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Abstract

Identifying a common set of genes that mediate host-microbial interactions across populations and 

species of mammals has broad relevance for human health and animal biology. However, the 

genetic basis of the gut microbial composition in natural populations remains largely unknown 

outside of humans. Here, we used wild house mouse populations as a model system to ask three 

major questions: (1) Does host genetic relatedness explain inter-individual variation in gut 

microbial composition? (2) Do population differences in the microbiota persist in a common 

environment? (3) What are the host genes associated with microbial richness and the relative 

abundance of bacterial genera? We found that host genetic distance is a strong predictor of the gut 

microbial composition as characterized by 16S amplicon sequencing. Using a common garden 

approach, we then identified differences in microbial composition between populations that 

persisted in a shared laboratory environment. Finally, we used exome-sequencing to associate host 

genetic variants with microbial diversity and relative abundance of microbial taxa in wild mice. 

We identified 20 genes that were associated with microbial diversity or abundance including a 

macrophage-derived cytokine (IL12a) that contained three nonsynonymous mutations. 

Surprisingly, we found a significant overrepresentation of candidate genes that were previously 

associated with microbial measurements in humans. The homologous genes that overlapped 

between wild mice and humans included genes that have been associated with traits related to host 

immunity and obesity in humans. Gene-bacteria associations identified in both humans and wild 
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mice suggest some commonality to the host genetic determinants of gut microbial composition 

across mammals.
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Introduction

Host-associated microbial communities play an important role in health and fitness (McFall-

Ngai et al., 2013). Compositional and functional variation in the gut microbiota has been 

linked to a variety of diseases in humans and lab mouse models including obesity, 

inflammatory bowel disease, and autism (e.g. Hsiao et al., 2013; Marchesi et al., 2007; 

Turnbaugh et al., 2006). Links between the gut microbiota and fitness-related traits have also 

been reported in wild mammals including traits related to digestion, immunity, and behavior 

(Suzuki, 2017). Therefore, understanding the mechanisms governing the maintenance and 

function of gut microbial communities is important in medicine and animal biology more 

broadly.

Host genetics may play an important role in structuring gut microbial communities. For 

example, genome-wide markers have been associated with overall differences in the 

microbiome (i.e. beta-diversity) in humans (Blekhman et al., 2015; J. Ma et al., 2014). Twin 

studies have shown that monozygotic twins tend to have more similar microbial composition 

compared to dizygotic twins (Goodrich, Davenport, Beaumont, et al., 2016; Goodrich et al., 

2014). Mouse knockout experiments have identified genes involved in immunity, 

metabolism, and behavior that affect the gut microbiota (Spor, Koren, & Ley, 2011). Mouse 

quantitative trait locus (QTL) mapping studies have also identified multiple genomic regions 

associated with the relative abundance of different microbial taxa (Benson et al., 2010; 

Leamy et al., 2014; McKnite et al., 2012; Org et al., 2015; Wang et al., 2015).

In human populations, microbiome genome-wide association studies (mGWAS) have 

identified specific candidate genes associated with natural variation of the gut microbiota 

(Blekhman et al., 2015; Bonder et al., 2016; Davenport et al., 2015; Goodrich, Davenport, 

Beaumont, et al., 2016; Knights et al., 2014; Turpin et al., 2016; Wang et al., 2016), and a 

few gene-bacteria associations have been replicated in multiple human populations 

(Goodrich, Davenport, Waters, Clark, & Ley, 2016; Hall, Tolonen, & Xavier, 2017). 

However, this approach has not been used to look for gene-bacteria associations in wild 

mammals. Genes identified from human mGWAS are often compared with those identified 

in laboratory mice, but gene-bacteria associations identified in a controlled laboratory 

environment may differ from those in a complex natural environment. In fact, the function 

and composition of the gut microbiota in lab mice are known to differ from those of their 

wild relatives (Rosshart et al., 2017). Samples from a wild population would provide an 

opportunity for mGWAS that is more directly comparable to human mGWAS.

Wild house mice (Mus musculus domesticus) are globally distributed and live in a wide 

range of environments in association with humans (Phifer-Rixey & Nachman, 2015). The 
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house mouse is a powerful model because it is possible to disentangle variables using 

experimental manipulation (Wang et al., 2015, 2014) and assess the functions of the 

microbiome using germ-free mice (Rosshart et al., 2017). Previous work has shown that 

geographic and genetic distances (Linnenbrink et al., 2013), diet as measured by stable 

isotopes (Wang et al., 2014), reproductive status, body size, age, viral and parasite infection 

status (Weldon et al., 2015), gut regions (Suzuki & Nachman, 2016), and altitude (Suzuki, 

Martins, & Nachman, 2018) are associated with compositional differences in the gut 

microbiota of wild house mice. However, there have been no previous efforts to identify 

specific genes underlying compositional variation in the gut microbiota of wild mice.

Here, we characterize natural variation in the gut microbiota of wild house mice sampled 

from five populations along an environmental gradient in eastern North America and 

identify specific host genes associated with gut microbial composition. First, we show that 

genetic distance correlates with microbial composition (i.e. beta-diversity), both within and 

between populations. Second, using a common garden experiment, we show that differences 

in the gut microbiota among wild populations persist in the laboratory, suggesting that they 

are not driven by the environment such as diet. Third, we identify genome-wide gene-

bacteria associations in wild mice using the complete exome sequences of all mice. Finally, 

we document significant overlap between the genes associated with microbiota variation in 

mice and genes associated with microbiota variation in humans.

Materials and Methods

Sample collection

We collected a total of 50 adult house mice (Mus musculus domesticus) from five 

populations in eastern North America during the summer of 2012 (Phifer-Rixey et al., 2018) 

and generated 80 lab-reared individuals in the laboratory for a common garden experiment 

(see below). For wild-caught individuals, we collected ten mice each from each of five 

populations: Florida (FL), Georgia (GA), Virginia (VA), Pennsylvania (PA), and New 

Hampshire - Vermont (NH-VT) (summarized in Table S1). Sherman live traps were used 

with peanut butter and oats as bait. Each mouse was caught a minimum of 500m from all 

other mice to avoid sampling close relatives. Animals were kept in Sherman traps, 

euthanized by cervical dislocation, and all tissues and external measurements were collected 

within 24 hours after capture. Cecum and liver were stored in liquid nitrogen in the field and 

then stored in a deep freezer (−80°C) until sequencing. Diet was inferred using carbon 

(δ13C) and nitrogen (δ15N) stable isotopes from mouse hair following the protocol of Suzuki 

and Nachman (2016). Climate data were inferred using the first two principal components 

(Table S2) calculated from 19 climatic variables downloaded from WorldClim database 

(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and the R package “dismo”.

For the common garden experiment, we captured live animals close to the northern and 

southern populations using Sherman live traps during summer, 2013 from Saratoga Springs, 

NY and Gainsville, FL. Within each location, animals were collected from at least 10 sites 

that were a minimum of 500m apart. Animals were housed in the laboratory at 23°C with a 

light cycle of 10 hours dark and 14 hours light. Teklad Global food (18% Protein Rodent 

Diet) was fed ad libitum. Wild-caught mice from the same population were paired to 
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produce F1 offspring. Ten independent crosses were conducted and offspring were housed 

with their own littermates. Body weight and fresh fecal samples were collected from 40 

individuals per population representing four adults (two females and two males) each from 

the 10 independent crosses of wild-caught founders. Fecal samples were stored in −80°C 

until sequencing. Detailed information of lab-reared animals is in Table S3. All procedures 

involving animals were reviewed and approved by the IACUC at the University of Arizona 

(07–004) and at the University of California Berkeley (R361–0514).

16S rRNA gene sequencing

We extracted DNA from cecal and fecal samples from wild-caught and lab-reared mice, 

respectively. Although these sample types are different, fecal samples are known to closely 

match individual differences in cecal samples in wild house mice (Suzuki & Nachman, 

2016). We followed the DNA extraction protocol described in Suzuki and Nachman (2016). 

Briefly, we added a bead-beating step before step 4 in the protocol from QIAamp DNA stool 

Minikit (Qiagen). The V4 region of the 16S rRNA gene was amplified and multiplexed 

using the standard primers and barcodes described in (Caporaso et al., 2012), and the 

samples were sequenced on two lanes of 150bp pair-end Illumina MiSeq at the Next 

Generation Sequencing Core Facility at Argonne National Laboratory. Negative controls 

were included in every set of amplifications. To avoid potential lane bias, the same DNA 

aliquots of six samples from the first lane (MPR108, MPR114, MPR120, MPR135, 

MPR138, and MPR144) were run on the second lane. Lane 1 included all the wild-caught 

populations and Lane 2 included all the lab-reared populations plus these six controls.

Mouse exome data

We used exome data from Phifer-Rixey et al. (2018). That study is based on the same 

individuals used in this study. Briefly, DNA was extracted from frozen liver, kidney, or 

spleen. Genomic libraries were enriched for mouse exons using a NimbleGen in-solution 

capture array (SeqCap EZ) and sequenced using 100bp pair-end Illumina HiSeq2000. After 

quality filtering and SNP discovery, we further filtered the SNPs to only include those with a 

minor allele frequency of 5% or greater. This resulted in 279,278 SNPs. Each SNP was 

annotated to a single gene or multiple genes using Variant Effect Predictor in Ensembl. 

Additional details of quality filtering and SNP discovery are given in Phifer-Rixey et al. 

(2018).

16S data processing

We processed all of the 16S data in QIIME version 1.9.0 (Caporaso et al., 2010). The 

forward reads were demultiplexed and quality-filtered using default parameters using 

split_libraries_fastq.py. Chimeric sequences were removed using USEARCH 6.1 (Edgar, 

Haas, Clemente, Quince, & Knight, 2011). A subsampled open-reference OTU picking 

approach (pick_open_reference_otus.py) was employed with default parameters. OTUs at 

97% similarity were generated using UCLUST (Edgar, 2010) and taxa were assigned based 

on the Greengene database 13.8 (DeSantis et al., 2006). To remove sequence errors and very 

rare OTUs, OTUs with <10 reads across all samples were removed. A phylogenetic tree was 

created using FastTree (Price, Dehal, & Arkin, 2009). The OTU table was rarefied to an even 
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depth of 5,000 reads. Two samples (FL08M1 and FL08M2) were removed from all analyses 

due to low sequence reads (<200 reads).

Despite rarefying the reads to equal depth for all samples, the OTU counts were consistently 

higher in lane 1 compared to lane 2 for the six control samples (Fig. S1). This lane bias is 

likely due to the greater average sequence depth of lane 2 (68,196 reads per sample) 

compared to lane 1 (13,918 reads per sample) resulting in an excess of rare OTUs in lane 2. 

To account for this, we removed rare OTUs from lane 2 to normalize the OTU counts 

between lanes before rarefaction (i.e. OTUs with a relative abundance less than 8.0×10−6 

were removed) (Fig. S1). Since lane 1 included all wild-caught mice and lane 2 included all 

lab-reared mice, all conclusions derived from comparisons within these groups (essentially 

all major conclusions; see Results) were not affected by lane bias. Moreover, conclusions 

drawn from comparisons between wild-caught and lab-reared mice remained the same with 

or without correcting for lane bias (see Results). The OTU table corrected for lane bias was 

used for all analyses presented below.

Statistical analysis

We calculated beta-diversity measurements (i.e. Bray-Curtis dissimilarity, Binary-Sorensen-

Dice, Unweighted- and Weighted-UniFrac distances) among all individuals using 

beta_diversity.py in QIIME. Pairwise distances for geography (km) were calculated based on 

GPS coordinates of the sampling locations. Pairwise distances for host genomes were 

calculated based on the exome data (~280,000 SNPs) using ngsDist (Vieira, Lassalle, 

Korneliussen, & Fumagalli, 2016) which takes into account uncertainty of the genotype 

calls. We used Mantel tests to test for correlations between beta-diversity and eight predictor 

variables (genetic distance, geographic distance, body weight, BMI, diet (δ13C and δ15N), 

climate PC1, and climate PC2) among all 50 wild-caught mice. We used Partial Mantel tests 

to ask whether host genetic distance is independently associated with Bray-Curtis 

dissimilarity while controlling for the effects of other variables. We also made comparisons 

among individuals within populations using Spearman’s rho correlation. Specifically, we 

compared Bray-Curtis dissimilarity and geographic distance and we also compared Bray-

Curtis dissimilarity and genetic distance. We also assessed the effects of geography while 

controlling for genetics (and the effects of genetics while controlling for geography) by 

comparing the residuals in a covariate regression with Bray-Curtis dissimilarity. Similarly, to 

test for correlations between beta-diversity and body size measurements, Spearman’s rho 

correlation with residuals between body size and latitude was used to control for the known 

effect of latitude on body size (Table S4).

We calculated Bray-Curtis dissimilarity separately among mice within the northern-wild 

population (NH-VT), the southern-wild population (FL), the northern-lab population (NY), 

and the southern-lab population (FL). Similarly, Bray-Curtis dissimilarity was calculated 

separately between the two wild populations and between the two lab populations. We tested 

whether Bray-Curtis dissimilarity between population comparisons were significantly 

greater than within population comparisons in both wild-caught and lab-reared individuals 

using Wilcoxon permutation tests based on 9999 Monte-Carlo resampling with the 

“Wilcox_test” function in the R package “coin”. We calculated alpha-diversity using 
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alpha_diversity.py and relative abundances of bacterial taxa using summarize_taxa.py using 

the rarefied OTU table. We used phylogenetic diversity (Faith, 1992) as an alpha-diversity 

measurement and we focused on the relative abundances of 17 bacterial genera that were 

present in at least 50% of the individuals and had an average relative abundance of >1% 

across all individuals. The motivation for selecting a small set of common bacterial genera is 

both statistical (e.g. to minimize 0 values and multiple testing) and biological (e.g. narrower 

taxonomic groups [e.g. genera] have been shown to be associated with host genomic regions 

better than broader taxonomic groups [e.g. classes or phyla] (Benson et al., 2010)). 

Wilcoxon tests and Kruskal-Wallis tests were used for all pairwise and group comparisons 

unless otherwise stated.

Wild mouse mGWAS and overlap with human mGWAS

We used a multivariate linear mixed model for association tests in GEMMA (version 0.94) 

using the exome (279,278 SNPs). The phylogenetic diversity measure and the relative 

abundances of 17 bacterial genera described above were Box-Cox transformed following 

Goodrich et al. (2016) using the “PowerTransform” function in the R package “car”. A 

multiple linear regression was used on the transformed microbial measurements to regress 

out the covariates including population structure, latitude, and hidden factors. We calculated 

population structure using SNPRelate (version 1.10.2) and used the first four genetic 

principal components (which together explain 18.5% of the genetic variation). Latitude was 

also used as a covariate to control for bacteria that vary latitudinally (Thompson et al., 

2017). Hidden factors were calculated to account for experimental cofounders and batch 

effects by inferring 10 cofounders in PEER (Stegle, Parts, Durbin, & Winn, 2010). We also 

accounted for relatedness by using a relatedness matrix estimated in GEMMA. Manhattan 

plots and QQ-plots were generated using the R package “qqman”. To control for false 

discovery, q-values were calculated using the R package “qvalue” based on Likelihood ratio 

p-values. Significant SNPs were called at a q-value < 0.1. The functions of nonsynonymous 

SNPs were predicted using mouse genome version GRCm38 in SIFT (Sim et al., 2012).

To test for overlap of bacteria-associated genes identified in this study and previously 

published human mapping studies, we identified significant SNPs with a q-value < 0.2 to 

increase power. We compiled SNPs and genes that were associated with microbial 

measurements (e.g. relative abundance of taxa, alpha- or beta-diversity) in seven human 

mGWAS studies (Table S5). To test whether the overlap of candidate genes in humans and 

mice was significant, we used a hypergeometric test with the “phyper” function in R. We 

used the total number of possible human-mouse orthologous genes in our exome (19,100) 

based on the Ensembl database (Sep 2017). To test whether the proportion of significant 

gene-bacteria associations was greater in the candidate gene set compared to all genes using 

the entire exome, we used a chi-square test with Yate’s correction.

To calculate effect sizes and to ask whether different genotypes have significantly different 

relative abundances of taxa or alpha-diversity measurements, we used ANOVA. Residuals 

after covariate regression (i.e. population structure, latitude, and hidden factors) on the box-

cox transformed microbial measurements were used for the analyses. We used a sign test to 
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ask whether the directionality of genotype-bacteria associations within populations deviates 

significantly from the expected 50:50 ratio.

Results

Host genetic distance and body size are associated with compositional variation in the gut 
microbiota

We found significant differences in gut microbial communities among five populations of 

house mice in eastern North America (Fig. 1A&B) based on Bray-Curtis dissimilarity 

(ADONIS, R2 = 0.095, p = 0.04), Binary-Sorensen-Dice (R2 = 0.099, p = 0.002), and 

unweighted UniFrac distance (R2 = 0.097, p = 0.003), but not based on weighted UniFrac 

distance (R2 = 0.087, p = 0.34). While these results are consistent with findings in European 

populations of house mice (Linnenbrink et al., 2013), the population differences observed in 

the present study were relatively small. To understand how host genetic and environmental 

factors contribute to variation in gut microbial communities across all samples, we measured 

correlations between Bray-Curtis dissimilarity and eight putative predictor variables using 

Mantel tests (Table 1). We found that Bray-Curtis dissimilarity was significantly correlated 

with both host genetic distance and body mass index (BMI) after correcting for multiple 

tests (Mantel r = 0.14, p = 0.004 and Mantel r = 0.25, p < 0.0001, respectively) (Table 1 and 

Fig. 1C). Diet (δ13C), climate PC1, and geographic distance (Fig. 1D) also showed weak 

correlations with Bray-Curtis dissimilarity, but they were not significant (Table 1). Diet 

measurements (δ13C and δ14N) did not vary among populations (Fig.S1) or by latitude 

(Table S4). The overall results were similar using other beta-diversity measurements (Table 

S6).

The observed correlation between microbial distance and genetic distance was independent 

of other variables including geographic distance (Table S7). First, there was no pattern of 

genetic isolation-by-distance among these populations (Fig. S2). Second, the correlation 

between host genetic distance and Bray-Curtis dissimilarity remained significant after 

controlling for seven predictor variables, including geographic distance, using Partial Mantel 

tests (Table S7). When comparisons were made between individuals within populations, 

both host genetic distance and geographic distance showed significant correlations with 

Bray-Curtis dissimilarity (Fig. S3). Consistent with the results among populations, we found 

that the correlation between host genetic distance and Bray-Curtis dissimilarity within 

populations remained significant after controlling for geographic distance using residuals of 

covariate regression (Spearman’s rho = 0.26, p < 0.0001). In contrast, we found that the 

correlation between geographic distance and Bray-Curtis dissimilarity did not remain 

significant after controlling for genetic distance (Spearman’s rho = 0.06, p = 0.38). These 

results suggest that host genetics and/or vertical transmission have stronger effects on the gut 

microbiota than the geographic distance between individuals.

The correlation between BMI and Bray-Curtis dissimilarity also remained significant after 

controlling for geographic distance (partial mantel r = 0.25, p < 0.001). This association is 

interesting because BMI and body weight vary clinally with latitude (Table S4), a pattern 

consistent with Bergmann’s rule (Bergmann, 1847) and presumably reflecting 

thermoregulatory adaptation (Lynch, 1992; Phifer-Rixey et al., 2018). Moreover, at higher 
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latitudes, individuals tended to have a greater ratio of Firmicutes to Bacteroidetes, which is 

associated with obesity in humans (Ley, Turnbaugh, Klein, & Gordon, 2006) and in 

laboratory mice (Ley et al., 2005; Turnbaugh et al., 2006) (Fig. S4). We also identified 

various microbial taxa that correlated with latitude and body size after accounting for 

latitude (Fig. S5). For example, the phylum Proteobacteria was the taxon whose relative 

abundance was most positively correlated with latitude (rho = 0.443, p < 0.01). The 

phylogenetic diversity of the microbial community and the relative abundance of genus 

Odoribacter were most positively correlated with body weight after correcting for latitude 

(rho = 0.410, p < 0.01 and rho = 0.412, p < 0.01, respectively).

Population differences in the microbiota persist in a common laboratory environment

We found a significant difference in Bray-Curtis dissimilarity among wild mice in 

comparisons within versus between populations from the ends of the transect (NH-VT and 

FL) (Fig. 1E), indicating that mice from these populations harbor compositionally distinct 

microbial communities. To test whether population differences in the microbiota were driven 

by environmental differences, we collected live animals close to the most northern and 

southern populations (NY and FL) and conducted a common garden experiment. Twenty 

unrelated wild mice were collected from each population and returned to the lab (10 males, 

10 females). For each population, we created 10 crosses between wild-caught parents to 

produce 40 offspring which were reared under identical conditions. The lab-born mice 

showed major shifts in alpha-diversity and in the relative abundances of bacterial phyla and 

genera compared to the wild-caught animals (Table S8). For example, alpha-diversity 

measurements and the relative abundances of Firmicutes and Proteobacteria significantly 

decreased, and the relative abundance of Bacteroidetes significantly increased in lab-reared 

animals compared to wild-caught animals (Phylogenetic diversity and Shannon index, p < 

0.001; all phyla, p <0.001) (Table S8). Although there is a potential for batch effects since 

the microbiota of wild-caught and lab-reared individuals were sequenced on separate lanes, 

the same results were obtained with or without correcting for lane bias (Shannon index, p < 

0.001; all phyla, p < 0.001). Interestingly, diet as assessed by stable isotopes showed some 

overlap between wild and lab mice (Fig. S6). The lab diet was significantly different from 

that of the wild as assessed by δ15N (lab mean: 6.5, wild mean: 7.1, p < 0.05 ) but not as 

assessed by δ13C (lab mean: −19.0, wild mean: 19.1, p = 0.12) (Fig. S6).

Despite the dramatic shifts in the microbiota from the wild to the lab environment (Fig. S7), 

population differences in the microbiota persisted among lab-reared offspring (Fig. 1E). 

Compositional differences in the microbiota both within and between populations were 

reduced in the laboratory setting compared to the wild (Fig. 1E). However, the microbial 

community composition of lab populations was more similar, on average, to the wild 

populations from which they came than to the wild populations at the other end of the 

transect (Wilcoxon permutation test, P = 0.029, Fig. S8). Overall, these results indicate that 

environmental differences alone (e.g. diet, temperature, etc.) cannot fully explain the 

population differences in the microbiota. The observed population differences are consistent 

either with a role for host genetics or simply with vertical transmission shaping the variation 

of the gut microbiota in wild mice.

Suzuki et al. Page 8

Mol Ecol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identification of genetic loci underlying gut microbiota variation in wild mice

To identify host genes contributing to differences in the gut microbiota, we conducted a 

mGWAS using ~280,000 SNPs identified from sequencing the complete exomes of the 50 

wild-caught mice (Phifer-Rixey et al., 2018). We searched for associations between host 

genetic variation and the relative abundances of 17 bacterial genera that were common (an 

average relative abundance of > 1% and present in > 50% of all individuals). We also 

searched for associations between host genetic variation and alpha-diversity represented by 

phylogenetic diversity. Analyses were done using Multivariate Linear Mixed Models in 

GEMMA while controlling for host population structure, relatedness, latitude, and hidden 

factors. Among the 18 bacterial measurements, two bacteria genera (Odoribacter and 

Bacteroides) and phylogenetic diversity showed significant associations with host genetic 

loci (Table 2). Across all tests, we identified a total of 24 SNPs in 20 genes that passed a 

genome-wide significance threshold (q-value < 0.1). Although none of the GO terms were 

significantly overrepresented after false discovery correction, the top three GO terms include 

mRNA transcription (Mier1, p-value = 0.006), protein lipidation (Zdhhc7, p-value = 0.04), 

and nucleobase-containing compound transport (Slc35d1, p-value = 0.07).

Although we attempted to account for population structure in identifying these genes using 

GEMMA, observed gene-bacteria associations might still be driven by differences among 

populations that are not fully accounted for by the model. To further account for population 

structure, we first looked at associations within individual populations and then examined 

whether the direction of the association was consistent among populations. Overall, most of 

the within-population genotype-bacteria comparisons showed the same direction as the all-

population comparisons (37 out of 43 comparisons, sign test p-value < 0.0001, Table S9). 

Moreover, 20 of these 37 comparisons were individually significant (ANOVA, p-value < 

0.05) despite the fact that these tests are underpowered with only 10 individuals per 

population (Table S9). Together, the results suggest that the observed genotype-bacteria 

associations are unlikely to be explained by population structure.

Among the 20 genes that were associated with bacterial measurements, the interleukin 12a 

gene (IL12a) included a SNP with the lowest p-value across all tests in this study (Table 2). 

IL12 is a cytokine that plays a key role in innate and adaptive immunity by activating natural 

killer cells and regulating differentiation of T cells (Trinchieri, 1998). We identified six 

SNPs in IL12a that were significantly associated with the relative abundance of Odoribacter 
after accounting for population structure, latitude, and hidden factors as covariates (Fig. 2A-

D, Table 2). Three of these six SNPs were nonsynonymous changes, and one of these 

(3_68695333) was predicted in silico to be deleterious (SIFT score = 0.002) (Table 2).

Homologous genes underlie gut microbiota variation in humans and mice

A common set of genes may underlie host-bacterial interactions across diverse mammals. To 

test this idea, we asked whether there was significant overlap between the genes underlying 

variation in the microbiota of mice and humans using two different approaches. First, we 

compiled genes that were associated with microbial measurements (e.g. relative abundance 

of taxa, alpha- or beta-diversity) in seven different human mGWAS. This comprised a set of 

469 genes with one-to-one mouse-human orthologs (Table S5). We then conducted 
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association analyses in GEMMA using this set of 469 genes in mice and found that 10 were 

significantly associated with one or more bacterial measurements (q-value < 0.1) (Table 

S10). This fraction of genes showing associations (10 out of 469 = 2.13%) is significantly 

greater than the fraction discovered in the initial analysis using all genes (20 out of 21,954 = 

0.09%) suggesting that mouse mGWAS hits are overrepresented among genes previously 

identified in human mGWAS (Chi-square test with Yate’s correction p < 0.0001).

Second, we asked how many genes overlapped between the 469 genes identified in human 

mGWAS and the 20 mouse-human orthologous genes that were identified in the mouse 

mGWAS. Using the genome-wide cut-off of q-value < 0.1, there was only one gene, Csmd1 
that overlapped between these sets, and this degree of overlap was marginally not significant 

(hypergeometric test p = 0.06). However, when we made the genome-wide cut-off less 

stringent (q-value < 0.2), we identified 96 mouse-human orthologous genes (Table S11) and 

eight genes overlapped with 469 human candidate genes (Table S12). The number of 

overlapped genes identified at q-value < 0.2 was greater than expected by chance 

(hypergeometric test p = 0.0006). Not surprisingly, all eight genes were also identified by 

the candidate gene approach mentioned above (Table S10 & S12). Among the eight 

homologous overlapping genes between human and mouse mGWAS, all show expression in 

the brain of mice and humans (Table S12) and some have been associated with phenotypes 

related to obesity and immunity in other human GWAS.

Discussion

Understanding how mammalian hosts maintain the composition and function of the gut 

microbiota remains a major challenge in microbial ecology and biomedical research. We 

showed that differences in host genetics and body mass were significantly associated with 

compositional differences in the microbiota of wild mice. We did not find significant 

associations between the microbiota and diet as inferred by carbon and nitrogen stable 

isotopes. However, fine-scale dietary differences that are not reflected in isotope 

measurements might also contribute to variation in the wild mouse gut microbiota. In other 

studies, host genetic distance (Blekhman et al., 2015; J. Ma et al., 2014), body size 

measurements (e.g. Ley et al., 2006; Turnbaugh et al., 2009), and diet (David et al., 2014) 

have all been associated with differences in the gut microbial composition in humans. We 

found that mouse populations from higher latitudes had a greater ratio of Firmicutes/

Bacteroidetes, a pattern also seen among human populations (Suzuki & Worobey, 2014). 

This is interesting since a higher ratio of Firmicutes/Bacteroidetes is known to be associated 

with obesity in humans (Ley et al., 2006) and in laboratory mice (Ley et al., 2005; 

Turnbaugh et al., 2006). The mice sampled here conform to Bergmann’s rule with mice from 

higher latitudes exhibiting larger body sizes than mice from lower latitudes (Lynch, 1992; 

Phifer-Rixey et al., 2018). Further experiments, including transplants into gnotobiotic mice, 

would be useful for testing the role of the gut microbiome, if any, in adaptive host body size 

variation.

To test whether population differences in the gut microbiota were due to the environment or 

to host genetics, we identified population differences in the gut microbiota that persisted in a 

common laboratory environment. Consistent with previous studies of wild mice raised in 
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captivity (Wang et al., 2015, 2014), we observed a decrease in alpha-diversity and in the 

relative abundances of Firmicutes and Proteobacteria, and an increase in the relative 

abundance of Bacteroidetes, in lab-reared animals compared to wild-caught animals. Despite 

the changes in gut microbial composition that occurred when progeny of wild mice were 

raised in the lab, population differences persisted among the lab-reared mice. Moreover, the 

gut microbiota of lab-reared mice resembled the gut microbiota of the population of origin 

more than of the population at the other end of the transect. Similar patterns have also been 

found in other wild-derived mouse strains where population differences in the field were 

maintained in captivity for over 10 generations (Moeller, Suzuki, Phifer-Rixey, & Nachman, 

2018). These observations suggest that environmental differences alone (e.g. diet, 

temperature, etc.) cannot explain the population differences in the microbiota. Instead, host 

genetics and/or vertical transmission must partly account for the observed population 

differences in the gut microbiota of wild mice. Experiments allowing the exchange of 

microbes between individuals from different populations could be used to directly test the 

effect of host genotype on the gut microbiota.

To explore the genetic basis of the gut microbiota, we identified both novel and previously 

known gene-bacteria associations in wild mice using a genome-wide mapping approach. The 

top association identified in this study was between the relative abundance of Odoribacter 
and a non-synonymous SNP in IL12a, a cytokine that is involved in innate and adaptive 

immunity (Trinchieri, 1998). The up-regulation of IL12a production has been linked to 

Crohn’s disease in humans (Parronchi et al., 1997) and mucosal inflammation in mice (Z. 

Liu et al., 2001). Furthermore, a recent study in humans demonstrated that inflammatory 

cytokine responses are associated with microbial taxa composition, metagenomic functional 

profiles, and microbial metabolites (Schirmer et al., 2016). Interestingly, the relative 

abundance of Odoribacter was significantly correlated with tumor necrosis factor alpha 

(TNF-α) (Schirmer et al., 2016), which is another macrophage-derived cytokine that 

interacts with IL12a in mediating inflammatory responses in mammals (X. Ma, 2001). These 

observations lend further support to the role of IL12a in mediating host-microbial 

interactions in wild mice.

Finally, a significantly greater number of genes overlapped between human mGWAS and 

mouse mGWAS than expected by chance, including genes related to the nervous system, 

immunity, and obesity. For example, a SNP in Csmd1 is associated with alpha-diversity (i.e. 

phylogenetic diversity) in mice and showed the lowest p-value among the eight human-

mouse overlapping genes. Csmd1 is highly expressed in the central nervous system and in 

epithelial tissue and is involved in regulating the development of the central nervous system 

(Kraus et al., 2006). In humans, Csmd1 is associated with beta-diversity of the gut 

microbiota (Wang et al., 2016), obesity-related traits (Comuzzie et al., 2012; Irvin et al., 

2011; C. T. Liu et al., 2013), parasite infection status (Deng et al., 2013), and antibody 

response to smallpox vaccine (Ovsyannikova et al., 2012). Similarly, Gpr158 is also highly 

expressed in mouse and human brains and is associated with bacterial taxa in the order 

Clostridiales in both wild mice and humans (Goodrich, Davenport, Beaumont, et al., 2016). 

Gpr158 has been associated with variation in energy expenditure in a native American 

population that has a high prevalence of obesity (Piaggi et al., 2017). These results suggest 
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host genes related to the nervous system, immunity, and obesity may underlie gut microbial 

variation across diverse mammalian species.

In conclusion, we presented evidence that the host genome affects gut microbial composition 

within and between populations of wild mice using field observations and laboratory 

experiments. Gene-bacteria associations identified in wild mice and humans using similar 

mapping methods are strong candidates for genes influencing the mammalian gut microbial 

composition in a natural environment. Replicating these results in independent populations 

of wild mice and validating the functions of candidate SNPs in wild-derived inbred mice 

would further strengthen the observed gene-bacteria associations.
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Figure 1. 
Population differences and host genetic distance are associated with compositional variation 

in the gut microbiota. (A) Sampling locations of five house mouse populations. (B) PCoA 

plot of Bray-Curtis dissimilarity. The color corresponds to populations in Fig. 1A. 

Populations show weak, but significant clustering (ADONIS R2=0.095, p=0.04). (C) A 

significant positive correlation between microbial distance and host genetic distance 

(calculated by ngsDist) and (D) a non-significant correlation between microbial distance and 

geographic distance using all individuals. Correlations for within-population comparisons 

(grey points) and between-population comparisons (black dots) are shown. (E) Violin 

boxplots of Bray-Curtis dissimilarity within population comparisons (within) and between 

population comparisons (between) of the most northern (NH-VT) and southern (FL) 

populations in the wild (white bars) and lab (gray bars). P-values are Wilcoxon permutation 

tests.
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Figure 2. 
Results of mGWAS in wild mice. (A) Manhattan plot of Odoribacter. Six SNPs in IL12A on 

chromosome 3 are highlighted. Red line shows the genome-wide cut-off of the likelihood 

ratio test p-value (q-value < 0.1). (B) Quantile-quantile plot of Odoribacter p-values. The red 

diagonal line represents the expected distributions of p-values. (C) Zoom in plot around the 

SNP (3:68695548) that has the lowest p-value (represented by purple). Each dot is a SNP 

and colors represent pairwise linkage disequilibrium measures (r2) between the SNP 

(3:68695548) and SNPs within the surrounding 1 Mb window. r2 was calculated based on 

genotype allele counts using PLINK. (D) Box-plot of Odoribacter abundance and IL12A 
genotypes. A missense SNP in IL12A gene has significantly different abundances of 

Odoribacter (ANOVA R2 = 0.224, p = 0.0014). Residual values were used for the y-axis 

controlling for population structure, latitude, and hidden factors using covariate regression. 

Whiskers indicate highest and lowest values.
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