org/projects/bnv/).

Statistical significance of each prediction was assessed by permutation tests, in which the 

mapping of participants’ IDs and their behavioral scores were randomized 1000 times. The 

empirical cumulative distribution of R2 under the null hypothesis was estimated with these 

surrogate data; and the significance of the original accuracy was determined by its position 

in this null distribution.

3. Results

3.1 Patients characteristics

Patients’ characteristics are summarized in Table 1. There were significant or marginally 

significant correlations between inflammation, as assessed by CRP, and measurements of 

body mass index (BMI), anhedonia, and psychomotor retardation (Table 1).

3.2 Association between plasma CRP and network function revealed by global brain 
connectivity analysis (GBCA)

In GBCA, the mean of each voxel’s FC value with every other voxel in the brain was 

derived, providing a voxel-wise measure of global brain connectivity (Murrough et al., 

2016). When correlating this global FC with CRP values in each voxel, we observed a 

significant negative correlation in the vmPFC (1032 mm3, centroid MNI coordinates: −5, 31, 

−1; Fig.1). To identify specific regions contributing to the negative correlation between 

global FC and CRP, a 2nd level connectivity analysis was performed by seeding in this exact 

cluster of vmPFC (Fig.1A) followed by voxel-wise correlations again with CRP. This 

analysis revealed that plasma CRP was associated with decreased FC between the vmPFC 

and a broad distribution of 22 brain regions shown in Fig.2 and Table 2. Identified clusters 

Yin et al. Page 8

Brain Behav Immun. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/


involved two notable regions found to be directly sensitive to the effects of inflammation on 

neurotransmitters and neural activity in previous works from our group and others, including 

ventral portions of the striatum (bilateral lentiform nucleus/putamen) (Capuron et al., 2012; 

Felger et al., 2016; Harrison et al., 2016) and the insula (Eisenberger et al., 2009; Harrison et 

al., 2009b; Harrison et al., 2016). Additional regions showing decreased FC with the vmPFC 

in association with increased CRP included medial, orbital, and dorsolateral (dl) regions of 

PFC, as well as temporal and associative cortices (e.g. lingual gyrus, temporal gyrus, 

postcentral gyrus, precuneus, and cingulate cortex). These findings support the idea that high 

CRP reflects changes in inflammation-sensitive brain regions that converge in vmPFC as a 

hub which influences FC across a broad range of temporal, insular and associative cortices 

that coordinate complex cognitive and emotional processes (Hiser and Koenigs, 2018).

3.3 Association between plasma CRP and network function by parcellation-based 
network analysis (PBNA)

To further examine patterns of altered network FC, and confirm vmPFC as a hub for the 

relationship between CRP and global FC, PBNA was conducted by parcellating the brain 

into 100 spatially coherent ROIs (Craddock et al., 2012) (supplementary Fig.1 and 

supplementary Table 1) and the resultant connectivity matrices were correlated with plasma 

CRP through BML (Chen et al., 2018; Chen et al., 2019). The BML pooled variations shared 

between connections into one integrative model, thus simultaneously enhancing robustness 

of the results and alleviating the burden of correction for multiple comparisons. At the 95% 

quantile interval of the posterior distribution, this approach identified 63 connections that 

were all negatively correlated with plasma CRP (Fig.3 and supplementary Table 2). These 

paths linked 47 ROIs in a network with the greatest effect of CRP observed in the vmPFC 

(Fig.3, the primary hub region in green; MNI coordinate of the ROI center: −1, 32, −14). 

Interestingly and similar to our previous findings (Felger et al., 2016; Mehta et al., 2018), 

these 47 ROIs included hub regions in basal ganglia (Fig.3, ventral anterior caudate hubs in 

cyan; ROI# 63 and 89, with left caudate as the 2nd ranked ROI hub), as well as in right 

parahippocampal gyrus (ROI# 61), which exhibited decreased FC with both vmPFC and left 

caudate (Fig.3).

As BML is a newly developed method (Chen et al., 2018; Chen et al., 2019), we further 

validated our findings with a more commonly used approach of “network-based statistics” 

(NBS) (Zalesky et al., 2010). The NBS also identified negative correlations between plasma 

CRP and FC in a widely-distributed network centralized in vmPFC. However, NBS (i) does 

not directly assess nodal effects, (ii) needs additional thresholding, (iii) involves massive 

univariate modeling (thus being less efficient and more sensitive to noise), and (iv) was less 

accurate in the subsequent prediction of behavior for 3 out of 4 symptom scores. Therefore, 

we focused on BML results for prediction of behavior (see below) and the NBS methods and 

results are described in detail in the supplementary material (supplementary Methods, 

supplementary Fig.2, supplementary Table 3, 4, 5).
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3.4 Associations between plasma CRP and seed-based FC with three brain networks and 
the “dorsal nexus”

To further examine the uniqueness of the ventral hub we identified in vmPFC for the 

relationship with inflammation, this analysis explored possible relationships with CRP by 

seeding directly in the DN, as well as in key regions of the other three networks, pCu 

(probing DMN), dlPFC (probing CCN), and sgACC (probing AN), using previously 

published coordinates (Sheline et al., 2010) (supplementary Fig.3). Similar to the results 

from GBCA and PBNA, significant negative correlations between CRP and FC were 

revealed between the sgACC and 8 clusters including ventral regions of bilateral striatum 

(Fig.4, supplementary Table 6). However, no significant correlation between CRP and FC 

were observed for seeds in pCu and dlPFC, or for the seed in the DN.

Considering that the DN reported by Sheline et al. (Sheline et al., 2010) could vary in 

location for different patient samples, and to verify that the absence of a relationship 

between CRP and FC with the DN was not due to inconsistent seed localization, we also 

conducted an “iterative seed optimization” to individually optimize the DN location for 

maximizing its inter-subject FC consistency (Zhu et al., 2013) (Supplementary Methods and 

Supplementary Fig.4). However, despite this individually optimized seed location, a 

significant correlation with CRP was still not identified for the DN.

3.5 Prediction of anhedonia and motor slowing by inflammation-associated FC features 
identified with GBCA and PBNA

One of the primary advantages of network characterization is the potential for improved 

prediction of clinical features and symptom severity (Drysdale et al., 2017; Van Essen and 

Barch, 2015). Therefore, we examined the efficacy of multiple FC features identified by the 

GBCA (22 FC features; Fig.3 and Table 2) and PBNA (63 FC features; Fig.3 and 

Supplementary Table 2) to predict symptom severity related to anhedonia (IDS-SR-

Anhedonia and SHAPS) and motor slowing (FTT and TMT-A). FC features from GBCA 

and PBNA were considered both separately and jointly in the SVR and prediction accuracies 

are reported as coefficients of determination (R2) in Table 3. For the symptom scores for 

IDS-SR-Anhedonia, SHAPS, and TMT-A, 16 (14 involving vmPFC), 19 (all involving 

vmPFC), and 7 (6 involving vmPFC) FC features from PBNA showed the highest R2 of 

0.57, 0.67, and 0.53, respectively (Fig.5 and supplementary Table 7). For FTT, 4 (all 

involving vmPFC) FC features from GBCA and 11 (10 involving vmPFC) from PBNA 

combined generated the most predictive model (R2=0.49) (Fig.5 and Supplementary Table 

7). All R2 values were significantly higher (P<0.001) than random prediction as assessed by 

permutation tests with the mapping between participant IDs and FC features randomized 

1000 times. All final models included the corticostriatal hubs identified in our previous 

hypothesis-driven work (vmPFC and striatum; Fig.3, 5) (Felger et al., 2015), which when 

combined with the numerous additional FC features identified by the network-based 

approaches employed herein (e.g. vmPFC to claustrum, pCu and PCC) (Fig.5, 

Supplementary Table 7), high prediction accuracies for behavior were achieved (R2=0.49 to 

0.67).
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4. Discussion

The present study examined the relationship between inflammation (based on plasma CRP 

concentrations) and resting-state FC in the entire brain in an MDD sample with varying 

levels of inflammation. The network-based analyses employed herein, GBCA and PBNA 

(Chen et al., 2018; Chen et al., 2019; Craddock et al., 2012; Murrough et al., 2016), used 

complementary but distinct approaches to uncover a widely-distributed network of decreased 

FC centered in vmPFC, which, together with striatum and a number of additional features, 

was highly predictive of anhedonia and psychomotor slowing. These findings largely 

confirmed hypotheses from a number of labs regarding the impact of inflammation on 

dopaminergic corticostriatal and corticolimbic circuits (Brydon et al., 2008; Capuron et al., 

2012; Eisenberger et al., 2010; Felger et al., 2013; Harrison et al., 2009a; Harrison et al., 

2016), and extended our previous hypothesis-driven findings in MDD patients with high 

inflammation that were restricted to specific circuits (Felger et al., 2016; Mehta et al., 2018). 

Results did, however, demonstrate that the data-driven approaches can both confirm a priori 
hypotheses based on pathophysiology while increasing power for predicting clinical features 

such as symptom severity (Drysdale et al., 2017; He et al., 2017; Van Essen and Barch, 

2015). Together, our findings shed light on the heterogeneous nature of depression and 

suggested a distinct pathophysiology for inflammation, with the vmPFC serving as a hub for 

the impact of inflammation on FC changes that extend across broadly distributed networks.

The GBCA identified a primary hub of change in FC in the whole brain as a function of 

CRP in vmPFC. Second-level seeding of this exact vmPFC cluster identified decreased FC 

with 22 brain regions including ventral regions of bilateral lentiform nucleus/putamen, 

consistent with our previous findings of decreased FC between ventral striatum and vmPFC 

using seed-based analyses (Felger et al., 2016). With the power of the BML (and validation 

with NBS), PBNA confirmed the results from GBCA with a hub of decreased FC in vmPFC, 

and provided additional information about the global effect of decreased FC with this hub by 

identifying a network comprised of 66 features. Of relevance to our previous findings and 

constant with the seeding of the vmPFC cluster identified by GBCA, the left caudate was the 

2nd ranked ROI for the nodal effect of inflammation (see Supplementary Table 1). Decreased 

FC of both the vmPFC and caudate to the right parahippocampal gyrus/amygdala was also 

observed (Fig.3), consistent with right amygdala to vmPFC connectivity that was found to 

correlate negatively with CRP in our previous targeted analyses (Mehta et al., 2018). Thus, 

the network-based analyses reported herein confirmed and supported our previous 

hypothesis-driven work but also extended previous findings by identifying new regions that 

are involved in the CRP-associated FC changes such as middle frontal gyrus, and 

inflammation-sensitive regions like insula (Harrison et al., 2009b; Harrison et al., 2016).

The subsequent seed-based analyses with key regions in established networks and the DN 

revealed decreased FC between the seed in the sgACC and eight other brain regions. The 

relationship between CRP and decreased connectivity with sgACC is consistent with a 

previous study examining task FC which revealed increased activity in sgACC and reduced 

FC between sgACC and the amygdala, mPFC, ventral striatum, and superior temporal sulcus 

in association with mood symptoms and cytokine release after inflammatory challenge with 

typhoid vaccine (Harrison et al., 2009a). Of note, the vmPFC region defined by GBCA and 
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the sgACC region used for the seed-based network analysis (Sheline et al., 2010) were 

spatially adjacent with an overlap of 168 mm3; consequently, their respective correlation 

maps for associations between FC and CRP (Fig.2 and Fig.4) shared common features 

including bilateral putamen, right middle frontal gyrus, left lingual gyrus, and right medial 

frontal gyrus. However, compared with a simple seed of sgACC, the GBCA and BPNA 

proved more comprehensive and sensitive to whole-brain FC alterations that were associated 

with inflammation as additional FC features were identified. The reliance of seed-based 

analyses on one specific location may pose a limitation, particularly when knowledge of 

network alterations that are associated with inflammation in patients with MDD is lacking. 

Hence, we optimized the seed location for the DN reported in the dmPFC (Sheline et al., 

2010) but still did not find an association between CRP and FC with this optimized DN 

region.

Although Sheline et al. (2010) reported the DN in the dmPFC as a dorsal hub of network 

changes for MDD, others have uncovered hubs in ventral regions of PFC. As mentioned in 

the introduction, using rfMRI and graph theory analysis, Wu et al. (2016) reported a hub of 

decreased FC in MDD patients localized ventrally in the sgACC (Wu et al., 2016). 

Additionally, Murrough et al. (2016) reported reduced GBC bilaterally within multiple 

regions of medial and lateral prefrontal cortex in MDD (Murrough et al., 2016). This 

heterogeneity in the location within PFC of identified hubs of FC in patients with MDD may 

be due to lack of consideration of subgroups of patients based on biomarkers linked to 

pathophysiological pathways like inflammation. The present study was unique in that it 

systematically examined the effects of inflammation on FC in patients with MDD and 

revealed relatively strong associations (R2=0.49 to 0.67) of these findings with symptom 

severity. The converging results of a hub of decreased FC in vmPFC from GBCA and 

PBNA, as well as the absence of a relationship with CRP in DN, suggest a distinct 

phenotype for MDD patients with high CRP, with the inflammation effect converging in 

ventral rather than dorsal regions of PFC. The DN may not be very sensitive to 

inflammation, and may be more relevant to depressive symptoms related to cognitive deficits 

and/or compulsive rumination (Sheline et al., 2010).

The finding of the primary hub of the inflammation effect in the vmPFC was consistent 

across the three methods employed, as were a number of the ROIs found to have decreased 

FC with this hub. The FC features found to predict anhedonia and motor slowing all 

contained the vmPFC and caudate (the 2 most significant hubs identified by PBNA); 

however, compared to our previous hypothesis-driven work focused exclusively on striatum 

and vmPFC, the additional FC features revealed here greatly increased the strength of 

associations with the symptom severity using the SVR. This multivariate regression 

approach, which exploited the connectomic patterns identified network analyses, is likely 

superior to univariate approaches for modeling behavior from neuroimaging findings in 

psychiatric patients (Van Essen and Barch, 2015). Although our results were consistent and 

powerful for behavioral prediction, some limitations exist. Only one sample was available; 

thus, both testing and training could not be performed on independent datasets. To overcome 

this limitation, a LOOCV strategy was used to model relationships between FC and 

behavior. Of note, two of the patients included in this study had bipolar depression (current 

episode depressed), and thus may have exhibited higher concentrations of CRP and/or more 
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sever alterations in FC or behavior (Horsdal et al., 2017; Redlich et al., 2015). Removal of 

these two subjects did not affect the relationship between CRP and vmPFC to left putamen 

FC (r=−0.643, p<0.001 versus r=−0.640, p<0.001), a key finding from Table 2. The mean 

CRP concentrations and behavioral scores for these patients were also within 1 standard 

deviation of the mean for the group as a whole, indicating it was unlikely that these subjects 

biased the results found herein. Another limitation is that the study was not longitudinal. 

This and other cross-sectional neuroimaging studies have established relationships between 

MDD and inflammation (Felger et al., 2016; Haroon et al., 2018a; Mehta et al., 2018; Savitz 

et al., 2013) that can be used in future prospective studies aimed at developing novel 

treatment strategies that can be targeted to MDD patients with high inflammation (Miller et 

al., 2017).

5. Conclusions

A data-driven examination of large-scale brain networks herein revealed that inflammation 

was associated with disrupted functional connectivity in a widely-distributed connectome 

centralized in the ventral medial prefrontal cortex (vmPFC), which predicted anhedonia and 

motor slowing with high accuracies in MDD. Thus, the vmPFC may serve as a hub for the 

impact of inflammation on functional connectivity and a brain target for the development of 

novel antidepressant strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We conducted data-driven analyses of the impact of inflammation on network 

function in depression

• CRP was associated with decreased functional connectivity (FC) in a widely 

distributed network

• The ventral medial prefrontal cortex served as a hub for the effect of CRP on 

FC

• Other key hubs of decreased FC were striatal and limbic regions known to be 

affected by inflammation

• High prediction accuracies of multiple FC features for anhedonia and motor 

slowing were revealed
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Fig.1. 
The ventral medial prefrontal cortex (vmPFC) identified by global brain connectivity 

analysis (GBCA). Plasma C-reactive protein (CRP) was negatively correlated with global 

brain connectivity in the vmPFC cluster (voxel-wise P<0.002 + 696 mm3 cluster; P<0.05 

corrected) with its anatomical location and CRP correlation shown in (A) and (B), 

respectively.
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Fig.2. 
Inflammation effects identified by the seed of ventral medial prefrontal cortex (vmPFC). 

Plasma C-reactive protein (CRP) was negatively correlated (voxel-wise P<0.001 + 366 mm3 

cluster, P<0.05 corrected) with functional connectivity between the vmPFC and 22 broadly 

distributed brain regions. Detailed information (anatomical label, volume, MNI coordinates, 

and CRP correlation) for each cluster identified are listed in Table 2.
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Fig.3. 
The network identified by the parcellation-based network analysis (PBNA). Negative 

associations (at the 95% quantile interval) with plasma C-reactive protein (CRP) were 

identified in 63 connections involving 47 unique regions. In the overlay of identified regions 

onto the anatomical template (left), the thickness of linking edges and size of balls encode 

relative associations between inflammation and functional connectivity (FC) within the 

different paths and nodes, respectively. The ventral view of the brain was enlarged for better 

visualization of the identified primary and secondary hubs, respectively, in ventral medial 

prefrontal cortex (vmPFC; shown in green) and bilateral ventral anterior caudate (shown in 

cyan). In the circular visualization (right), all the 100 ROIs/nodes are shown. The 47 

identified regions are marked with an “x” and features of reduced FC (the 63 connections) 

are represented by blue lines. MNI coordinates and anatomical labels for each node are 

listed in Supplementary Table 2.
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Fig.4. 
Inflammation effects identified by the seed of subgenual anterior cingulate cortex (sgACC). 

Plasma C-reactive protein (CRP) was negatively correlated (voxel-wise P<0.001 + 376 mm3 

cluster, P<0.05 corrected) with functional connectivity between the sgACC and 8 widely 

distributed clusters. Detailed information (anatomical label, volume, MNI coordinates, and 

CRP correlation) for each cluster identified are listed in Supplementary Table 6.
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Fig.5. 
Results of the support vector regression (SVR) analysis. This analysis identified functional 

connectivity (FC) features that predicted symptom severity for anhedonia, IDS-SR-

Anhedonia (pink labels) and SHAPS (orange labels); and motor slowing, scores for FTT 

(cyan labels) and TMT-A (green labels). FC features found to predict symptom severity 

(P<0.001) are depicted on anatomical templates (left) and prediction accuracies are 

represented by line plots of true vs. predicted scores (top right) for each participant. FC 

features from PBNA (left) significantly predicted IDS-SR-Anhedonia (16 features), SHAPS 

(19 features) and TMT-A (7 features), whereas a combination of features from both GBCA 

(4 features; bottom right) and PBNA (11 features; bottom left) were most predictive of FTT. 

IDS-SR-Anhedonia: anhedonia subscale of the Inventory of Depressive Symptomatology-

Self-Report; FTT: Number of taps/trial (dominant hand) in the Finger Tapping Test; GBCA: 

global brain connectivity analysis; PBNA: parcellation-based network analysis; SHAPS: the 

Snaith-Hamilton Pleasure Scale; TMT-A: the time to complete Trail Making Test Part A.
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Table 1.

Demographic and clinical variables of the study sample, and their relationship to the peripheral inflammation 

as measured by plasma CRP.

Variable Mean (s.d.) (n=44) Correlation with CRP (R) P-value*

Demographic

 Age (years) 38.0 (11.0) −0.10 0.511

 Sex, Male (n, %) 13 (29.5) −0.152 0.352

Race

 Caucasian (n, %) 16(36.4) −0.155 0.316

 African American (n, %) 28 (63.6)

Smoking status, yes (n, %) 8 (18.2) −0.06 0.699

BMI (kg m−2) 30.8 (7.5) 0.65 <0.001

Clinical

 IDS-SR 36(8.0) 0.22 0.15

 IDS-SR-Anhedonia 4.8 (1.9) 0.289 0.057

 SHAPS 5.6 (2.9) 0.225 0.142

 TMT-A 33.5 (14.7) 0.28 0.065

 FIT 39.9 (9.9) −0.302 0.046

Inflammatory

 CRP (mg l−1) 2.2 (2.4) NA NA

Abbreviations: IDS-SR-Anhedonia, anhedonia subscale of the Inventory of Depressive Symptomatology-Self-Report; BMI, Body Mass Index; 
CRP, C-reactive protein; IDS-SR, Inventory of Depressive Symptomatology, Self-Report; SHAPS, Snaith-Hamilton Pleasure Scale; TMT-A, Trail 
Making Test Part A; FTT, Finger Tapping Test; NA, not applicable

*
P-value for the correlation with CRP.
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Table 2.

Twenty-two brain regions identified to exhibit decrease FC with the vmPFC (as identified by GBCA) that was 

negatively correlated with plasma CRP.

Regions Volume (mm3) MNI Coordinates Correlation with CRP (R)*

lingual gyrus (BA18) 7168 2, −85, −23 −0.669

precuneus (BA7) 6760 −1, −72, 36 −0.712

right middle frontal gyrus (BA9) 1752 26, 40, 39 −0.691

right fusiform gyrus (BA37) 1424 45, −60, −24 −0.638

left middle frontal gyrus 1296 −28, 36, −6 −0.735

right medial frontal gyrus (BA10) 1048 7, 54, 16 −0.614

left lentiform nucleus/putamen 1040 −25, 10, −6 −0.640

right lentiform nucleus/putamen 824 27, 4, −10 −0.629

right transverse temporal gyrus (BA41) 824 53, −28, 8 −0.594

right middle temporal gyrus (BA21) 792 51, 5, −22 −0.603

left cingulate gyrus (BA31) 744 −9, −36, 38 −0.626

right cingulate gyrus (BA31) 736 6, −29, 35 −0.677

right medial frontal gyrus (BA6) 712 1, −26, 62 −0.584

left middle frontal gyrus 664 −32, 58, 11 −0.585

right insula (BA13) 664 42, −21, 6 −0.611

right inferior frontal gyrus 656 30, 32, −6 −0.619

left posterior cingulate cortex (BA30) 536 −17, −70, 0 −0.606

left precuneus (BA19) 496 −20, −89, 30 −0.594

left postcentral gyrus (BA5) 416 −39, −51, 54 −0.562

right superior temporal gyrus 384 54, −57, 10 −0.573

left insula (BA13) 376 −49, −24, 10 −0.577

left lingual gyrus (BA17) 368 −9, −101, −14 −0.593

*
These correlations are all statistically significant with P<0.001. CRP, C-reactive protein; GBCA, Global Brain Connectivity Analysis; vmPFC, 

ventral medial prefrontal cortex
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Table 3.

Prediction (R2) of anhedonia and motor-related symptom severity by FC features derived from the global brain 

connectivity analysis (GBCA), parcellation-based network analysis (PBNA), or both methods.

FC Features IDS-SR-Anhedonia SHAPS FTT TMT-A

GBCA 0.26 0.29 0.36 0.26

PBNA 0.57* 0.67* 0.33 0.53*

GBCA+PBNA 0.41 0.64 0.49* 0.35

IDS-SR-Anhedonia: anhedonia subscale of the Inventory of Depressive Symptomatology-Self-Report; SHAPS: the Snaith-Hamilton Pleasure 
Scale; FTT: Number of taps/trial (dominant hand) in the Finger Tapping Test; TMT-A: the time to complete Trail Making Test Part A.

*
Highest R2 in the prediction of each symptom

Brain Behav Immun. Author manuscript; available in PMC 2020 August 01.


	Abstract
	Introduction
	Materials and Methods
	Participants
	Plasma CRP
	Behavioral assessments
	MRI data acquisition
	Preprocessing of rfMRI data
	Statistical Analyses
	Global brain connectivity analysis (GBCA)
	Parcellation-based network analysis (PBNA)
	Exploring associations between CRP and FC within three brain networks and the “dorsal nexus”
	Behavioral prediction with support vector regression (SVR)


	Results
	Patients characteristics
	Association between plasma CRP and network function revealed by global brain connectivity analysis (GBCA)
	Association between plasma CRP and network function by parcellation-based network analysis (PBNA)
	Associations between plasma CRP and seed-based FC with three brain networks and the “dorsal nexus”
	Prediction of anhedonia and motor slowing by inflammation-associated FC features identified with GBCA and PBNA

	Discussion
	Conclusions
	References
	Fig.1.
	Fig.2.
	Fig.3.
	Fig.4.
	Fig.5.
	Table 1.
	Table 2.
	Table 3.

