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The innate immune defense of mammalian hosts relies on its capacity to detect invading pathogens and then
directly eliminate them or help guide adaptive immune responses. Recognition of microbial DNA and RNA by
pattern recognition receptors (PRRs) is central to the detection of pathogens by initiating cytokine-mediated
innate immunity. In contrast, disturbance of this pathogen surveillance system can result in aberrant innate
immune activation, leading to proinflammatory or autoimmune diseases. Among the many important PRRs are
proteins of the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) family as well as cyclic GMP-AMP
synthase (cGAS), which detect viral RNA and DNA, respectively, within the host cell. Intriguingly, recent
evidence has shown that ‘‘unmasked,’’ misprocessed, or mislocalized host-derived RNA or DNA molecules can
also be recognized by RLRs or cGAS, thereby triggering antiviral host defenses or causing inflammation. Here,
we review recent advances of endogenous nucleic acid recognition by RLRs and cGAS during viral infection
and systemic proinflammatory/autoimmune disorders.
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Introduction

The innate immune system of vertebrates is an
evolutionarily conserved surveillance apparatus that

functions to detect microbial invasion or damaged ‘‘self,’’
thereby eliminating the threat and returning the cellular
environment to homeostasis. Key mediators of innate
immunity are germline-encoded receptors called pattern
recognition receptors (PRRs) that detect conserved mo-
lecular patterns of foreign organisms (eg, viral or bacterial
components such as nucleic acid) known as pathogen-
associated molecular patterns (PAMPs) ( Janeway and
Medzhitov 2002).

Innate immune sensors fall into 2 major categories:
First, membrane-bound sensors (eg, sensors of the Toll-like
receptor and C-type lectin receptor families) recognize
extracellular or membrane-encased PAMPs (Medzhitov
and others 1997; Takeuchi and Akira 2010; Dambuza and
Brown 2015). A second class of innate immune receptors,
which are the focus of this review, recognize PAMPs
within the host cell’s environment, such as in the cyto-
plasm or nucleus (Chan and Gack 2016). The recognition
of PAMPs by PRRs initiates innate immune signaling that
ultimately results in the production of a multitude of host
defense molecules, which together establish an antimicro-
bial milieu.

The recognition of viral RNA in the cytoplasm of infected
cells is primarily mediated by members of the retinoic acid-
inducible gene-I (RIG-I)-like receptor (RLR) family. Three
RLR members have been identified: RIG-I (gene name:
DDX58), melanoma differentiation-associated protein 5
(MDA5; gene name: IFIH1), and laboratory of genetics and
physiology 2 (LGP2; gene name: DHX58) (Meylan and
others 2006), the latter playing a regulatory role rather than
functioning as a sensor protein. RIG-I and MDA5 harbor
considerable similarities in domain structure and sequence;
however, they recognize distinct types of viral RNA and
hence different viral pathogens (Nakhaei and others 2009).
RIG-I senses relatively short 5¢ tri- or diphosphorylated
(mostly blunt-ended) double-stranded RNA (dsRNA) or
single-stranded RNA (ssRNA) species, which can be found
in many negative-strand RNA viruses, including influenza
A virus (IAV) and vesicular stomatitis virus (VSV), as well
as positive-strand RNA viruses, such as Japanese enceph-
alitis virus (Kato and others 2006; Loo and others 2008;
Schlee 2013). Moreover, RIG-I has also been shown to
sense poly-U or poly-UC sequence motifs (Saito and others
2008). In contrast, the optimal ligand for MDA5 is long
dsRNA, or aggregates of dsRNA, as found, for example, in
cells infected with certain picornaviruses. Furthermore,
recent studies have shown that both RIG-I and MDA5
function in the detection of dengue virus (DENV), West
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Nile virus, and reoviruses (Loo and others 2008; Chan and
Gack 2016).

Following the recognition of RNA ligands, RIG-I and
MDA5 undergo various steps of activation, which include
oligomerization, conformational changes, and a variety of
post-translational modifications such as ubiquitination and
dephosphorylation (Chiang and Gack 2017; van Tol and
others 2017). Activated RIG-I and MDA5 trigger signal
transduction through the adaptor protein mitochondrial an-
tiviral signaling protein (MAVS; also known as Cardif,
virus-induced signaling adapter [VISA], or interferon beta
promoter stimulator protein 1 [IPS-1]), which is located on
the outer membrane of mitochondria and at peroxisomes
(Nakhaei and others 2009; Belgnaoui and others 2011).
MAVS then recruits various innate signaling molecules, in-
cluding the Ser/Thr kinases TANK-binding kinase 1 (TBK-1),
IkB kinase-e (IKKe), and IKKa/b/g, which induce gene
expression of various cytokines, including type I interfer-
ons (IFNs), as well as chemokines through the activation of
transcription factors IFN-regulatory factor 3/7 (IRF3/7) and
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB). Secretion of IFN-a/b then leads to transcriptional
induction of many IFN-stimulated genes (ISGs) via Janus
kinase-signal transducers and actuators of transcription (JAK-
STAT)-mediated signal transduction, which ultimately cre-
ates an antiviral state that impedes viral infection.

Cyclic GMP-AMP synthase (cGAS) is a cytosolic sensor
that recognizes viral double-stranded DNA (dsDNA) or
single-stranded DNA (ssDNA), thereby eliciting innate
immune defense against DNA viruses as well as some ret-
roviruses (Cai and others 2014; Herzner and others 2015; Li
and Chen 2018). Following DNA binding, cGAS undergoes
a conformational change that leads to the synthesis of the
second messenger cyclic GMP-AMP (cGAMP) from ade-
nosine triphosphate (ATP) and guanosine triphosphate
(GTP) (Chen and others 2016). cGAMP subsequently binds
to the endoplasmic reticulum (ER)-resident membrane
adaptor protein stimulator of IFN genes (STING), which
leads to its activation and translocation from the ER to the
Golgi apparatus. STING then activates the TBK-1/IRF3 and
IKK/NF-kB axes, which ultimately triggers IFN- and ISG-
dependent antiviral defenses (Barber 2014; Chen and others
2016).

Effective innate immune sensing is crucial for efficient
production of type I IFNs and a rapid antiviral host re-
sponse. However, dysregulated and overzealous production
of type I IFNs (and also other cytokines or chemokines) can
lead to inflammation and autoimmunity. Recent studies have
shown that aberrant activation of RLR or cGAS signaling
is associated with a variety of inflammatory/autoimmune
diseases such as Aicardi-Goutières syndrome (AGS),
Singleton-Merten syndrome (SMS), and systemic lupus
erythematosus (SLE). Conceptually, these diseases arise
from mutations in genes encoding these sensors and leading
to their constitutive activation (so-called ‘‘gain-of-function’’
mutations) (reviewed in detail in Barrat and others 2016;
Crowl and others 2017), or when these sensor proteins
are activated by host-derived nucleic acids. The latter
phenomenon is primarily due to loss-of-function muta-
tions found in certain enzymes, in particular intracellular
RNases or DNases, that are responsible for keeping the
abundance of endogenous RNAs and DNAs at a minimal
level (as described below).

Since the discovery of RLRs over a decade ago, much
work has been done on defining the precise features of viral
RNAs that allow their recognition by RIG-I and MDA5
(Sparrer and Gack 2015; Chan and Gack 2016; Schlee and
Hartmann 2016). Intriguingly, a recent series of studies
showed that RIG-I and MDA5 can also recognize host-
derived RNAs. Conceptually, host RNA recognition by RLRs
occurs when these RNAs are either mislocalized, incorrectly
processed, or ‘‘unmasked’’ because of downregulation of
proteins that usually bind to these RNAs. RLR activation by
cellular RNA species has been implicated in the pathogenesis
of proinflammatory and autoimmune diseases. Moreover, it
has been demonstrated that RLR activation by host RNAs can
also be beneficial to the host by mediating an antiviral re-
sponse. Similar to host RNA recognition by RLRs, ‘‘self’’
recognition by cGAS can occur when host DNA (eg, genomic
or mitochondrial DNA) is mislocalized, or because of loss-of-
function mutations in genes that encode specific enzymes
responsible for degrading or metabolizing host DNAs and
keeping their levels at a minimum. In the following sections,
we provide an overview of recent research on host nucleic
acid sensing by RLRs and cGAS during viral infection and
autoimmunity.

Recognition of Host RNA by RLRs During
Viral Infection

Recent studies have demonstrated that RLRs can recog-
nize various types of endogenous RNAs to mediate an an-
tiviral innate immune response. These host-derived RNAs
are sensed by RLRs upon virus-induced ‘‘unmasking’’ from
the proteins that normally bind to these RNAs, or after their
incorrect processing and/or subcellular mislocalization.
RIG-I protein affinity purification from herpes simplex virus
type 1 (HSV-1)-infected cells followed by RNA deep se-
quencing identified that 5S ribosomal RNA pseudogene 141
(RNA5SP141) transcripts function as endogenous RIG-I
ligands. 5S rRNA pseudogene transcripts are generated by
RNA polymerase III (Pol III) and primarily found in the
nucleus under normal (uninfected) conditions (Chiang and
others 2018). The small amounts of RNA5SP141 transcripts
found in the host cell cytoplasm were found to be bound by
at least 2 RNA-binding proteins, Rhodanese (also known
as thiosulfate sulfurtransferase, TST) and mitochondrial
ribosomal protein L18 (MRPL18), thereby apparently
preventing RNA5SP141 from binding to and activating
RIG-I in uninfected cells (Fig. 1a). However, during HSV-
1 infection, RNA5SP141 was found predominantly in the
cytoplasm, where RIG-I resides, indicating relocalization
of RNA5SP141 triggered by herpesvirus infection. Fur-
thermore, HSV-1-induced host shutoff, which represents
the massive downregulation of cellular transcripts and/or
proteins by viral factors (eg, HSV-1 vhs protein, which is
an RNase), led to markedly reduced protein abundance of
TST and MRPL18, thereby liberating or ‘‘unmasking’’
RNA5SP141 and allowing its binding to RIG-I (Chiang and
others 2018). Knockdown studies using siRNA or locked
nucleic acid gapmers targeting RNA5SP141 in various hu-
man cell types, including primary human lung fibroblasts,
showed that endogenous RNA5SP141 transcripts are im-
portant for proinflammatory cytokine responses not only
to HSV-1 but also to the related Epstein-Barr virus
(EBV), as well as IAV of the Orthomyxoviridae family
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(Chiang and others 2018). This study established that
RNA5S pseudogene transcripts, whose functions are lar-
gely unknown in contrast to those of the parental 5S
rRNA, serve as agonists of the sensor RIG-I to allow an
antiviral or proinflammatory host response. Moreover, the
data on RNA5SP141’s role in RIG-I activation during
IAV and EBV infections combined with previous studies
that identified EBV- and IAV-derived RNAs as RIG-I
agonists (Ablasser and others 2009; Chiu and others 2009;
Baum and others 2010; Rehwinkel and others 2010)
suggest that both viral and host-derived RIG-I ligands
contribute to an effective host response to these viruses.
Future studies will need to determine whether the detec-
tion of other viruses is mediated by RNA5SP141, or
perhaps other RNA5S pseudogene transcripts.

A recent study showed that another type of cellular
noncoding Pol III transcripts, called vault RNAs (vtRNAs),

can be sensed by RIG-I during lytic reactivation of Kaposi’s
sarcoma-associated herpesvirus (KSHV) in patient-derived
primary effusion lymphoma cells and the cell line iSLK.219,
which is latently infected with recombinant KSHV (Zhao
and others 2018) (Fig. 1a). In this case, it has been suggested
that incorrect processing of these host RNAs allows for their
recognition by RIG-I. This study showed that cellular
DUSP11 (triphosphatase dual specificity phosphatase 11)
removes 5¢-triphosphate moieties from cellular vtRNAs
during latent KSHV infection, thereby preventing detection
of vtRNAs by RIG-I. During lytic reactivation of KSHV the
expression of DUSP11 (both mRNA and protein levels) is
downregulated, which leads to cytosolic accumulation of 5¢-
triphosphorylated vtRNAs and activation of RIG-I, which,
in turn, restricts KSHV lytic infection (Zhao and others
2018). However, the physiological relevance of vtRNAs and
their relative contribution to KSHV-mediated antiviral host

FIG. 1. Endogenous RNA recognition by RIG-I-like receptors. Recognition of endogenous RNAs by RIG-I and/or MDA5
during viral infection (a) or in inflammatory and autoimmune diseases (b). Specific RNA ligands are depicted as well as the
signaling pathway initiated by RIG-I and MDA5 via their adaptor protein MAVS, which is localized at the mitochondrion.
Activation of MAVS then leads to several downstream signaling events, including the activation of TBK-1, IKKe, IRF3,
IRF7, and NF-kB. The detailed mechanisms of host ligand recognition by RLRs are described in the text. Solid lines
indicate direct effects or signaling events. Dashed lines indicate signaling events that are indirect. Red lines indicate
inhibitory effects. CARD, caspase activation and recruitment domain; CTD, carboxy-terminal domain; EBV, Epstein-Barr
virus; HSV-1, herpes simplex virus type 1; IAV, influenza A virus; IKKe, IkB kinase-e; IFN, interferon; IRF, IFN
regulatory factor; KSHV, Kaposi’s sarcoma-associated herpesvirus; MDA5, melanoma differentiation-associated protein 5;
MAVS, mitochondrial antiviral signaling protein; NF-kB, nuclear factor-kB; P, phosphate; RIG-I, retinoic acid-inducible
gene-I; TBK-1, TANK-binding kinase 1; VSV, vesicular stomatitis virus. Color images are available online.
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responses remain to be determined. Moreover, a recent
study suggested that short interspersed elements transcribed
by Pol III could function as endogenous ligands of RIG-I
and also MDA5 upon infection with murine gamma-
herpesvirus 68, leading to the activation of NF-kB in a
MAVS-dependent manner (Mu and others 2016).

Several studies have demonstrated that, besides cellular
Pol III transcripts, certain microRNAs (miRNAs) and long
noncoding RNAs (lncRNAs) can also serve as endogenous
ligands of RIG-I. The expression of these types of host
RNAs is induced upon viral infection, which allows for
their detection by RIG-I. miRNA-136 was shown to be
transcriptionally upregulated upon infection with the
highly pathogenic H5N1 strain of IAV as well as VSV.
miRNA-136 then binds to and activates RIG-I, which in-
hibits viral replication through production of IFN-b and
interleukin-6 (Zhao and others 2015). In contrast to the
described endogenous RIG-I agonists that mediate an an-
tiviral/proinflammatory immune response, lncRNA-Lsm3b
(which is mouse-specific) was shown to compete with viral
RNA for RIG-I binding and to serve as a negative feedback
inhibitory mechanism to dampen cytokine responses dur-
ing the late stages of VSV, Sendai virus (SeV), and IAV
infections ( Jiang and others 2018) (Fig. 1a). Transcriptional
upregulation of lnc-Lsm3b after VSV or SeV infection of
mouse peritoneal macrophages directly correlated with
decreased IFN gene expression. Furthermore, lnc-Lsm3b
knock-out mice showed enhanced production of type
I IFNs, lower viral burden, and reduced severity of pul-
monary inflammation upon VSV infection compared with
control mice. Mechanistically, lnc-Lsm3b sequesters
monomers of RIG-I, thereby keeping this sensor in an
inactive state to diminish innate immune responses during
the late stages of infection.

Recent data indicated that mislocalized mitochondrial
dsRNA can trigger MDA5-mediated innate immune re-
sponses. Loss of polynucleotide phosphorylase (PNPase),
which is a critical component of the RNA degradosome,
resulted in cytoplasmic accumulation of mitochondrial
dsRNA, which subsequently activated MDA5 and led to the
production of type I IFN and the upregulation of ISGs (Dhir
and others 2018). Mice with a liver-specific knock-out of
PNPase (Pnpt1HepKO mice) showed accumulation of dsRNA
and enhanced transcript expression for IFN-b and ISGs in
the liver compared with control animals. Although the ma-
jority of the experiments in this study were not performed in
the context of viral infection, this study suggested that a
similar mechanism of mitochondrial dsRNA mislocalization
could also be relevant during infection with certain viruses
such as encephalomyocarditis virus (EMCV), a picornavi-
rus. Furthermore, it has been suggested that cellular NOP14
and GINS1 RNAs could serve as endogenous ligands of the
sensor MDA5 to block the lytic reactivation of KSHV (Zhao
and others 2018). However, future studies will need to de-
termine the physiological relevance of these RNAs in the
activation of MDA5-mediated antiviral responses. More-
over, 2¢,5¢-linked oligoadenylate synthetase-dependent ribo-
nuclease RNase L generates small RNA cleavage products
from self-RNA upon infection with certain viruses, such as
EMCV and SeV (Malathi and others 2007). In fact, RNase
L-cleavage products were the first cellular RNAs identified
to activate RIG-I and MDA5 and trigger host antiviral im-
mune responses (Malathi and others 2007) (Fig. 1a).

In conclusion, these recent findings on innate immune
sensing of host RNA during viral infection revealed that
unmasking or inappropriate processing of noncoding Pol III
transcripts, or transcriptional upregulation of other types of
noncoding RNAs (eg, certain miRNAs), allow for the rec-
ognition of these RNAs by RLRs. Interestingly, these en-
dogenous RNA ligands share most, but not necessarily all,
molecular features that have previously been found in viral
RNAs to be important for triggering RLR activation. For
example, while most of the described host-derived RIG-I
ligands have a 5¢-triphosphate moiety and dsRNA stretches,
several of them are, however, not blunt-ended, which sug-
gests that endogenous RLR ligands do not strictly adhere to
all criteria of ‘‘classic’’ agonists, which have often been
studied using in vitro experimental systems. Furthermore,
mislocalized cellular dsRNA that accumulates in the cyto-
plasm due to organelle damage can also be recognized by the
RLR machinery, activating antiviral and proinflammatory
host responses. Lastly, while most host-derived RLR ligands
identified so far activate innate immunity, as one would
expect, some host-derived RNAs may also dampen antiviral
and/or proinflammatory responses as a means of negative
feedback inhibition, as it has been shown for lnc-Lsm3b.

Recognition of Host RNA by RLRs
in Autoimmunity

RLR activation by endogenous RNAs has also been im-
plicated in inappropriate upregulation of type I IFN (and
also other cytokines) commonly associated with a number of
inflammatory and autoimmune diseases. Recent studies have
reported that gain-of-function mutations in the IFIH1 gene
(which encodes MDA5) lead to constant type I IFN sig-
naling because of stronger MDA5 binding to RNA and/or
hypersensitivity to self-RNA ligands, resulting in certain
forms of AGS, SMS, or SLE (Rice and others 2014; Rutsch
and others 2015). In contrast, loss-of-function mutations in
the genes of specific enzymes involved in RNA metabolism
can also lead to autoimmune diseases through aberrant RLR
activation by certain host RNAs. Stetson and others reported
that biallelic mutations in the gene SKIV2L, which regulates
RNA turnover as part of the cytosolic RNA exosome, lead
to the generation of endogenous immunostimulatory RNAs,
which ultimately triggers RIG-I-mediated IFN production in
trichohepatoenteric syndrome patients (Eckard and others
2014). Furthermore, Adar1 deficiency leads to the accu-
mulation of retroelements, such as Alu:Alu hybrids, in the
cytoplasm, which are then recognized by MDA5, resulting
in an overzealous proinflammatory response (Rice and
others 2012; Ahmad and others 2018; Chung and others
2018) (Fig. 1b). Mouse models deficient in Adar1, or en-
coding editing-deficient Adar1 mutant variants, established
that dysregulated RNA editing caused MDA5-driven auto-
immunity (Mannion and others 2014; Liddicoat and others
2015; Pestal and others 2015). Similarly, a recent study
reported that patients harboring hypomorphic mutations in
PNPT1 (encoding PNPase) display accumulation of mito-
chondrial dsRNA coupled with upregulation of MDA5-
mediated innate immune responses (Dhir and others 2018)
(Fig. 1b).

Collectively, these findings suggested that increased
avidity of RLRs to self-ligands caused by gain-of-function
mutations in RLR genes, or aberrant accumulation of
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cytosolic RNA due to loss-of-function mutations in genes
encoding specific enzymes that metabolize or degrade host
RNAs, can lead to abnormal RLR activation and thereby
autoimmune diseases.

Recognition of Cellular DNA by cGAS
During Viral Infection

Recent evidence has indicated that mislocalized cellular
DNA can be sensed by the cGAS–STING pathway during
virus infection. Infection with DENV, a positive-strand
RNA virus of the Flaviviridae family, induces mitochon-
drial membrane alterations, which triggers the release of
mitochondrial DNA (mtDNA) into the cytoplasm and sub-
sequent cGAS activation in various cell types, including
primary human monocyte-derived dendritic cells (Aguirre
and others 2017) (Fig. 2a). Similarly, mtDNA was shown to
activate cGAS-mediated antiviral innate immunity during
HSV-1 infection. HSV-1 infection induced mtDNA stress
through loss of the mtDNA-binding protein TFAM (tran-

scription factor A, mitochondrial), and TFAM deficiency
induced the release of mtDNA into the cytoplasm where it is
sensed by cGAS (West and others 2015) (Fig. 2a). Fur-
thermore, mtDNA leakage has been implicated in cGAS-
mediated immunity triggered by apoptotic stimuli. Apop-
tosis is mediated through the activation of members of the
caspase family of proteases and further regulated by Bcl-2-
family proteins (both pro- and anti-apoptotic ones), which
control the formation of the Bax/Bak channel at the mito-
chondrial outer membrane. However, recent studies dem-
onstrated that an unexpected caspase-inhibited apoptosis
mechanism triggered Bax/Bak-dependent mtDNA leakage
and thereby activation of innate immunity. In caspase-9-
deficient mice (Casp9-/-) as well as caspase-9 and/or
Bax/Bak knock-out primary mouse fibroblasts, mtDNA was
shown to accumulate in the cytoplasm, leading to the acti-
vation of type I IFN production via cGAS and STING
(Rongvaux and others 2014; White and others 2014). En-
hanced innate immunity by this mechanism of mtDNA
leakage could confer an antiviral state as Casp9-/- mice had

FIG. 2. Endogenous DNA recognition by cGAS. Recognition of endogenous DNA species by cGAS during viral infection
(a) or in inflammatory and autoimmune diseases (b). Following the recognition of cellular DNA, cGAS produces the second
messenger cGAMP, which then binds to and activates STING at the ER. STING then recruits and activates the kinase TBK-
1, leading to IRF3 activation. In addition, NF-kB is activated. The detailed mechanisms of host DNA recognition by cGAS
are described in the text. Solid lines indicate direct effects or signaling events. Red lines indicate inhibitory events. cGAMP,
cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; DENV, dengue virus; ER, endoplasmic reticulum; STING, stim-
ulator of IFN genes. Color images are available online.
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better survival rates following EMCV infection compared
with control animals. Taken together, these results suggest
that mislocalization of mtDNA following virus-induced
mitochondrial alterations, or apoptotic stimuli, can trigger
cGAS–STING-mediated host immunity.

Recognition of Cellular DNA by cGAS
in Autoimmunity

cGAS-mediated sensing of DNA (pathogen-derived or
cellular) is required for effective antiviral host defense against
a number of pathogens; however, aberrant activation of the
cGAS–STING pathway has also been linked to autoimmune
and inflammatory disorders (Fig. 2b). Recent research has
shown that recessive mutations in genes involved in DNA
metabolism are responsible for improper cGAS–STING
signaling. For instance, certain mutations in the gene that
encodes 3¢ repair exonuclease 1 (TREX1, previously called
DNase III) cause the accumulation of ssDNA from endog-
enous retroelements, leading to a cell-intrinsic autoimmune
response in AGS and chilblain lupus patients (Crow and
others 2006a; Yang and others 2007; Stetson and others 2008).

Furthermore, genetic mutations in the genes encoding the
3 subunits of the RNase H2 enzyme complex, RNASEH2A,
RNASEH2B, or RNASEH2C, lead to reduced RNase H2
function and thereby higher levels of endogenous RNA–
DNA hybrids or possibly also retroelements. These endog-
enous ligands stimulate aberrant type I IFN production via
the cGAS–STING signaling axis in AGS (Crow and others
2006b). Studies in mice supported the notion that cGAS–
STING-mediated autoimmunity is triggered by endogenous
ligands that are usually degraded by RNase H2. Rnaseh2b
(A174T/A174T) and Rnaseh2a (G37S/G37S) knock-in mice
exhibited AGS-like symptoms such as chronic IFN/ISG
production due to the accumulation of host nucleic acid
species that activated cGAS–STING signaling (Mackenzie
and others 2016; Pokatayev and others 2016).

Furthermore, it has been demonstrated that Samhd1 de-
ficiency induces cGAS–STING-dependent autoimmunity
(Rice and others 2009; Maelfait and others 2016). Certain
mutations in the Samhd1 gene induce the generation of host
retroelements such as long interspersed elements 1, which can
cause AGS (Zhao and others 2013) (Fig. 2b). Moreover, in
mice that lack lysosomal DNase II, inefficiently digested self-
DNA leaks from the endosome/lysosome into the cytosol
where it activates cGAS and STING, resulting in an abnormal
production of multiple cytokines, including type I IFNs and
tumor necrosis factor a (Ahn and others 2012). Notably, to
date, no mutations have been identified in the gene that en-
codes lysosomal DNase II in humans.

In summary, these studies established that loss-of-
function mutations in genes encoding enzymes that play
crucial roles in DNA metabolism result in the accumulation
of certain host dsDNA species, or RNA–DNA hybrids,
which ultimately induces inappropriate innate immune sig-
naling via the cGAS–STING axis.

Concluding Remarks

Over the past decades, ample progress has been made
toward defining the molecular features that allow innate
immune sensors to discriminate between cellular and
pathogen-derived RNA or DNA. Whereas in most cases cel-
lular nucleic acid recognition leads to proinflammatory or

autoimmune diseases and thus has deleterious effects on the
host organism, intriguing new research indicates that sensing
of cellular RNA or DNA can also mount an antiviral response.
In this case, recognition of ‘‘self’’ represents an indirect
mechanism of pathogen detection wherein the mammalian
host senses viral manipulation of host RNA/DNA metab-
olism, or virus-induced changes in the subcellular locali-
zation of host nucleic acids.

Intriguingly, the recognition of host RNA or DNA re-
cently has also been found to play an important role in
cancer. For example, in breast cancer cells, RIG-I recognizes
unmasked noncoding RNA RN7SL1 (a Pol III transcript),
which is released by stromal cells via exosomes and induces
robust cytokine production, resulting in therapy resistance
and cancer progression (Nabet and others 2017). Similarly,
cellular RNA species, including endogenous retrovirus tran-
scripts that are upregulated by DNA methyltransferase in-
hibitor treatment, an effective cancer therapy, are detected by
MDA5 and cause cytokine responses in ovarian cancer and
melanoma (Chiappinelli and others 2015). Moreover, recent
studies have shown that DNA damage and senescence in-
duced by ionizing irradiation lead to cytoplasmic chromatin
fragments, which can activate the cGAS–STING pathway
(Deng and others 2014; Dou and others 2017).

Many questions remain in this new and rapidly evolving
field of ‘‘self’’ nucleic acid sensing. Just as viral ligands for
PRRs have been extensively characterized, the molecular
features of host RNAs and DNAs that trigger RLR or cGAS
activation need to be elucidated. Furthermore, it will be
important to understand the precise subcellular localization
of host-derived PRR ligands before and after viral infection.
New technologies such as intracellular RNA fluorescent in
situ hybridization of endogenous ligands combined with
live-cell imaging could be utilized to understand in precise
detail when and where these host RNAs are bound to RLRs.
Furthermore, for host RNAs that are transcriptionally in-
duced by viral infection or other stimuli, single-cell tran-
scriptomics could be applied to understand the kinetics of
their production as well as their expression in infected
versus bystander cells. Most importantly, while several
studies have shown that certain host RNAs/DNAs can bind
to intracellular sensors during infection or other pathological
conditions, in many cases the physiological relevance and
contribution of these endogenous ligands to the activation of
innate immunity and/or pathogenesis still need to be es-
tablished. Moreover, in light of recent findings that showed
that RIG-I can bind to the 3¢-UTR of certain mRNAs, such
as the mRNA that encodes NF-kB (Zhang and others 2013),
the full range of cellular RNA species that can bind (and
potentially activate) RLRs remains to be determined. As of
yet, self-RNAs recognized by other intracellular PRRs, such
as LGP2, have yet to be described, which represents an
exciting new avenue for future research. A sound under-
standing of the molecular mechanisms by which intracel-
lular sensors recognize endogenous nucleic acid may lead to
novel therapeutic approaches for infectious diseases, auto-
immune disorders, and cancer.
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