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Complex crystallization pathways are common in protein crystal-
lization, tetrahedrally coordinated systems, and biomineralization,
where single or multiple precursors temporarily appear before the
formation of the crystal. The emergence of precursors is often
explained by a unique property of the system, such as short-range
attraction, directional bonding, or ion association. But, structural
characteristics of the prenucleation phases found in multistep
crystallization remain unclear, and models are needed for testing
and expanding the understanding of fluid-to-solid ordering path-
ways. Here, we report 3 instances of 2-step crystallization of hard-
particle fluids. Crystallization in these systems proceeds via a high-
density precursor fluid phase with prenucleation motifs in the form
of clusters, fibers and layers, and networks, respectively. The density
and diffusivity change across the fluid–fluid phase transition in-
creases with motif dimension. We observe crystal nucleation to be
catalyzed by the interface between the 2 fluid phases. The crystals
that form are complex, including, notably, a crystalwith 432 particles
in the cubic unit cell. Our results establish the existence of complex
crystallization pathways in entropic systems and reveal prenucleation
motifs of various dimensions.

colloidal crystallization | 2-step crystallization | fluid–fluid phase
transition | liquid–liquid phase transition | entropic crystallization

Entropically stabilized colloidal crystals of hard particles ex-
hibit a range of structures as diverse and complex as tradi-

tional crystals (1, 2). In these systems, entropic forces emerge as
a consequence of a multiplicity of equivalent microscopic states,
producing, effectively, entropic bonds (3, 4). The resulting en-
tropic valence increases with density in both strength and di-
rectionality. There is now a preponderance of evidence that
entropy is as versatile as chemical bonds in producing structural
complexity. However, all crystallization pathways that have been
reported for hard-particle systems are simple. For example,
hard-sphere crystallization follows predictions of classical nu-
cleation theory in simulation and experiment (5, 6). By contrast,
fluid-to-solid transition scenarios well known for atomistic and
molecular systems, including liquid–liquid phase separation (7–14),
prenucleation cluster formation (15, 16), and particle at-
tachment (17), have not been reported for purely entropic sys-
tems. In particular, in the absence of depletion interactions
involving hard colloids with small molecule depletants, no fluid–
fluid transitions are predicted or reported. Here, we present
3 hard-particle systems that exhibit entropically driven 2-step
crystallization. Each 2-step process features, notably, first the
transformation from a homogeneous low-density fluid (LDF) to
an LDF phase coexisting, temporarily, with a high-density fluid
(HDF) with more pronounced prenucleation order. This fluid–
fluid transition is followed by a transformation to the final
crystalline structure. Nucleation of the crystal is catalyzed by the
LDF–HDF interface (18, 19), and the resultant crystal is an
ordered variant of the HDF. We show that, despite the lack of

explicit attractive forces, both the LDF-to-HDF transformation
and the HDF-to-crystal transformation can be first-order phase
transitions accompanied by structural, thermodynamic, and kinetic
discontinuities.
It is known that the geometry of phases involved in

prenucleation depends on the specifics of the multistep nucleation
pathway. For instance, calcium carbonate (CaCO3) solutions
favor compact prenucleation clusters at the early stage of nu-
cleation (20). Amyloid fibrils crystallize via a hierarchical as-
sembly of β-strands and β-sheets (21). And, in the crystallization
of a gas hydrate, water molecules form amorphous frameworks
around guest molecules before clathrate nucleation occurs (22,
23). Given the diversity in these examples, it appears natural to
categorize multistage nucleation pathways according to pre-
nucleation motif dimension. We report here that many of the
possibilities suggested by dimension categorization are realized
in hard-particle––that is, purely entropic––systems (Fig. 1). Each
of the 3 particle shapes in this study is a polyhedron whose ge-
ometry favors certain prenucleation motifs via the maximization
of face-to-face contacts. Truncated tetrahedra (TTs) crystallize
into a complex cubic crystal via an HDF containing cluster-type
motifs. Pentagonal bipyramids (PBPs) crystallize into a layered
crystal via an HDF containing fiber-type and layer-type motifs.
And, triangular bipyramids (TBPs) crystallize into a clathrate
crystal via an HDF containing network-type motifs. All 3 crystals are
highly complex compared with other known hard-particle crystals.

Significance

The transformation from a fluid to a crystal can be complicated
and involve one or more precursors. Such multistep crystalli-
zation pathways occur in many chemical and physical systems,
and the driving force for the appearance of the precursors has
been explained by unique characteristics of the interactions
among the system’s building blocks. Here we report 2-step
crystallization pathways in hard particles, where interaction
is dictated solely by building-block shape and thus entropy. We
categorize our 2-step crystallization pathways based on the
dimension of the prenucleation motifs, and discuss possible
comparisons to other crystallization processes.
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Interestingly, the clathrate crystal is identical to that reported for
TBPs linked together with DNA (24); here the crystal is obtained
solely with entropy.
The TT particle is obtained by truncating the vertices and

edges of a regular tetrahedron to create adequate space for 1 TT
to fit at the center of an assembled dodecahedron cluster of 20
TTs (SI Appendix, Fig. S1 A and B). Our simulations demonstrate
that the self-assembly of hard TTs is mediated by a metastable
LDF-to-HDF phase transition and proceeds in 2 steps. In the first
step, an isotropic fluid of hard TTs rapidly (within a few million
Monte Carlo sweeps) separates into a coexistence of LDF and
HDF at constant packing density ϕ= 0.615 (Fig. 2A). At the be-
ginning of HDF formation, individual clusters emerge from the
LDF (SI Appendix, Fig. S2 A–C). As the number of clusters grows,
they aggregate by sharing particles (Fig. 2D and SI Appendix, Fig.
S2 D and E). In the HDF, about 27% of the TTs form cluster-
type motifs while the rest remain weakly ordered with weaker
face-to-face contacts (SI Appendix, Fig. S3 A–C). Clusters and
aggregates of clusters continuously change position and mor-
phology via particle exchange with the weakly ordered region in
the HDF (SI Appendix, Fig. S3D). Clusters do not diffuse within
the HDF as rigid units. In the second step, nucleation occurs and
crystal growth proceeds isotropically (Movie S1). Unlike clusters
in the HDF, clusters in the crystal are periodically arranged at
larger separations without shared particles (Fig. 2E). During
crystal growth the number of nonshared clusters rapidly in-
creases, while the number of shared clusters decreases (Fig. 2I).
After 1.50 × 108 Monte Carlo sweeps, a single crystal coexists
with the LDF fluid in equilibrium (Fig. 2B).
Structural analysis with sites placed at the centroid of each

particle reveals that the unit cell of the crystal has Pearson
symbol cF432, i.e., it contains 432 particles (Figs. 2C and 3)
arranged with space group Fd�3c. This is the most complex crystal
structure reported in any hard-particle system to date. The
crystal can be described as a body-centered cubic packing of
large truncated octahedral clusters of 3 successive shells: a TT in
the center, a dodecahedron inner shell, and the truncated octa-
hedral outer shell (Figs. 2F and 3 D–H). The large clusters tile
space and describe the structure completely. The truncated oc-
tahedron is decorated with additional particles centered over its

hexagonal faces and can be regarded as the union of a strongly
distorted dodecahedron and a distorted icosahedron. If both of
these polyhedral shells were regular, they would form a rhombic
triacontahedron, which is a typical cluster shape found in me-
tallic compounds, such as Bergman-type icosahedral quasicrys-
tals and their approximants (25). The crystal reported here is
equivalent in its structure to that of the clathrate-type compound
cF432-Te7+xSi20−x (26).
We next investigate the crystallization pathway of a system of

hard PBPs. The aspect ratio of the PBP particle is set to 1.31,
which is optimal for 12 PBPs to form a small stellated dodeca-
hedron (SI Appendix, Fig. S1 C and D). We find that crystalli-
zation of hard PBPs is again mediated by a metastable LDF-to-
HDF transition and follows 2 steps. In the first step, an isotropic
fluid of hard PBPs separates into LDF and HDF phases at
constant packing density ϕ= 0.58 (Fig. 4A). The HDF possesses
fiber-like prenucleation motifs, where small stellated dodecahe-
dra are connected through shared PBPs (Fig. 4E) but cannot
easily continue ordering perpendicular to these connections due
to geometrical frustration (27). At the beginning of HDF for-
mation, small fibers emerge and then grow into longer, inter-
connected fibers with various morphologies (SI Appendix, Figs.
S4 A, B, D, and E). The fiber-type motifs continuously change
their morphologies and locations by exchanging particles with
weakly ordered regions within the HDF (SI Appendix, Fig. S3 E–H).
In the second step, a decagonal quasicrystal approximant
with Pearson symbol oF244 and containing 10-fold symmetric
columns (Fig. 5) nucleates at the interface between the HDF and
the LDF. Crystal growth proceeds into the LDF, reminiscent of
the growth of certain protein crystals (28) (Fig. 4B and SI Ap-
pendix, Fig. S5 A–C). The approximant crystal is composed of
multiple layers, where highly ordered layers and weakly ordered
layers alternate (Fig. 4C). Highly ordered layers are fiber nets
with periodic order within the layer (Fig. 4F and SI Appendix,
Fig. S4 C and F), and their growth proceeds outwards (SI Ap-
pendix, Fig. S5 and Movie S2). Remarkably, the crystal grows in a
zigzag pattern within a layer (Movie S2).
The structure and dynamics of the crystal phase of PBPs are

highly anisotropic. Structural differences between the 2 distinct
layers are apparent in the radial distribution function gðrÞ (Fig.
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Fig. 1. Categorization of 2-step nucleation pathways. Two-step nucleation pathways are mediated by precursors that can be categorized by the dimension of the
prenucleation motif. We distinguish in our simulations of 3 different systems clusters (zero-dimensional motif), fibers (one-dimensional) and layers (2D), and
networks (3D), respectively. The dimension of the motif is a direct consequence of geometrical frustration that builds up as prenucleation motifs grow (27).
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4D). gðrÞ in the weakly ordered layer is mostly similar to that of
the LDF, and by contrast develops distinctive peaks in the highly
ordered layer. Particle dynamics of the 2 layers are also distinct as
evidenced by the particle density at a cross-section of the crystal
averaged over 2× 108 Monte Carlo sweeps (Fig. 4G). Particle
positions in the highly ordered layer are sharp, while particle
positions in the weakly ordered layer are smeared out, indicating
the more diffusive nature of their motion. Movie S3 shows the
difference in movement of 10 selected particles of each layer.
Finally, we investigate the crystallization pathway of a system

of hard TBPs. The edge angle of the TBP particles is set to
109.5°, which allows groups of 4 TBPs to arrange into tetramers
and eventually a tetrahedral network (24) (SI Appendix, Fig. S1
E–G). We observe that crystallization of hard TBPs is similar to
the previous examples, except that the HDF of TBPs now has a
network-like prenucleation motif. In the first crystallization step,
an isotropic fluid of hard TBPs separates into an LDF and an
HDF at constant packing density ϕ= 0.50 (Figs. 6A and 7A).
TBPs in the HDF prefer to form tetramers that are interconnected
without long-range order (Fig. 6D). Centers of the tetramers can
be mapped onto the nodes of a tetrahedral network. The pre-

nucleation network spans the HDF isotropically and incorporates
most of the HDF particles (SI Appendix, Fig. S3 I–K). Few parti-
cles can exchange between the network and the nonnetwork par-
ticles in the HDF (SI Appendix, Fig. S3L), resulting in much slower
dynamics in the HDF of TBPs compared with the dynamics in the
HDF of TTs or PBPs. In the second, slower step, a clathrate
crystal with Pearson symbol cP92 nucleates and grows (Fig. 6B).
We identified the clathrate structure as clathrate type I (Fig. 6E),
where the tetramer centers (network nodes) are arranged in 2 types
of clathrate cages, 512 and 51262 (Fig. 7 B and C). Here, the no-
tation 5n6m indicates that a cage has n pentagons and m hexagons
as faces (24).
The snapshots in Fig. 6C and SI Appendix, Fig. S6 cover the

complete crystallization process in the network representation
obtained by connecting tetramer centers. A disordered network
(HDF) is dominant in the early stage. The formation of the HDF
from the LDF occurs spontaneously and, at early times, follows
the prediction of the Cahn–Hilliard theory of spinodal decom-
position (29), namely exponential growth of the first peak in the
structure factor at constant wavevector (SI Appendix, Fig. S7).
Two-step nucleation and growth in which the first step occurs
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through spinodal decomposition was recently reported in simulation
of an aqueous NaCl solution (30). Clathrate nucleation occurs at
the LDF–HDF interface and growth proceeds into the LDF (SI
Appendix, Fig. S6). Depletion of LDF particles during clathrate
growth is compensated by reduction of the HDF phase in direc-
tions distinct from the growth direction of the nucleus (Movie S4).
The HDF region assumes a gradually more spherical shape during
clathrate growth (SI Appendix, Fig. S8) suggesting an increase in
surface tension during the second step of crystallization, as re-
cently predicted (31). Two crystallization stages can be clearly
distinguished by following the time evolution of appropriate order
parameters (Figs. 6F and 7 D and E and Methods). In the HDF
formation stage, a density order parameter rapidly increases while
the clathrate order parameter remains small. Subsequently, the
clathrate order parameter increases during clathrate crystal growth
and finally reaches equilibrium.
The crystallization behavior of the TBP system mimics aspects

of clathrate formation in water, for which an amorphous network
has been identified as a crystallization precursor (22, 32). The
nucleation behavior of TBPs is also similar to that found in
simulation studies of some tetrahedral systems in the sense that a
metastable liquid–liquid transition can occur before crystalliza-
tion (9, 10, 12). In contrast, while the precursor of the TBP
system is a high-density phase, precursors of many tetrahedral
crystals are low-density phases (33). The tetrahedral networks of
the molecular systems are open structures, while TBPs fill most
of the space when forming a tetrahedral network (SI Appendix,
Fig. S1G). In addition, the location of the TBP clathrate nucleus
at the LDF–HDF interface and its growth direction into the LDF
(SI Appendix, Fig. S6) are different from those observed in mo-

lecular models of water (33), where nucleation takes place within
the low-density liquid. Such details of the nucleation process are
affected by the diffusivity of the precursor phase, as discussed for
protein crystallization (8, 28).
We find that the LDF-to-HDF transitions of TTs, PBPs, and

TBPs are accompanied by thermodynamic and dynamic disconti-
nuities. The thermodynamic first-order nature of the 3 transitions
is confirmed by the equations of state calculated under isobaric
condition (Figs. 2G, 4H, and 6G). A small increase of pressure
around the phase-transition point results in an abrupt density in-
crease of 5% (TT), 8% (PBP), and 16% (TBP) during the for-
mation of the HDF. A dynamic discontinuity is identified via
analysis of the diffusivity extracted as the slope of the mean-squared
displacement (SI Appendix, Fig. S9). The diffusivity drops by around
1.5 (TT), 2.0 (PBP), and 2.5 (TBP) orders of magnitude across the
LDF-to-HDF transition (Figs. 2H, 4I, and 6H). Although diffusivity
of the HDF is comparably low, it remains nonzero, demonstrating
that the HDF is a fluid rather than an amorphous solid in all
3 cases. We observe the density and diffusivity changes across the
fluid–fluid transition are more pronounced if the prenucleation
motif in the HDF has a higher dimension. Thus, the density and
diffusivity change from the cluster formation within the HDF (TT)
are smaller than the density and diffusivity change from the fiber
formation within the HDF (PBP), which in turn are smaller than
the density and diffusivity change from the network formation
within the HDF (TBP). This suggests that particles in a motif with
higher dimension are more strongly correlated and as a result
produce a denser and less diffusive HDF. The effect of motif di-
mension on the LDF-to-HDF transition is reminiscent of micellization
of amphiphiles, where the character of the phase transition depends

A B C

D E F

G H

Fig. 3. Crystal structure of the cF432 crystal. Ideal structure model of cF432 constructed with hard TTs. Red and pink TTs represent dodecahedron clusters
with different orientations. Blue TTs represent TTs at the cluster centers. All other TTs are colored gray. (A) View along 4-fold axis; (B) 3-fold axis; and (C)
2-fold axis. (D) Body-centered cubic packing of dodecahedron clusters extracted from the crystal. (E) The arrangement of dodecahedron clusters in the crystal.
TTs are displayed by their centers and dodecahedron clusters are shown in polyhedron representation. (F) Three successive shells of the dodecahedron cluster:
a single TT (blue), a dodecahedron inner shell (red), and a truncated octahedron outer shell (gray). (G and H) Clusters are arranged on a body-centered cubic
lattice by sharing a hexagonal face. The outer shells cover space without gaps.
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in a similar fashion on the size and morphology of aggregates
(34, 35).
Multistep nucleation and a second liquid phase have been

reported in a variety of systems and explained by unique system
properties including ion binding (15, 20, 36), molecular geometry
(21, 37), and tetrahedral bonding (9, 12, 38). The fact that we
observe 2-step nucleation mechanisms via a metastable fluid–
fluid phase transition in our 3 model systems of anisotropic hard
particles suggests that local order and the geometry of the nearest-
neighbor shell play the central role in complex phase behavior and
kinetics. Whether this geometry is a result of enthalpic bonds or
entropic bonds is less important. In this work, we categorized 2-step
nucleation pathways according to prenucleation motif dimension. It
may be fruitful to apply this categorization to analyze the structure
of precursors involved in other crystallization processes. If these
ideas hold generally, then it may be possible to rationalize the
appearance of liquid–liquid phase transitions and multistep nu-
cleation pathways dominated by connectivity and strain in local
particle clusters––2 quantities that contribute to motif dimen-
sionality. Independent of this, our results add to the growing body

of evidence that entropic bonds can be as effective as traditional
chemical bonds in creating the necessary valence for producing
nontrivial crystal structures (1–3).

Methods
Particle Geometry. The TT shape (SI Appendix, Fig. S1A) is a member of the
spherical triangle invariant 323 family, with truncation parameters
ða,b, cÞ= ð1.10, 1.00, 1.44Þ according to previous convention (39). The PBP
used in this work has aspect ratio 1.31 (SI Appendix, Fig. S1C). The TBP has
edge angle 109.5° (SI Appendix, Fig. S1E) and aspect ratio 0.35. The aspect
ratio of the 2 bipyramids is defined by the ratio of the height of the bi-
pyramid to the diameter of the circumscribed circle of the base polygon (a
regular pentagon for PBP and a regular triangle for TBP). The vertices of the
bipyramids are classified as equatorial tips composing the base polygon and
polar tips perpendicular to the base polygon. This classification is used when
detecting local motifs of the bipyramids.

Cluster-Type Prenucleation Motif of TTs. Twenty TTs form a dodecahedron
cluster where an additional TT is located at the center of the cluster (SI
Appendix, Fig. S1B). The cluster is detected by the number of nearest
neighbors (NNs) of the central particle. At high enough pressure, when the
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TT system forms cluster motifs, most TTs prefer face-to-face contacts that
allow them to have at most 4 NNs. On the other hand, TTs at the cluster
center have 20 NNs that compose a dodecahedron cluster shell (SI Appendix,
Fig. S1H). After detecting all clusters in the system, we checked if a cluster
shares TTs with other clusters to distinguish between shared clusters (Fig. 2D)
and nonshared clusters (Fig. 2E). The number of each type of cluster is an
order parameter for the crystallization of TTs (Fig. 2I).

Fiber-Type Prenucleation Motif of PBPs. Twelve PBPs form a small stellated
dodecahedron (SSD) that is a unit of fiber-like motifs (Fig. 4E and SI Appendix,
Fig. S1D). When PBPs align face to face, their polar tips come together at the
center of the SSD (SI Appendix, Fig. S1D). The distribution of polar-tip cluster
size in the HDF ðP* = 16.34Þ shows a peak at 12 (SI Appendix, Fig. S1I), in-
dicating that a large number of SSDs exist within the phase. We used this
structural characteristic to detect the SSDs in PBP systems. From the arrangement
of the SSDs, we identified the fiber-like motifs (Fig. 4E and SI Appendix, Fig. S4 D
and E) and the layered crystal (Fig. 4F and SI Appendix, Fig. S4F).

Network-Type Prenucleation Motif of TBPs. Four TBPs form a tetramer without
gaps by arranging in a face-to-face manner (SI Appendix, Fig. S1F). Each TBP
arranged into a tetramer in this way can be part of 2 tetramers, a pre-
requisite for the formation of a tetrahedral network (SI Appendix, Fig. S1G).
Because the 4 TBPs of a tetramer share a polar tip in the tetramer center, we
can identify tetramers by detecting 4-member polar tip clusters. The distribution
of TBP polar-tip cluster sizes in the HDF ðP* = 9.13Þ exhibits a peak at cluster size
4 (SI Appendix, Fig. S1J). We describe a configuration of many TBPs that are
exclusively arranged face to face by connecting the centers of tetramers (red
spheres as nodes in Fig. 6 D and E and SI Appendix, Fig. S1G). We call the
resulting representation the network representation (Fig. 6C and Movie S4).

Highly Ordered and Weakly Ordered Regions in the HDF. When the HDF is
formed, locally highly ordered prenucleationmotifs appearwithin the HDF and
the rest of the HDF remains weakly ordered (SI Appendix, Fig. S3 A, E, and I).

The relative number of particles in each of the 2 HDF regions depends on the
dimension of the motif structure (cluster, fiber, and network). At a similar

degree of supercompression P*=P*m ∼ 1.05, the HDFs of TTs, PBPs, and TBPs
contain 27%, 33%, and 91% of particles in the highly ordered region, re-
spectively (SI Appendix, Fig. S3 B, F, and J). Structural distinction between the
highly ordered and the weakly ordered region is confirmed by the co-
ordination number distribution calculated from NNs (SI Appendix, Fig. S3 C, G,
and K). The coordination number distributions of TTs, PBPs, and TBPs in the
highly ordered region show a sharp peak at 4, 10, and 6, respectively, corre-
sponding to the number of faces of each particle. This indicates that the
particles in the highly ordered region have greater local order with more
pronounced face-to-face contacts than those in the weakly ordered region.

The highly ordered and theweakly ordered region in the HDF continuously
exchange particles, and therefore the location where prenucleation motifs
appear continuously changes within the HDF. The particle exchange between
the 2 regions is verified by tracking the location of 5 randomly selected

particles during 30×106 Monte Carlo sweeps (SI Appendix, Fig. S3 D, H, and L).
In all 3 systems, the selected particles move between the highly ordered
and the weakly ordered regions. The TBP system shows a less frequent ex-
change than the other systems due to the relative sparseness of its weakly
ordered region.

Order Parameter for TBPs. To identify each stage of TBP crystallization, we
monitored 2 different order parameters: the local packing density (density
order parameter shown in Fig. 6 F, Top) and the cluster participation number
(clathrate order parameter shown in Fig. 6 F, Bottom). The former is used to
identify phase separation between a low-density region (LDF) and a high-
density region (HDF) in the first step. The latter is used to identify crystalli-
zation of clathrate from the HDF in the second step. For the second step, we
could not use the density order parameter because the growth of the
clathrate is accompanied by only a minor reorganization of the tetrahedral
network and therefore is reflected weakly in local packing density (Fig. 7A).
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For the density order parameter, the local packing density ϕloc of a TBP is
defined as the packing density around the TBP within a sphere of radius
1.5σ, where σ is the longest edge of a TBP. TBPs are identified as belonging
to the low-density region (corresponding to the LDF) if ϕloc ≤ 0.52 and to the
high-density region (HDF or clathrate) if ϕloc > 0.52 (Fig. 7A). Therefore, the
particle fraction in the high-density region is used as the density order parameter.

For the clathrate order parameter, we developed the cluster participation
number (CPN) that is defined as the number of clathrate clusters that a given
TBP participates in with its 3 equatorial tips. The clathrate clusters are cage-
type clusters that 30, 36, 39, and 42 TBPs can form (Fig. 7B). They can be
mapped onto clathrate cages by connecting polar tips (Fig. 7C) (24). Each
clathrate cluster can be identified by counting the number of equatorial tips
at the center of the cluster because an equatorial tip of each TBP points
toward the center when forming the cluster. Therefore, a TBP that has
3 equatorial tips can participate in up to 3 clathrate clusters. This property is
used to define the CPN of each TBP (Fig. 7E). From the distribution of CPN in
each phase, we confirmed that TBPs in a clathrate have CPN=3 whereas
TBPs in the HDF have CPN< 3 (Fig. 7D). Therefore, the ratio of TBPs with
CPN= 3 is used as the clathrate order parameter.

Monte Carlo Simulations. Simulations were performed using the hard-particle
Monte Carlo (HPMC) (40) simulation code implemented in the HOOMD-blue

simulation package (41, 42). The HOOMD-blue software suite is available at
http://glotzerlab.engin.umich.edu/hoomd-blue/. HPMC is implemented on
multiple central processing units (CPUs) or graphics processing units using
message passing interface domain decomposition. The minimum system size
with periodic boundary conditions depends on the size of the crystal unit
cell. We used particle numbers of N= 8,000 for TT (Fig. 2 A and B), N=10,000
for PBP (Fig. 4 A and B), and N= 20,000 for TBP (Fig. 6 A and B). Simulations
with disordered starting configurations were initialized by placing particles
randomly at very low packing density ϕ=Nv0=V < 0.1% and compressing
until the desired thermodynamic condition (ϕ or reduced pressure
P* = Pv0=kBT) was reached. Here, v0 and V are the volume of a particle and
the volume of the simulation box, respectively. The unit length of all sim-
ulations is defined by σ. In this work, the particle volume of a TT is set to σ3,
the height of PBP is 0.9σ, and the largest edge length of TBP is σ. After
initialization, each run was continued in the isochoric ensemble at constant
packing density ϕ or in the isobaric ensemble at constant pressure P* until
equilibration was reached. Total simulation times reached 1.5× 108 Monte
Carlo sweeps for TT, 11.0× 108 Monte Carlo sweeps for PBP, and
1.5×108Monte Carlo sweeps for TBP. Pressure or density was measured
every 103 Monte Carlo sweeps to confirm equilibration. Although the du-
ration of crystallization in the present systems is slightly longer than the
duration of hard polyhedron crystallization observed in past works [a few
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million to tens of millions of Monte Carlo sweeps close to coexistence (1)],
self-assembly is robust, repeatable, and comparably fast given the degree of
structural complexity of the crystal structures. Simulation parameters are
listed in the text or figure legend. As an example of a typical compute time,
a simulation with 20,000 TBPs at ϕ= 0.5 run for 2.1×108 Monte Carlo sweeps
required 20,570 CPU hours on Intel Xeon E5-2680v2 and E5-2680v3 CPUs.
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