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A B S T R A C T

The MRI-derived porosity index (PI) is a non-invasively obtained biomarker based on an ultrashort echo time
sequence that images both bound and pore water protons in bone, corresponding to water bound to organic
collagenous matrix and freely moving water, respectively. This measure is known to strongly correlate with the
actual volumetric cortical bone porosity. However, it is unknown whether PI may also be able to directly
quantify bone organic composition and/or mechanical properties. We investigated this in human cadaveric
tibiae by comparing PI values to near infrared spectral imaging (NIRSI) compositional data and mechanical
compression data. Data were obtained from a cohort of eighteen tibiae from male and female donors with a
mean ± SD age of 70 ± 21 years. Biomechanical stiffness in compression and NIRSI-derived collagen and
bound water content all had significant inverse correlations with PI (r=−0.79, −0.73, and −0.95 and
p=0.002, 0.007, and< 0.001, respectively). The MRI-derived bone PI alone was a moderate predictor of bone
stiffness (R2=0.63, p=0.002), and multivariate analyses showed that neither cortical bone cross-sectional area
nor NIRSI values improved bone stiffness prediction compared to PI alone. However, NIRSI-obtained collagen
and water data together were a moderate predictor of bone stiffness (R2= 0.52, p=0.04). Our data validates
the MRI-derived porosity index as a strong predictor of organic composition of bone and a moderate predictor of
bone stiffness, and also provides preliminary evidence that NIRSI measures may be useful in future pre-clinical
studies on bone pathology.

1. Introduction

Bone fractures pose a high risk to the aging and diseased population,
and assessments of bone mineral density (BMD) are typically used to
identify a patient's risk of fracture. For example, numerous studies have
shown that women with low bone density in the radius or calcaneus are
at increased risk of hip fracture (Gardsell et al., 1989; Hui et al., 1989;
Cummings et al., 1990). Even with recent improvements in dual energy
X-ray absorptiometry (DXA) and peripheral quantitative computed to-
mography (pQCT) (Sartoris and Resnick, 1989; Mazess et al., 1990;
Maricic, 2014; Siu et al., 2003; Jamal et al., 2006; Sornay-Rendu et al.,
2017), BMD has been demonstrated to only partially account for
variability in bone quality (Bjornerem, 2016). Other factors, such as
changes in bone's composition of collagen and water, have also been
shown to contribute to bone strength (Keen et al., 1999; Viguet-Carrin
et al., 2006; Wang et al., 2001; Li et al., 2014; Nyman et al., 2006).

Magnetic resonance imaging (MRI) ultrashort echo time (UTE) is an
image acquisition protocol that has demonstrated considerable cap-
ability for imaging bone (Rajapakse et al., 2015; Horch et al., 2010;
Manhard et al., 2016; Wurnig et al., 2014). UTE-MRI allows for direct
imaging of bound and pore water in bone by acquiring signal with very
short echo times (TE), on the order of 50 μsec, whereas conventional
MRI cannot image bound water because the transverse relaxation time
is too short (Rajapakse et al., 2015). UTE MR imaging of bone has been
validated via comparison to μCT, pore water fraction, material com-
position, and mechanical testing, among others (Rajapakse et al., 2015;
Bae et al., 2012; Chang et al., 2017a). Porosity index (PI) measurement
is a recently introduced UTE-based methodology that has been suc-
cessfully utilized to assess bone porosity in vivo in clinically practical
acquisition times (Rajapakse et al., 2015). PI is obtained by measuring
the signal decay in a single three-dimensional UTE examination that
acquires signal at two echo times, 50 and 2000 μsec. The ratio of the
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two signals allows for direct quantification of the water that is bound to
collagen through hydrogen bonds in bone. This methodology over-
comes the typical issue of limited resolution in vivo in purely structural
imaging modalities (Al Mukaddam et al., 2014; Ahmed et al., 2015).
Bone PI is strongly correlated with other measurements from bone
structural imaging methods, including porosity obtained from micro
computed tomography (μCT), bone density measured by pQCT, and
pore water fraction measured using multi-echo UTE sequences
(Rajapakse et al., 2015). Most notably, cortical bone PI was shown to
strongly agree with μCT-evaluated cortical bone porosity fraction
(R2=0.79) (Rajapakse et al., 2015). The fact that PI can simulta-
neously image protons in both free water (pore water) and water bound
to collagenous matrix (bound water) suggests that PI could also provide
in vivo quantification of bone health by measuring both the amount and
distribution of the organic components in bone, but it has not yet been
validated compared to material composition imaging modalities or to
mechanical testing. PI has the potential for clinical use to assess
changes in cortical bone porosity that result from disease and in re-
sponse to therapy, but additional work is needed to fully understand its
usefulness.

Near-infrared spectral imaging (NIRSI) is a fast spectroscopic
modality that effectively evaluates the spatial distribution of water and
organic components in the imaged sample (Chang et al., 2017a). NIRSI
measures signals from molecular vibrations resulting from incident
radiation on the sample and is particularly adept at imaging organic
components of human bone that contribute to variability in porosity
and bone fragility, including water, collagen, and fat content. NIRSI, in
contrast to more traditional methods of chemical analyses, evaluates
intact samples non-destructively and requires limited or no sample
preparation, with no chemical reagents and no waste production
(Rajapakse et al., 2017a; Givens et al., 1997). Moreover, NIRSI images
at higher frequencies than other mid-infrared imaging methods, al-
lowing for greater penetration of the tissue, on the order of millimeters
to centimeters (Rajapakse et al., 2017a). A recent study demonstrated
that NIRSI-derived bone organic compositional parameters yielded re-
markable agreement with bone UTE data (Chang et al., 2017a). A
strong correlation was reported between the intensity of the two NIRSI
water peaks and UTE-MRI bound water values (r=0.74, 0.71). The
minimal sample preparation, non-destructive nature of the scan, and
relative speed of NIRSI makes it an ideal method for investigation of
changes in water content, distribution, and environment in pre-clinical
studies of bone pathology and therapeutics.

Here, we hypothesize that cortical PI can provide accurate mea-
surements of bone organic material composition compared to NIRSI
data. We further hypothesize that, due to its known ability to image
structural data of bone, PI will provide accurate predictions of bone
strength. As a secondary aim, we hypothesize that bone strength pre-
dictions will be further improved when PI is combined with direct
quantification of material data from near-infrared spectral imaging. Our
goals were two-fold: (1) assess correlations with PI, NIRSI, and bio-
mechanical data, and (2) determine if PI, NIRSI, or a combination of the
two would be effective at predicting mechanical stiffness as a measure
of bone strength.

2. Materials and methods

2.1. Bone specimens

Eighteen fresh whole human cadaveric tibiae were harvested from
six male (age 70 ± 17, range 49–83) and twelve female (age 65 ± 23,
range 27–97) donors with no history of skeletal disease (NDRI,
Philadelphia, PA). They were stored frozen at -30 °C and thawed for 6 h
before imaging. Segments of whole tibiae 36-mm in length were cross-
sectioned from the diaphysis at a distance approximately 38% proximal
to distal endplate using a Hall Pneumatic reciprocating saw (Linvatec
11,311 Concept Blvd Largo, FL) for UTE-MRI imaging. From these

segments, 450 μm thick whole cross-section samples were cut using a
diamond wafering saw (Buehler Isomet 1000, Lake Bluff, IL) for NIR
spectral imaging. All sectioned specimens were stored in a phosphate-
buffered saline (PBS) solution (pH 7.4, Invitrogen, Carlsbad, CA) for at
least one to two days at 4 °C before data collection. Of the eighteen
tibiae used in this study, we were only able to perform all three tests of
near infrared spectral imaging, PI, and mechanical testing on 9 of the
samples, for reasons that are detailed in each respective section. Of the
remaining 9 samples, 3 were tested with NIRSI and PI, 3 were me-
chanically tested and scanned for PI, and 3 were mechanically tested
and analyzed with NIRSI.

2.2. Assessment of porosity index

Scanning was performed on a 3-T whole body MRI machine
(Siemens Prisma, Erlangen, Germany) with a four-channel surface coil
(Insight MR Imaging, Worcester, MA). The 36-mm thick bone specimen
was scanned with the following parameters: field of view,
160× 160×160mm3; repetition time, 12msec; flip angle, 12o with
20 μsec hard pulse duration; 50,000 half-projections distributed uni-
formly within a sphere (34); 190 readout points per projection; gradient
ramp time, 240 μsec; and readout bandwidth, 125 kHz. Two UTE
images were reconstructed using TE of 50 and 2000 μsec onto a
320× 320×320 matrix corresponding to an isotropic 0.5mm voxel
size. PI is the ratio between a long TE (TElong) and the shortest TE
(TEshort) obtained by the UTE image intensities:

= ×Porosity Index (%)
TE intensity
TE intensity

100long

short

Theoretically, TEshort captures the proton signal from all water
within the sample and TElong is primarily derived from the freely
moving pore water. The signal in the bone region from TEshort therefore
appears much brighter than that of TElong, as is illustrated in Fig. 1.
Images acquired at TE of 2000 μsec and 50 μsec were used for the long
and short TE images, respectively. The boundary between the trabe-
cular and cortical compartments was manually segmented to include
only dense cortical bone by a trained laboratory technician, similar to
previously established methods (Rajapakse et al., 2015). For this study,
the average voxel PI value within the cortical compartment was con-
sidered as the overall porosity. Cortical bone cross-sectional area (CbA)
was also calculated from segmented UTE scans to improve multivariate
regression analyses, which are described below. Briefly, the cross-sec-
tional area for each slice was calculated by multiplying the number of
pixels within the region of interest by the in-plane resolution. The cross-
sectional area used in the analysis was the average over the entire vo-
lume of interest. Of the eighteen total tibiae tested in this study, three
were unable to be scanned since the MRI scanner was unavailable
within a few days of the cadavers being stored.

2.3. NIR spectral imaging

The 450 μm thick bone samples underwent NIR spectral imaging
using a Perkin Elmer Spotlight 400 imaging spectrometer (Shelton, CT).
Before imaging, the surface sample water was dried with a Kimwipe.
The sample was contained between a glass slide and glass coverslip to
minimize water loss. Imaging was conducted with the following para-
meters: frequency range, 4000–7800 cm−1; spectral resolution,
64 cm−1; and pixel resolution, 50 μm. Total imaging time was 20min
for each sample. Two scans were run for each sample and averaged in
order to improve the signal-to-noise ratio. NIR spectral images were
analyzed using ISys 5.0 software (Malvern Instruments, Columbia, MD).
Absorbances of interest were at 7008 cm−1 for water (corresponding to
OeH bond), which was previously shown to be inversely related to
donor age, and at 4608 cm−1 for collagen (corresponding to CeH
bonds) (Chang et al., 2017a; Luck, 1974). Integrated areas under the
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NIRSI peaks were calculated to obtain water and collagen content as
previously described (Chang et al., 2017a). Although spatially resolved
data was collected at 50 μm resolution, the data were averaged across
the bulk sample to maintain consistency with the parameters of the
UTE-MRI data acquisition. It must be noted that three of the tibia
samples were unusable for in-depth NIR spectral analysis because they
were left in the PBS solution at 4 °C for over three days and thus water
content was not considered reliable.

2.4. Biomechanical testing

Tibial segments 25mm in length were obtained from the distal re-
gions of the cadaver samples and then underwent uniaxial compression
tests using a servo-hydraulic material testing machine (Instron 8874
Instron, Norwood, MA) equipped with a 100kN load cell. Each segment
was loosely placed between two parallel steel plates and compressed
according to a displacement rate of 1mm/min until the ultimate load
was reached. Whole-bone axial stiffness was found as the tangent of the
initial linear portion of the force-displacement curve. Three of the ca-
daveric samples did not undergo mechanical testing due to unforeseen
issues in sample preparation.

2.5. Statistical analysis

Statistical analyses were conducted using MATLAB (Mathworks,
Natick, MA, USA), R (R Foundation for Statistical Computing, Vienna,
Austria), and JMP Discovery Software (JMP 14.0; SAS Institute Inc.,
Cary, NC, USA) with p < 0.05 indicating statistical significance.
Correlations between PI and other variables (stiffness, collagen, and
bound water) were assessed using Pearson Correlation Coefficients (r)
and p-values. PI was plotted against the other variables and displayed
with a linear equation representing best fit and Pearson Correlation
Coefficient (r). Next, multivariate regression analyses were conducted
to evaluate the efficacy of the three imaging parameters (PI, collagen,
and bound water) at predicting bone stiffness when combined into
aggregate models. Separate regressions were run for each of our pro-
posed models for predicting or stiffness. Comparisons were drawn be-
tween PI and NIRSI measurements to create a multi-faceted assessment
of bone strength. For models that performed better than PI, ΔR2 and p
values were calculated to evaluate the usefulness of adding additional
parameters. Partial R2 tests were used to evaluate the significance of
parameters at predicting bone stiffness when controlling for others.

3. Results

3.1. PI as a predictor of bone quality

Our results show strong negative correlations between PI and ex-
perimentally obtained bone stiffness (r=−0.79, p=0.002), NIRSI
determined collagen (r=−0.73, p=0.007), and bound water content
(r=−0.95, p < 0.001), respectively. Compositional and structural
differences between old and young cadavers were clearly evident in
NIRSI spectrum and PI values (see Fig. 2). Fig. 3 displays correlation
graphs comparing PI with bone stiffness, collagen, and water content.

3.2. Multi-modality prediction of bone stiffness

Results of single and multivariate regression analyses for predictions
of bone stiffness are listed in Table 1. PI exhibited moderate predictive
efficacy for bone stiffness (R2=0.63, p=0.002). Cortical bone area
also showed moderate predictive efficacy for bone stiffness (R2=0.40,
p=0.03). The predictive accuracy of PI combined with CbA
(R2= 0.67, p=0.01) was better than that of CbA alone (ΔR2=0.04,
p=0.48) but not better than that of PI alone (ΔR2= 0.04, p=0.48).

Collagen alone and water alone did not predict bone stiffness
(R2= 0.01, p=0.76 and R2=0.12, p=0.28), but when both collagen
and water were combined, the model was significant (R2=0.52,
p=0.04). Furthermore, collagen controlling for water, and water
controlling for collagen, each predicted stiffness (partial R2= 0.46,
p=0.02 and partial R2= 0.52, p=0.01).

When collagen values were combined with MRI-derived PI
(R2= 0.72, p=0.02), the model was significant, but the predictive
value did not increase compared to that of PI alone (ΔR2=0.09,
p=0.21). However, when either water or CbA was added to the PI and
collagen model, the three-factor models did not predict stiffness. Water
combined with PI also did not predict stiffness.

4. Discussion

The health and strength of bone is determined by numerous factors,
including the quantity of mineralized tissue, the amount, distribution,
and crosslinking ability of collagen, and the macro- and micro-structure
of bone (Viguet-Carrin et al., 2006; Seeman and Delmas, 2006; Boskey,
2013). Bone's compressive strength comes from its high degree of mi-
neralization, specifically hydroxyapatite, which constitutes approxi-
mately 60% of human bone (Seeman and Delmas, 2006). Total bone
mineral content decreases with age, which is associated with increased
fracture risk and decreased bone strength (Kanis, 2002; Leibson et al.,
2002; Bolotin and Sievanen, 2001). The non-mineral component of

Fig. 1. A) Example location of mid-tibial scanning region for UTE scan. B) Representative image of TEshort from our UTE sequence. C) Representative image of TElong
from the same cadaver as in B, with a noticeably darker bone region than the corresponding TEshort.

A.L. Hong, et al. Bone Reports 11 (2019) 100213

3



bone is an organic matrix mixture that is primarily comprised of col-
lagen. Collagen provides bone with its tensile strength, in addition to
stabilizing the extracellular matrix, supporting deposition of mineral
crystals, and many other functions (Viguet-Carrin et al., 2006; Seeman
and Delmas, 2006; Boskey, 2013). Analogously to the mineral content,
bone collagen degrades with age, which causes a significant reduction
in the toughness and health of bone (Wang et al., 2002). Research has
shown that high bone stiffness is correlated to distribution of mineral as
a continuous layer outside collagen fibrils compared to periodic dis-
tribution in staggered manner in collagen matrix (Abueidda et al.,
2017). Moreover, studies have shown that age and osteoporosis are
associated with an increase in the ratio of the mineral-to-matrix content
and increased fracture risk (Gourion-Arsiquaud et al., 2009).

Concomitant to its material properties, the structural properties of
bone have been shown to play an outsized role in the strength of bone.
Morphological measures, including bone size and cross-sectional area,
can predict up to 70% of bone strength and have outperformed BMD
measurements in terms of fracture load prediction in certain bones
(Augat and Schorlemmer, 2006). Additionally, the porosity of cortical
bone has been shown to describe 65–80% of variations in Youngs
moduli within the CbA (Currey, 1988; Dong and Guo, 2004).

Clinically, assessment of bone health is typically limited to miner-
alization measures in the form of BMD. Although BMD has proven to be
a cheap and reliable measure of mineralization, it fails to account for
the other factors determining bone strength, which limits its ability to
accurately evaluate fracture risk (Bjornerem, 2016; Seeman and
Delmas, 2006). Non-invasive and non-destructive methods of

ascertaining the three-dimensional morphology and non-mineral com-
position of bone are therefore highly desirable to both clinicians and
researchers.

MRI-UTE-derived PI is a recently introduced, clinically viable
methodology that has been previously validated as a strong predictor of
bone structural parameters (Rajapakse et al., 2015). This study further
validated it as a useful non-invasive measure of the organic material
compositions of bone. Cortical porosity index was significantly corre-
lated with collagen and water content, with porosity index showing
strong correlation with water and moderate correlation with collagen,
respectively (r=−0.73 and r=−0.95). Moreover, our data showed
that porosity index alone accounts for 63% of the variability in stiffness,
making it a moderate predictor of bone strength. To further analyze the
efficacy of PI, we performed a multivariate regression analysis with all
imaging parameters obtained. While both PI alone and CbA alone
predicted stiffness (R2=0.63 and R2=0.40), the ΔR2 between the
two-factor model and their individual regressions indicated that adding
CbA did not improve the predictive accuracy of PI alone, while adding
PI significantly improved upon CbA alone. This suggests that PI pro-
vides information related to stiffness that is not captured by CbA.
Likewise, none of the remaining multivariate models predicted stiffness
better than PI alone. It is not surprising that PI's relationship to bone
strength is independent of cross-sectional area, since it is calculated as
an average over the ROI and is therefore independent of scale or size.
Additionally, the bone porosity is known to vary radially within the
bone, increasing from the periosteum to the endosteum, and is in-
dependent of the total bone size (Rajapakse et al., 2015; Patsch et al.,

Fig. 2. Example of NIRSI collagen, water, and porosity index colormaps for two cadavers. The first column is a 30-year-old female and the second column is an 83-
year-old female. Significant degradation of the endosteum can be seen in each scan of the older cadaver.
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2013). The data presented here suggest that porosity index is capable of
measuring both structural properties and the organic composition of
bone, as well as moderately predicting bone strength.

It is important to note that, while NIRSI collagen alone and NIRSI
water alone did not correlate with bone stiffness, their combined model
was significantly related to stiffness. Further analysis revealed that both

values predict stiffness when you control for the other parameter, in-
dicating that they are both related to bone strength, albeit in an indirect
way. This makes sense since controlling for the other parameters helps
to normalize the values with the overall size of the bone. Furthermore,
this supports the notion that water and collagen are the two largest
organic components in bone and the strength of bone is known to de-
pend on its organic composition (Boskey, 2013). This further indicates
that NIRSI could be useful in future pre-clinical studies investigating the
effects of pathologies or pharmaceuticals on bone strength.

Water makes up approximately 20% of the volume in cortical bone,
so the volume of pore water located in the vascular-lacunar-canalicular
space is strongly correlated with bone porosity. This value has been
consistently reported; Biexponential analysis by Du et al. (Du et al.,
2013) found the pore water fraction to be approximately 22% in the
mid-tibia of human cortical bone, and the Carr-Purcell-Meiboom-Gill
sequence analysis by Horch et al. (Horch et al., 2010) reported a similar
23% fraction in the mid-femoral cortex. Bound water is a significant
factor in predicting the biomechanical properties of bone and is re-
sponsible for giving collagen its ability to confer ductility or plasticity
to bone. Dehydration causes bones to become brittle, while also in-
creasing stiffness and strength (Granke et al., 2015). Therefore, it is not
surprising that PI was found to strongly predict bone strength.

PI has been applied to the assessment of bone quality in a study that
investigated a cohort of 68 healthy men and women who underwent 3D
UTE-MRI (3.0T) of both their femoral neck and tibia (Chen and Yuan,
2018). Chen et al. sought to draw scientifically and clinically important
relationships between the obtained in vivo PI values and factors such as
age and BMI. Femoral neck PI was found to be negatively correlated
with age (R2=0.15) and curvilinearly correlated with BMI (R2=0.23)
in men. Tibial PI was positively correlated with age (R2=0.22) in post-
menopausal women and negatively correlated with BMI (R2=0.23) in
all women. Additionally, femoral PI was significantly higher in men
than in women (p < 0.001). Given the results of this study, Chen's
findings make sense, since both collagen and bone structure are known
to diminish with age (Viguet-Carrin et al., 2006; Seeman and Delmas,
2006; Boskey, 2013). However, it is important to note that there was no
correlation between the femoral neck and tibial PI, so they cannot be
used as substitutes for each other in assessing bone quality. Further
studies will be needed to assess the variation of porosity indices in
different bones within-subject, as well as to evaluate their ability to
predict bone fracture.

In addition to measuring BMD, other less common clinical methods
for assessing bone strength include 3D image-based assessment of bone
structure and image-derived finite element models (Kopperdahl et al.,
2014; Chang et al., 2017b). Of these, a commonly researched method in
the past few decades is CT-derived finite element analysis (FEA), which
combines bone structural information with measurements of BMD. Al-
though this has shown good efficacy at predicting bone fractures, it
produces ionizing radiation. Recently, MRI-based FEA, which in-
corporates in vivo microarchitecture of bone, has been used to simulate
bone strength without radiation (Rajapakse et al., 2017b). However,

Fig. 3. Plotted correlations between MRI porosity index and A) experimentally
obtained stiffness, B) NIRSI collagen content, and C) NIRSI water content.

Table 1
Comparison of multivariate regression models predicting stiffness.

N R2 p

PI 12 0.63 0.002*
Cortical area 12 0.40 0.03*
PI + cortical area 12 0.65 0.01*
Collagen 12 0.01 0.76
Water 12 0.12 0.28
Collagen + water 12 0.52 0.04*
PI + collagen 9 0.72 0.02*
PI + water 9 0.63 0.05
PI + collagen + water 9 0.72 0.07
PI + collagen + cortical area 9 0.74 0.06
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FEA based on 1H MRI does not directly include bone compositional data
and instead infers it from the magnitude of the intensities of the marrow
and bone imaged. Since the data presented indicates that PI can
quantify the organic composition of bone in the form of collagen and
water, it is possible that PI could be used to improve clinical bone
strength evaluation when combined with measures of bone mineral
density or with image based finite element models.

This study does include some limitations that could be improved
upon in future research. The ideal first TE for the porosity index mea-
surements is as short as possible to minimize the decay of total bone
water signal. However, our current instrumentation allowed a
minimum TE of 50 μsec for the first echo. The signal loss at this time is
approximately 1% for the free water component and approximately
14% for the bound water component. The 7008 cm−1 NIRSI absorbance
arises due to differing origins and environments, including pore water,
water loosely bound to mineral or collagen, water structurally in-
corporated into mineral or collagen, or a combination thereof. There
could also be potential interference of non-water OH bonds such as P-
OH, which can be found on the surface or within apatite crystals,
making the association between IR measures and bone strength not
straightforward (Kolmas et al., 2015). Another limitation of this study is
how the boundary between the cortical and trabecular bone compart-
ments was identified. More specifically, the boundary between the two
was carefully manually segmented to only include dense cortical bone.
In addition to the obvious potential for erroneous segmentation, the
efficacy of PI at predicting bone strength is likely to be lower in older
cadavers, since the cortical compartment is less susceptible to re-
modeling and endosteal absorption than the trabecular compartment
and would thus represent a smaller fraction of the total bone strength in
older specimens (Clarke, 2008).

Validation of the porosity index biomarker as a predictor of the
mechanical stiffness of bone could provide clinicians with a simple,
non-invasive tool for assessment of bone fracture risk. Insight into a
patient's bone porosity and stiffness parameters allows for evaluative
measures to take place in preventative care, risk management of critical
bone fractures, and evaluation of treatment efficacy.
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