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Metastasis of solid tumors is a key determinant of cancer patient
survival. Targeting micrometastases using nanoparticles could offer a
way to stop metastatic tumor growth before it causes excessive
patient morbidity. However, nanoparticle delivery to micrometastases
is difficult to investigate becausemicrometastases are small in size and
lie deep within tissues. Here, we developed an imaging and image
analysis workflow to analyze nanoparticle–cell interactions in meta-
static tumors. This technique combines tissue clearing and 3D micros-
copy with machine learning-based image analysis to assess the
physiology ofmicrometastaseswith single-cell resolution and quantify
the delivery of nanoparticles within them. We show that nanopar-
ticles access a higher proportion of cells in micrometastases (50%
nanoparticle-positive cells) compared with primary tumors (17%
nanoparticle-positive cells) because they reside close to blood ves-
sels and require a small diffusion distance to reach all tumor cells.
Furthermore, the high-throughput nature of our image analysis
workflow allowed us to profile the physiology and nanoparticle
delivery of 1,301 micrometastases. This enabled us to use machine
learning-based modeling to predict nanoparticle delivery to individ-
ual micrometastases based on their physiology. Our imaging
method allows researchers to measure nanoparticle delivery to
micrometastases and highlights an opportunity to target microme-
tastases with nanoparticles. The development of models to predict
nanoparticle delivery based on micrometastasis physiology could
enable personalized treatments based on the specific physiology of
a patient’s micrometastases.

nanoparticles | metastasis | 3D microscopy | image analysis |
machine learning

There has been significant effort in developing nanoparticle
carriers for the treatment of solid tumors. Research has been

focused on the application of nanoparticles for treating or
detecting primary tumors and for understanding the impact of
different nanoparticle designs in mediating tumor delivery. The
objective of these areas of research is to improve the design of
nanoparticles to yield improved therapeutic outcomes (1). The
principal target for these studies is primary tumors that are
contained at a single location. However, it has been shown that
many primary tumors can be successfully treated by surgical re-
section, radiation, and/or chemotherapy. Another cancer target
is metastatic tumors—tumors in which primary tumor cells leave
the original tumor site and move to a different part of the body
and start to grow into a new tumor. Experts attribute ∼90% of
cancer deaths to metastatic disease because metastases can be
difficult to detect and rely on systemically administered treat-
ment to reach all tumor locations (2).
It is difficult to investigate metastatic tumors because they can

be small, heterogenous, and distributed throughout the entire
body. This has led to limited studies that probe the delivery,
accumulation, and interactions of nanoparticles with metastatic

tumors. Here, we are interested in probing the delivery of
nanoparticles to micrometastasis, which are small avascular tu-
mor cell clusters that are key to the early stages of metastatic
tumor growth. The removal of these cells would prevent their
growth into full-sized debilitating metastatic tumors. We hy-
pothesized that micrometastases are a good target for nano-
particle carriers because they are small in size and located close
to blood vessels (3). This is in contrast to a primary tumor where
it is difficult for nanoparticles to target tumor cells. In primary
tumors the extracellular matrix and stromal cells interact with
the nanoparticles, preventing diffusion deep into the tumor and
limiting their interactions with cancer cells (4–8). The differen-
tial pathophysiology between a micrometastasis and a primary
tumor may be the reason that preclinical studies show some
success in the treatment or detection of micrometastases with
nanoparticles (9–12). Unfortunately, micrometastases are diffi-
cult to analyze using conventional imaging, flow cytometry, or
genetic approaches because of their small size and sparse dis-
tribution within healthy tissues. This leads to limited studies of
the impact of the pathophysiology of micrometastases on the
drug delivery process. This makes it difficult to determine the
suitability of nanoparticles for targeting micrometastases.
Tissue clearing and 3D imaging offer a solution to evaluate

micrometastasis physiology and nanoparticle delivery. These
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techniques have been explored for imaging biological features
such as blood vessels or neurons over large tissues, whole organs,
and whole animals (13–16). These techniques are also well suited
for studying sparse features located deep in tissues such as me-
tastases throughout entire organs or animals (17, 18). Techniques
using tissue clearing and 3D microscopy have already been opti-
mized to evaluate nanoparticle distribution within tissues (18–21)
and for tracking antibody (22) and small-molecule delivery (23) to
primary tumors. This type of imaging produces large amounts of
information about tissue structure and nanoparticle location with
high resolution. It is challenging to extract large amounts of
quantitative data from these images because traditional auto-
mated image analysis techniques, such as thresholding or filtering
methods, are inadequate and tailored to recognize individual
features such as nuclei or blood vessels. Alternatively, manual
methods can be used to identify any number of features from
images but are time-consuming and low-throughput.
Artificial intelligence and machine learning have recently

emerged as viable technologies for learning patterns of mole-
cules and cells in complex biological environments. Automated
image analysis using machine learning is adaptable and high-
throughput, allowing for the collection of large amounts of data
from images. In the context of histological images, machine
learning is being applied in many areas including segmenting and
mapping different immune cell types in tumors (24, 25), classi-
fying and predicting mutations in lung cancer (26), and classi-
fying skin cancer (27). These methods show great potential but
are limited to 2D images. Relatively few examples exist for ap-
plying machine learning-based image analysis to 3D microscopy
images and are generally restricted to the analysis of single
structures such as cell nuclei (28–30).

We propose the development of a combinatorial imaging and
analysis technique to analyze nanoparticle interaction with
micrometastases. This is achieved by using 3D optical light-sheet
microscopy after tissue clearing to image nanoparticle distribution
within intact micrometastases followed by machine learning-based
segmentation and image analysis. Our method can automatically
identify multiple biological structures including micrometastases,
individual cells, and blood vessels. This allows us to measure
physiological features and track nanoparticle delivery to individual
tumor cells from 3D microscopy images. We evaluate micro-
metastases as a potential target for nanoparticles and uncover
fundamental information about how the physiology of these small
tumors impacts the ability to deliver nanoparticles to them.

Results
Developing a 3D Imaging and Machine Learning Technique for Analyzing
Nanoparticle Interaction with Micrometastases. Our study is pre-
mised on the ability to image nanoparticles within intact tissues
containing micrometastases. To visualize micrometastases, we
developed methods based on our previous work on tissue clearing,
labeling, and 3D imaging of nanoparticles within intact tissues (19,
20). Our workflow is displayed in Fig. 1A. We administered 50-nm
polyethylene glycol (PEGylated)-coated gold nanoparticles via
tail-vein injection into the syngeneic, orthotopic 4T1 mouse model
of breast cancer after micrometastases had formed in the liver and
lungs 3 wk after primary tumor induction. The characterization of
the nanoparticles is shown in SI Appendix, Fig. S1. Gold nano-
particles were chosen as a model nanoparticle carrier because they
are retained in cleared tissues (20) and can be detected via light
scattering (21). The nanoparticles were allowed to circulate for

Fig. 1. Tissue clearing, staining, and 3D imaging enable visualization of nanoparticle delivery to micrometastases. (A) Workflow for tissue preparation,
imaging, and analysis of nanoparticle delivery to micrometastases. Tumors are induced and metastases form, and then nanoparticles are injected (step 1).
Next, tissues of interest are optically cleared and stained with fluorescent markers (step 2). The optically cleared tissues are then imaged with light-sheet
microscopy to generate 3D multichannel images (step 3). These images are then segmented to identify biological features of interest (nuclei, blood vessels,
micrometastases), which are used along with the nanoparticle intensity channel to quantify nanoparticle delivery (step 4). (B) Images of 1-mm sections of the
liver and lung before and after optical clearing. (Scale bar, 1 cm.) (C) A 3D image of a lung containing a micrometastasis. (Scale bar, 250 μm.) (D) A 2D section
of the micrometastasis in C showing nanoparticles within the micrometastasis. Yellow arrows highlight nanoparticle locations. (Scale bar, 250 μm.) (E) A 3D
image of a liver section that contains multiple micrometastases. (Scale bar, 200 μm.) (F) A 2D section of E showing 3 separate micrometastases. The yellow
dashed line outlines the micrometastases, and the yellow arrows show nanoparticle locations. (Scale bar, 200 μm.)
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4 h, and then organs were resected and processed as previously
described (20). Examples of the optically transparent organs are
shown in Fig. 1B. The blood vessels were labeled with Cy-3-
Griffonia simplicifolia Lectin I (Cy3-GSL-1), micrometastases were
identified with an antibody for Ki67, a marker of cell proliferation,
with a secondary antibody conjugated to Alexa-Fluor 647, and in-
dividual cells were identified by DAPI staining. The transparent
organs were then imaged in a refractive index matching solution
using the Zeiss Lightsheet Z.1 microscope. The pathophysiology was
visualized via the fluorescence stains, and the nanoparticles were
imaged by light scattering (21). The 3D images show the structure
and location of the blood vessels, cells and nanoparticles within
micrometastases in the lung (Fig. 1 C andD and Movie S1) and liver
(Fig. 1 E and F and Movie S2). Fig. 2 is a schematic that shows how
images are composed of multiple imaging channels allowing for the
detailed examination of the nuclei, Ki67-positive cells, blood vessels,
and nanoparticles within individual micrometastases.
Next, we developed a machine learning-based workflow to ana-

lyze the images (31), which is shown in Fig. 3. This workflow is used
to segment blood vessels, micrometastases, and nuclei from the 3D
light-sheet images. The first step uses a preprocessing algorithm to
normalize local and global changes in signal intensity across the
image volume. This is common in light-sheet microscopy due to
inhomogeneities throughout the tissue and across the imaging depth
as the objective lens gets farther from the imaging plane. The sec-
ond step is to train a supervised machine learning tool called Ilastik
(32) to segment blood vessels, nuclei, and metastases from their
respective fluorescent light-sheet images. The use of a machine
learning-based approach overcomes the limitations of traditional
thresholding or filtering methods because it incorporates multiple
image characteristics to determine the best descriptors for the spe-
cific image feature. The third step is a postprocessing algorithm,
which is applied to each of the segmented channels to eliminate
optical artifacts. Common segmentation artifacts occurred on the
tissue surface due to the presence of autofluorescent debris so the
outer layer was removed and excluded from analysis. Merged nuclei
are a common segmentation artifact. To overcome this, we used a
seeded watershed algorithm as part of the nuclei segmentation post
processing. These segmentations are consistent with manual seg-
mentations of blood vessels, nuclei, and micrometastases (SI Ap-
pendix, Fig. S2). The application of this segmentation to a full 3D
image is shown in Fig. 4. Fig. 4A shows an image of a liver con-
taining micrometastases. Fig. 4B shows the corresponding seg-
mented nuclei, blood vessels, micrometastases, and nanoparticle
intensity channel. Fig. 4C shows an example of the ability to do
single-cell quantification of nanoparticle intensity and cell distance

from the nearest blood vessel. By segmenting and dilating each
nucleus, we are able to measure the mean nanoparticle signal for
each cell. The threshold to define nanoparticle-positive cells is set to
3 times the noise signal from cleared tissue with no nanoparticles (SI
Appendix, Fig. S3). A Euclidean distance transformation from the
segmented blood vessels is used to measure each cell distance to the
nearest vessel. This allows us to map the nanoparticle intensity and
cell distance to the nearest blood vessel for all cells in the 3D image.
From the segmented images we can then quantify the patho-

physiology and nanoparticle delivery to individual micrometastases.
Fig. 4D is an example of an individual micrometastasis profile. We
show the original image, segmented micrometastasis, surrounding
vasculature, individual nuclei, mean nanoparticle intensity per cell,
and distance to the nearest vessel for each cell. We can measure a
quantitative profile of each micrometastasis as displayed in Fig. 4E.
This shows the ability to quantify the physiology and nanoparticle
delivery to micrometastases from 3D microscopy images.

Comparing Nanoparticle Delivery between the Primary Tumor and
Micrometastases. Previous studies have shown that systemically
administered nanoparticles have limited penetration from blood
vessels and access to cancer cells in primary tumors (4–7).
Micrometastases are small in size and located near blood vessels.
This led us to hypothesize that tumor cells within a micrometa-
stasis are more accessible to nanoparticles. To test this, 4T1
primary tumors were induced and allowed to spontaneously
metastasize over 3 wk. Gold nanoparticles were then injected via
tail vein and circulated for 1, 4, or 24 h. The animals were killed,
and the liver containing micrometastases and the primary tumor
were collected, processed, imaged, and analyzed as described
above. The liver was chosen because it had consistent and nu-
merous micrometastases that allowed for comparisons within a
single animal and across different animals. The general workflow
and time line are displayed in Fig. 5A. Fig. 5B shows that we are
able to visualize nanoparticle accumulation at each time point in
micrometastases and in the primary tumor.
We discovered that nanoparticles had higher access to cells in

micrometastases compared with primary tumor cells. Micro-
metastases had higher mean nanoparticle intensities, percentage
of nanoparticle-positive cells, and density of nanoparticle-positive
cells compared with the primary tumor at 1, 4, and 24 h, which is
shown in Fig. 5 C–E. Both the primary tumor and micro-
metastases had the highest delivery at 24 h. Fig. 5C shows that at
24 h post injection the average nanoparticle intensity of the
micrometastases was 4,090 au (arbitrary units) while the primary
tumor was 1,915 au, a 2× increase. Fig. 5D shows that at 24 h post
injection 50% of cells in micrometastases were positive for
nanoparticles versus only 17% of cells in the primary tumor. The
density of nanoparticle-positive cells is in shown in Fig. 5E.
Micrometastases were over 8× higher with 4.4 × 105 nanoparticle-
positive (NP+) cells/mm3 compared with the primary tumor with
0.52 × 105 NP+ cells/mm3.
Next, we examined the role of the differences in physiology

leading to the greater proportion of cells in the micrometastases
interacting with the nanoparticles compared with the primary tu-
mor. It has been shown that a cell’s distance from the blood vessels
in primary tumors determines its interactions and associations with
nanoparticles (5, 6). We compared and mapped the location of the
tumor cells within a primary tumor and within all of the micro-
metastases at 24 h post nanoparticle injection as this is when we
saw the highest accumulation. Examples of analyzed 3D primary
tumor and micrometastases images are shown in Fig. 6 A and B
and Movies S3 and S4. In Fig. 6A there are many cells over 30 μm
away from blood vessels in the primary tumor which are shown in
pink. Fig. 6C shows that the average distance of the cells was 16 μm
away from the closest blood vessel in the primary tumor. Most
nanoparticles were generally near the tumor blood vessels, and
therefore cells that were far away could not interact with nano-
particles. This is illustrated in Fig. 6A in the Lower panels where
cells closely associated with blood vessels have high amounts of
nanoparticles compared with cells farther away. In comparison,

Fig. 2. Multichannel 3D imaging enables detailed imaging of micro-
metastases. Light-sheet imaging was used to capture individual channels for
nuclei (DAPI), cancer cells (Ki67), blood vessels (GSL-1), and nanoparticles
(darkfield) that can be viewed individually or as a composite image. An
example of an individual liver micrometastasis is shown as 2D slices from a
3D image. (Scale bar, 50 μm.) NP, nanoparticles.
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cells in micrometastases were much closer to vessels. Fig. 6C shows
that the average distance of cells within the micrometastases was
8 μm away from the blood vessels and that 90% of them were less
than 16 μm away as shown by the cumulative cell distribution in
Fig. 6E. Fig. 6D shows that, on average, micrometastases had over
twice the cell density compared with the primary tumor. Both the
cells in the primary tumor and the micrometastases showed de-
creasing nanoparticle intensities as they got farther away from
blood vessels (Fig. 6F). We conclude that nanoparticles had
greater access to tumor cells in micrometastases than primary tu-
mors because the cells are closer to the blood vessels.

Variability Exists in Nanoparticle Delivery and Physiology of Individual
Micrometastases. There may be multiple micrometastases within a
single animal. Each micrometastases has a unique pathophysiology
that may impact the consistency of nanoparticle delivery. To eval-
uate delivery to individual micrometastases, we focused on the
analysis of liver micrometastases 24 h post nanoparticle injection
because this is the time point at which we saw the highest accu-
mulation. Fig. 7 A and B and Movie S5 show a 3D image of
multiple micrometastases within a liver region. Fig. 7 C and D
highlight individual micrometastasis physiology and nanoparticle
delivery. We observed significant variability in the delivery of
nanoparticles to each individual metastasis within a single animal.
This is illustrated by the spread of single points in Fig. 7 E–G.
There are also significant variations in the delivery of nanoparticles
to micrometastases in different animals shown in Fig. 7 E–H. For
example, Fig. 7E shows that the mean nanoparticle intensity of
individual micrometastases varied between 1,127 and 13,018 au, an
11× difference. Fig. 7F shows that the number of nanoparticle-
positive cells was also variable with some micrometastases having
0 nanoparticle-positive cells and others having as many as 801
nanoparticle-positive cells. Variations in the density of nanoparticle-
positive cells was also observed between individual micrometastases
(Fig. 7G). Fig. 7H shows that the proportion of nanoparticle-positive
cells within each micrometastasis was different within and be-
tween animals. Our analysis revealed that 57–80% of individual
micrometastases within a single animal had more than 25%
nanoparticle-positive cells (the sum of the nonblack regions of the
pie chart), with between 11 and 34% of micrometastases having
more than 75% nanoparticle-positive cells. On average, while
nanoparticles can be delivered to a greater proportion of cells
within a micrometastasis compared with the primary tumor, there
is variability in delivery between individual micrometastases, with
some individual micrometastases having lower delivery than the
primary tumor. This may pose a problem for the consistent de-
livery of nanoparticles to micrometastases.
We probed deeper into the pathophysiology of the different

metastases to understand if this could be responsible for the
variability in nanoparticle delivery. Across different animals we
observed variations in the volume, total cell number, cell density,
surface area, sphericity, and average cell distance to blood vessels
for each micrometastasis (Fig. 7 I–N). For example, Fig. 7I shows
that the volume of individual micrometastases varied from 3.0 ×
104 μm3 to 130 × 104 μm3, a 43× difference. This corresponded to
12 cells in the smallest and 970 cells in the largest metastases,
which is shown in Fig. 7J. The cell density varied between 1.5 × 105

cells/mm3 to 18 × 105 cells/mm3, a 12× difference (Fig. 7K). There
was also variability between micrometastases in the average dis-
tance of the cells from the nearest blood vessel. Fig. 7N shows that
the average cell distance to the nearest vessel ranged from 2 to
19 μm. The large variability in pathophysiology is likely the main
contributor to nanoparticle delivery success.

Fig. 3. Semiautomated image segmentation workflow for blood ves-
sels, micrometastases, and nuclei. First, images for each channel un-
dergo a preprocessing step to normalize the signal intensity both locally
and globally throughout the image stack. Next, a machine learning-
based pixel classification tool called Ilastik (32) is used to identify
blood vessels, micrometastases, and nuclei from their respective pre-
processed fluorescent images. The resulting segmented images are
classified as either positive voxels for the respective feature (blood
vessel, micrometastasis, or nuclei) or as background voxels. In the final
postprocessing step, each of the segmented channels undergo steps to

remove feature-specific artifacts from the Ilastik segmentation. The final
result is a set of binary images that identify blood vessels, micrometastases,
and cell nuclei.
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Can We Predict Nanoparticle Delivery to Micrometastases? Given
the importance of delivery in both imaging and therapeutic out-
comes, it is important to determine whether a subpopulation of
micrometastases are more prone to nanoparticle targeting. Pre-
diction of nanoparticle delivery is important because the observed
variability in the delivery to different micrometastases within a
single animal and between different animals would influence their
therapeutic effectiveness. For example, micrometastases with no
therapeutic nanoparticle accumulation would be unaffected while
those with a high delivery would be eliminated.
We chose to evaluate machine learning-based modeling that can

analyze and correlate multiple physiological input variables to a
single function (i.e., delivery). This type of analysis would enable us
to predict the nanoparticle delivery to a micrometastasis given a set
of input variables about its specific pathophysiology. To generate a
sufficient database, we imaged micrometastases in the livers of
mice at 1, 4, and 24 h post nanoparticle injection with 3 to 6 mice
analyzed for each time point. These images were then analyzed
using our image analysis workflow to quantify the physiology and
nanoparticle delivery to each individual micrometastasis. The result
was a dataset containing 1,301 micrometastases, which is available
in Dataset S1. This dataset enabled us to use Support Vector
Machine (SVM) modeling to develop a predictive model for
nanoparticle delivery to micrometastases. Before evaluating any of
the models, the dataset containing 1,301 individual liver micro-
metastasis profiles was randomly split into a training and cross-
validation set containing 80%, or 1,041 micrometastases, and a
test set containing 20%, or 260 micrometastases. The training and
cross-validation dataset was used to train linear, quadratic, cubic,
and fine, medium, and coarse Gaussian SVM models. We eval-
uated the models with 5-fold cross-validation to determine if these
models could predict the mean nanoparticle intensity, density of
nanoparticle-positive cells, or number of nanoparticle-positive
cells from the inputs of micrometastasis volume, surface area,
surface-area-to-volume ratio, sphericity, total cell number, cellular

density, mean distance to nearest blood vessel, and hours post
nanoparticle injection. The general workflow for this modeling
is shown in Fig. 8A. We found that the quadratic SVM model
appeared to predict the number of nanoparticle cells, mean
nanoparticle intensity, and density of nanoparticle-positive cells
better than the other SVM models (SI Appendix, Fig. S4).
We then independently tested the quadratic SVM models. We

used the 20% test dataset of 260 micrometastases to determine if
data that was not part of the training data could be accurately
predicted. Fig. 8 B and C show that the SVM models could
predict mean nanoparticle intensity and density of nanoparticle-
positive cells reasonably well, with root mean squared errors
(RMSE) of 1,559 au and 2.4 × 105 nanoparticle-positive cells/mm3,
respectively. Fig. 8D shows the model performance for predicting
the number of nanoparticle-positive cells per metastasis with a
RMSE of 27 cells and a Pearson correlation (r) of 0.94. SI Ap-
pendix, Fig. S5, contains all model performance metrics. By
separating the predicted data by time point, we show that we can
predict the number of nanoparticle-positive cells within an in-
dividual micrometastasis after 1, 4, and 24 h post injection as
shown in Fig. 8E.
There is a predictable pattern between the pathophysiology of a

micrometastasis and the nanoparticle delivery despite the large
variations in nanoparticle delivery between individual micro-
metastases. This is important because our imaging method com-
bined with the predictive algorithmmay be useful for screening for
micrometastases that are more susceptible to nanoparticle de-
livery. This could enable the identification of patient populations
more prone to nanoparticle-based treatments.

Conclusion
The successful elimination of early metastatic tumors before they
grow into large debilitating metastases could lead to an in-
crease in patient survival. Our method revealed that the physiol-
ogy of micrometastases makes them a more suitable target for

Fig. 4. Machine learning image segmentation al-
lows for detailed analysis of 3D microscopy images.
(A) A 3D image of a liver containing micro-
metastases. (Scale bar, 250 μm.) (B) The segmented
nuclei, blood vessels, micrometastases, and nano-
particle intensity channel from A. (Scale bar, 250 μm.)
(C) Two-dimensional images from A showing nuclei
and the segmented and expanded nuclei with false
colored segmentations representing the calculated
mean nanoparticle intensity (Left 3 panels), and
distance from blood vessels (Right 3 panels). (Scale
bar, 20 μm.) (D) An example of an individual
micrometastasis. The cropped original 3D image,
the segmented micrometastasis, the surrounding vas-
culature, the segmented nuclei, the mean nanoparticle
intensity per cell, and the distance to the nearest
blood vessel of each cell. (Scale bar, 100 μm.) (E )
The measured values from D create a quantita-
tive individual micrometastasis profile. NP, nano-
particle. BV, blood vessel. Dist, distance. Micromet,
micrometastasis.
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nanoparticles compared with primary tumors. As a micrometastasis
grows, it starts to build a complex architecture of vasculature,
immune cells, associated stromal cells, and extracellular matrix
components (Fig. 9), making it more difficult to deliver nano-
particles. At the micrometastasis stage the physiological com-
position is much simpler and cells are in close proximity to blood
vessels, which makes nanoparticle delivery efficient. This is in-
tuitive but requires experimental data and methods to make
these conclusions. Going forward, it will be important to de-
termine how physiological features of micrometastases—such as
blood vessel phenotype, extracellular matrix composition, or
presence of immune cells—change as the tumor grows, making it
easier or harder to target with nanoparticles. Furthermore, our
experiments show that the biggest challenge of targeting micro-
metastasis is the variability in delivery that is dependent on
micrometastasis physiology. We also show that there is variability
in the delivery process to different micrometastases. Despite this
we were able to develop a machine learning algorithm to predict
nanoparticle delivery based on the specific pathophysiology of
a micrometastasis.

Finally, our predictive algorithm performs well in most in-
stances but it did not for some micrometastases. Future itera-
tions of our predictive algorithm could evaluate the addition of
new parameters such as extracellular matrix composition and
presence of stromal cells, which have shown to be important for
nanoparticle delivery to primary tumors (5, 6, 18, 33). It is also
important to establish a link between the nanoparticle delivery
and the therapeutic efficacy using therapeutic nanoparticles and
to establish how both relate to the physiology of the micro-
metastasis. It may also be possible to evaluate patterns of
micrometastasis pathophysiology in patient biopsies. Based on
the pathophysiology of the micrometastasis, it may be possible to
determine which patients are more sensitive to nanoparticle-
based treatments. This enables us to develop a framework to
personalize nanoparticle treatment for micrometastases based
on the patient’s specific micrometastasis physiology.

Materials and Methods
Spontaneous Metastatic Breast Cancer Model. Tumors were induced by
injecting 1 million 4T1 cells into the inguinal mammary fat pad of female
BALB/c mice and allowed to grow for 3 wk for spontaneous metastases to

Fig. 5. Tracking of nanoparticle delivery to micrometastases and primary tumors. (A) The time line from tumor induction to image analysis. (B) Two-
dimensional cropped sections from 3D images of the primary tumor (Left column) and the liver micrometastases (Right column) at 1, 4, and 24 h post
nanoparticle injection. Yellow arrows indicate nanoparticle locations. (Scale bar, 200 μm.) The mean nanoparticle intensity (C), percentage of nanoparticle
cells (D), and density of nanoparticle-positive cells (E) in the primary tumor and micrometastases over time. n = 3 for each time point. *P < 0.05, **P < 0.01.
Error bars show SD. NP, nanoparticle. HPI, hours post injection.
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form. The 2 × 1012 PEGylated 50-nm gold nanoparticles were allowed cir-
culate for 1, 4, or 24 h depending on the experiment. PEGylated gold
nanoparticles were synthesized and characterized as described previ-
ously (34). Immediately before starting tissue fixation animals were in-
jected with Cy3-GSL-1 (G. simplicifolia Lectin I) to label blood vessels. All
animal work was done in accordance with and approved by the University of
Toronto Animal Care Committee.

Tissue Processing. Tissue fixation and clearing were done as previously de-
scribed (20, 21). Briefly, animals were deeply sedated and fixed via trans-
cardial perfusion with monomer solution containing 2% wt/vol acrylamide,
4% formaldehyde, and 0.25% wt/vol VA-044 axoinitiator. Whole organs of
interest were then removed and placed in the hydrogel monomer solution
for 7 d at 4 °C. Organs were then gelled by removing air and purging with

argon gas before incubating at 37 °C for 3 h. Tissues were then left as whole
organs or sectioned into 1-mm slices and allowed to clear passively in 4%wt/vol
SDS in a 200-mM borate (pH 8.5) solution for 5–14 d at 50 °C depending on
the sample.

Tissue Staining. Ki67 staining was done by blocking the cleared tissues in
5% wt/vol bovine serum albumin (BSA) in PBS, 0.1% Triton-X 100, and 0.01%
sodium azide overnight at room temperature. Primary Ki67 antibody
(BioLegend, clone 11F6) was then added at a 1:100 dilution in 1 mL of 2%
vol/vol goat serum, PBS, 0.1% Triton-X 100, and 0.01% sodium azide and
incubated at room temperature for 3 d. Tissues were then washed to remove
excess primary antibody with 10 mL of PBS, 0.1% Triton-X 100, and 0.01%
sodium azide for 24 h at room temperature. Secondary Alexa-Fluor-647
(Biolegend) was then added at a 1:200 dilution and DAPI at 10 μM in 1 mL

Fig. 6. Cells in the primary tumor are farther from blood vessels than those in micrometastases. An example of a 3D analyzed image of a primary tumor (A)
or liver containing micrometastases (B) showing the average cell distance from the nearest blood vessel (cells close to vessels are dark blue; cells far away are
pink) and the mean nanoparticle intensity per cell (cells with low nanoparticle intensities are dark red; cells with high nanoparticle intensities are yellow-
white). The Lower 2 panels are 2D slices of a section of the primary tumor or liver with micrometastases with the blood vessels and the average cell distance to
the nearest blood vessel or mean nanoparticle intensities. The yellow dashed line outlines the micrometastases. (Scale bar, 200 μm.) (C) The average cell
distance to the nearest blood vessel in micrometastases and the primary tumor. (D) The cell density in micrometastases and the primary tumor. (E) The
cumulative frequency of cells as a function of distance to the nearest blood vessel in micrometastases and in the primary tumor. (F) The mean nanoparticle
intensity of individual cells in micrometastases and the primary tumor as a function of distance to the nearest blood vessel 24 h post injection. n = 9 for C and
D. n = 3 for E and F. ***P < 0.001. Error bars show SD. NP, nanoparticle.
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Fig. 7. Variable nanoparticle delivery and physiology of micrometastases. (A) Original 3D image of a liver containing micrometastases 24 h post nanoparticle
injection and (B) the corresponding segmented micrometastasis cells colored to show the mean nanoparticle intensity per cell. (Scale bar, 250 μm.) (C and D)
Magnified images of 2 individual micrometastases with the original 3D image, a 2D slice of the original image, and the mean nanoparticle intensity per cell.
Yellow arrows highlight nanoparticle locations. (Scale bar, 100 μm.) The liver micrometastases of 3 different animals were analyzed, and the mean nano-
particle intensity (E), number of nanoparticle-positive cells (F), and density of nanoparticle cells (G) for each individual micrometastasis were determined. (H)
The percentage of micrometastases with <25% NP+ cells, 25–50% NP+ cells, 50–75% NP+ cells, and >75% NP+ cells for 3 separate animals. Measurements of
individual micrometastasis volume (I), total cell number (J), cell density (K), surface area (L), sphericity (M), and average cell distance to the nearest blood
vessel (N) in the same animals as in E–H. Error bars show SD.
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of 2% vol/vol goat serum, PBS, 0.1% Triton-X 100, and 0.01% sodium azide
for 3 d at room temperature. Tissues were then washed to remove excess
primary antibody with 10 mL of PBS, 0.1% Triton-X 100, and 0.01% sodium
azide for 24 h at room temperature. Tissues were then placed in 67% 2′2-
thiodiethanol (TDE) solution in 200 mM borate, 0.1% Triton-X, and 0.01%
sodium azide solution for refractive index matching for at least 24 h at room
temperature before light-sheet imaging.

Light-Sheet Microscopy. Images were acquired on the Zeiss Lightsheet
Z.1 microscope (CLARITY Plan-Neofluor Objective: 20×, N.A. = 1.0, refractive
index = 1.45) in 67% TDE solution. Standard excitation and emission filters
were used to image the fluorescent stains, while darkfield light scattering
was used to detect gold nanoparticles as previous described (21). Images
were rendered in Bitplane IMARIS version 8.1.

Image Segmentation and Analysis. All code used in this paper are available on
Github at https://github.com/BenKingston/3D_met_NP_analysis or from the
developers of Ilastik at https://www.ilastik.org or https://github.com/ilastik.
Code was evaluated with MATLB 2017b with DIP image v2.7 (http://
www.diplib.org or https://github.com/DIPlib/diplib).
Preprocessing. Image files from the Zeiss microscope were first converted into
uint16 multipage tiff files using a custom MATLAB script and down-sampled
from 1,920 × 1,920–627 × 627 and a final voxel size of 1 × 1 × 1 μm to reduce
file size and facilitate downstream analysis. For image segmentation of
nuclei, blood vessels and micrometastases each of these channels then un-
derwent preprocessing to correct fluorescence intensity locally and globally
across the image volume.
Ilastik segmentation. The preprocessed nuclei, blood vessel, and micrometa-
stasis channels were then used to train the pixel classification random forest
classifier in Ilastik (32). Separate algorithms were trained to segment each of
the features (nuclei, blood vessels, or micrometastases) using the full set of
37 filters in Ilastik. A minimum of 30 min was spent manually labeling fea-
tures to train the classifier. The resulting binary nuclei, blood vessel, and

micrometastasis images were then exported into uint8 multipage tiff files
for post processing.
Postprocessing. Following the Ilastik segmentation, a number of artifacts
appeared that needed to be removed with a postprocessing script written in
MATLAB. For all channels (nuclei, blood vessels, micrometastases, and

Fig. 8. Predicting nanoparticle delivery to micro-
metastases based on physiological characteristics. (A)
To generate a predictive model of nanoparticle de-
livery to micrometastases, a dataset was created via
3D imaging and analysis of physiological character-
istics and nanoparticle delivery for individual micro-
metastases. The dataset was divided with 80% of the
data being used to train and cross-validate potential
models, and 20% of the data for prediction testing.
Separate SVM models were generated for each
nanoparticle delivery output. The optimal model
generated from the training dataset was exported
and run with the test dataset. The actual and the
model predicted nanoparticle delivery values from
the test dataset are shown for mean nanoparticle
intensity (B), density of nanoparticle-positive cells
(C), and number of nanoparticle-positive cells (D) per
individual micrometastasis. (E) The actual and pre-
dicted number of nanoparticle-positive cells in each
micrometastasis separated by time point. SA:vol,
surface-area-to-volume ratio. NP, nanoparticle.

Fig. 9. Micrometastases offer an opportunity to target cancer cells in close
proximity to blood vessels. Cells within micrometastases are located in close
proximity to blood vessels, making them easier to access using nanoparticles.
As the tumor grows it becomes more complex, incorporating stromal cells
and dense extracellular matrix, and cells are generally farther from vessels.
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nanoparticle) imaging artifacts commonly appear on the surface of the tissue
due to autofluorescent and light-scattering debris. The first step post pro-
cessing is to define a tissue boundary using the nuclei channel and then from
this boundary to erode the outer layer of the tissue from the image. This mask
is applied to the nuclei, blood vessel, and micrometastasis binary Ilastik
segmentations to remove artifacts on the edges of the tissue images. For the
nuclei segmentation, small artifacts are removed and merged nuclei are sep-
arated using a seeded watershed algorithm. To approximate cell boundaries,
nuclei are dilated by 2 μm. For blood vessels, the tissue-trimmed, segmented
image recognizes blood vessels as larger than they are; to correct this, the
boundaries of the vessels are eroded by 2 μm. For micrometastases the tissue-
trimmed, segmented image undergoes a step to remove small artifacts and
any objects smaller than 30,000 μm3 in size (<10 cells) because they could not
reliably be segmented from the images. The output post processing is binary
images of the nuclei, blood vessel, and micrometastasis channels.
Segmentation validation. Automatically segmented images were validated
against manually segmented images. For the nuclei and blood vessel chan-
nels, three 2D slices from 3 different animals, and for the micrometastases,
five 2D slices from 5 different animals, were randomly selected for manual
segmentation. The Dice similarity coefficient was then calculated comparing
the automated and manual segmentations in MATLAB.
Feature quantification from images. The segmented blood vessel, micrometa-
stasis, and nuclei channels alongwith the nanoparticle intensity channel were
used to quantify the physiological and nanoparticle characteristics from the
images using a MATLAB script. After labeling each micrometastasis in an
image with a unique number, we extracted the volume, surface area, and,
with the nanoparticle channel, the mean nanoparticle intensity of each le-
sion. To generate single-cell information for nanoparticle intensity, the di-
lated segmented nuclei were used as a mask applied to the nanoparticle
intensity channel to extract the mean nanoparticle intensity per cell. To
calculate the cell distance to the nearest vessel, a Euclidean distance trans-
formation was applied to the segmented blood vessel channel to create a
grayscale imagewhere the intensity is equal to the distance that the voxel is from
the nearest vessel. The dilatedand segmented nucleiwere then used to calculate
the cell distance from the nearest vessel. The nanoparticle intensity and distance
from the vessel for each cell was then calculated for each region defined by a
micrometastasis. A list of cells for each micrometastasis was created with the
corresponding mean nanoparticle intensities, cell distances, and the number of

cells within each lesion. From these parameters we calculate the surface-area-to-
volume ratio, sphericity, cell density, average cell distance to vessels, number of
nanoparticle-positive cells, and nanoparticle-positive cell density. Nanoparticle-
positive cells were defined as cells having a mean intensity 3 times higher than
the noise signal from cleared tissue that contains no nanoparticles (the back-
ground signal), which can be seen in SI Appendix, Fig. S3.

Support Vector Machine Modeling. Before generating models, the dataset of
1,301 micrometastases was split randomly into a training and cross-validation
dataset (80%, or 1,041micrometastases) to evaluatepotentialmodels and a test
dataset (20%, or 260 micrometastases) to evaluate the final predictive models
(Dataset S1). All model generation and evaluation were done in MATLAB
using the Statistics and Machine Learning toolbox. Initially, linear, quadratic,
cubic, and fine, medium, and coarse Gaussian SVM models were trained using
the training and cross-validation dataset to determine if these models could
predict the mean nanoparticle intensity, density of nanoparticle-positive cells, or
number of nanoparticle-positive cells from the inputs of volume, surface area,
surface-area-to-volume ratio, sphericity, total cell number, cellular density, mean
distance to nearest blood vessel, and hours post nanoparticle injection. Based on
the performance of the models (SI Appendix, Fig. S4), the quadratic SVM model
had the best performance. Separate quadratic SVM models that were trained
to predict mean nanoparticle intensity, density of nanoparticle cells, and
number of nanoparticle cells per micrometastasis were then exported. The
test dataset was then used to evaluate the prediction of these models.
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