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Abstract

Purpose of the Review To summarize current knowledge on interactions between genetic variants and lifestyle factors (GxL)
associated with the development of coronary artery disease (CAD) and prioritize future research.

Recent Findings Genetic risk and combined lifestyle factors and behaviors have a log-additive effect on the risk of developing
CAD.

Summary First, we describe genetic and lifestyle factors associated with CAD and then focus on GXL interactions. The majority
of GXL interaction studies are small-scale candidate gene studies that lack replication and therefore provide spurious results. Only
a few studies, of which most use genetic risk scores or genome-wide approaches to test interactions, are robust in number and
analysis strategy. These studies provide evidence for the existence of GXL interactions in the development of CAD. Further GXL
interactions studies are important as they contribute to our understanding of disease pathophysiology and possibly provide
insights for improving interventions or personalized recommendations.

Keywords Genetics - Lifestyle - Coronary artery disease - Genetic lifestyle interactions - Genome-wide association studies -
Genetic risk scores

Introduction infarction. Globally, CAD is an important cause of death

and morbidity, with approximately 9 million deaths be-
Coronary artery disease (CAD) is a complex multifactorial ~ tween 2007 and 2017 [1]. In line with the most complex
disease leading to ischemic heart disease and myocardial ~ and non-communicable diseases, the development of CAD
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is the result of an interplay between both lifestyle and ge-
netic factors [2¢°].

Lifestyle factors can broadly be defined as behaviors, cus-
toms, and habits of persons or groups, generally considered in
the context of consequences for health [3]. Lifestyle risk fac-
tors are often modifiable and so are their risks. Interventions to
adhere to a healthy lifestyle as a means of prevention have the
potential to greatly reduce incident CAD event rates [4, 5].

Over the past decade, large advances in technology have
moved the boundary of our understanding of the genetics of
CAD. Genome-wide association studies (GWAS’s) and next-
generation sequencing have helped to identify a large number
of genetic loci associated with CAD and helped to better ap-
preciate the complexity of its genetic architecture [6, 7¢].
Despite our progress in the understanding of the complex
genetics and the many lifestyle factors involved in the devel-
opment and progression of CAD, the interplay between genet-
ic variants and lifestyle factors leading to CAD remains large-
ly obscure. Large-scale, well-powered studies investigating
combined genetic and lifestyle risks have only recently started
to fill this knowledge gap with credible evidence [2¢e, 8e°].

In this review, we first summarize important knowledge of
genetic and lifestyle factors associated with CAD and then
focus on the contribution of genetic and lifestyle (GxL) inter-
actions in the development of CAD. We conclude with future
research directions to progress the field of GXL in CAD.

Genetics of CAD

A heritable component to CAD has been well established, and
recent studies estimate the heritability of CAD to range be-
tween 40 and 50 % [9]. Genetic analyses have been instrumen-
tal to progress our understanding of biological mechanisms
involved in the development of CAD. Before the first well-
powered GWAS in 2007, candidate gene studies were used to
investigate common single nucleotide polymorphisms (SNPs)
in genes coding for proteins with suspected biological impor-
tance in the pathophysiology of CAD. Although SNPs were
frequently reported to be significantly associated with CAD,
many candidate gene studies failed to achieve statistical signif-
icance after adjustment for multiple testing [10]. In addition,
replication studies were often lacking. Since 2007, GWAS’s
have become state-of-the-art to further our understanding of
the genetics of complex diseases [6, 11]. GWAS’s investigate
the association between millions of SNPs and a disease by
comparing individuals with and without the disease [12]. In
GWAS’s, common allele variants of SNPs that occur in at least
1-5% in the population are studied to determine their contri-
bution to the disease [12]. To date, multiple GWAS’s have been
performed on CAD in increasingly larger populations. Several
SNPs have been identified to be strongly associated with CAD
by both candidate gene and GWAS approaches, including

@ Springer

APOB [13], PCSK9 [7+¢], and LPA [7+¢], which resulted in
the development of drugs targeting these genes [14].

The most recent GWAS on CAD by van der Harst et al.
included 122,733 cases and 424,528 controls and reported
over 160 genome-wide significant (P <5 x 10~®) loci associ-
ated with CAD. To understand the nature of these associa-
tions, possible shared genetic pathways with other traits or
diseases were investigated and showed various associations
with anthropometric measurements, lipids, inflammation
markers, kidney function, diabetes mellitus, and blood pres-
sure possibly providing an intermediate trait in the develop-
ment of CAD [7e¢]. Insights into biology can also be obtained
by studying gene expression patterns, for example with tools
such as Data-driven Expression-Prioritized Integration for
Complex Traits (DEPICT). DEPICT analyses on GWAS’s of
CAD indicated important roles for platelets, blood vessel de-
velopment, hemostasis, and a protein-protein interaction sub-
network [7¢¢]. These findings provide reinforcement or novel
evidence for the key roles of pathways and genes in the
development of CAD and provide possible leads on how
lifestyle factors might interact with them.

To further understand cumulative effects of biological path-
ways and outcomes associated with CAD, SNPs identified
through GWAS’s have been summed to calculate genetic risk
scores (GRS’s) as an estimation of an individual’s genomic
risk of CAD. A weighted GRS counts the number of risk-
increasing alleles (0, 1, or 2) per SNP for each individual
and takes into account the effect size of each risk-increasing
allele of each SNP as calculated in the GWAS. Since GRS’s
are based on germline SNPs with alleles that are randomly
allocated at conception, GRS’s are quantifiable from birth
and potentially allow earlier risk stratification and primary
prevention of events. GRS’s usually only include loci that
reached genome-wide significance. For example, van der
Harst et al. constructed a weighted GRS for CAD to investi-
gate the risk of downstream cardiovascular diseases and ob-
served associations with the development of atrial fibrillation
and heart failure [7e¢].

Another strategy to estimate an individual’s genomic risk
includes the creation of more extensive GRS’s using thou-
sands or even millions of SNPs weakly or uncertainly associ-
ated with CAD. Another study constructed a CAD GRS with
over 6 million SNPs and found individuals in the top 1% of
the distribution were at almost 5-fold (odds ratio 4.83; 95%
confidence interval, 4.25-5.46; P=1 x 107132) higher odds of
CAD [15]. Inouye et al. used a GRS with 1.7 million SNPs
linked to CAD and observed a 4-fold (hazard ratio 4.17; 95%
confidence interval, 3.97—4.38) higher risk of CAD in indi-
viduals in the top quintile of the GRS compared with the
lowest quintile [16]. A combination of the GRS with six con-
ventional risk factors including diabetes, BMI, current
smoking, hypertension, family history of heart disease, and
high cholesterol led to a slight increase of 2.6% compared
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with the model with only the six conventional risk factors
[16]. However, lipids and other biochemical variables were
not available and a comparison with traditional risk scores
such as the Framingham Risk Score could therefore not be
performed [16].

So far, individual genetic variants identified by GWAS’s
only explain ~15% of the estimated 40-50% heritability for
CAD. The gap between currently explained CAD SNP-based
heritability and other heritability estimates, the so-called miss-
ing heritability, may partly be found in rare variants which can
be assessed using whole exome sequencing [17]. Using whole
exome sequencing data, one recent study was able to increase
SNP-based heritability estimates for height and BMI to pedi-
gree heritability levels [18]. Rare variants in low linkage dis-
equilibrium with neighboring variants, especially protein-
coding variants, therefore likely contribute highly to heritabil-
ity [18]. Another possibility is that underlying GxL interac-
tions, in which the genetic component explains more variance
depending on the lifestyle, remain to be elucidated. These
GxL interactions could also possibly explain a proportion of
the missing heritability.

Genetics of Lifestyle Factors Associated
with CAD

The importance of lifestyle factors in the development and
primary prevention of CAD is well established. Rappaport
et al. studied 3229 Swedish twins and estimated 21.6% of
CAD deaths were attributable to non-modifiable genetic fac-
tors, and the remaining 78.4% to lifestyle and environment
exposures during an individuals’ lifetime [19]. The
INTERHEART study investigated the importance of
modifiable risk factors in 52 countries across the globe and
found that raised apolipoprotein B/A1 ratio, current smoking
status, no regular alcohol intake, hypertension, diabetes, ab-
dominal obesity, psychosocial factors (depression, low locus
of control, perceived stress, and major life events), lack of
daily fruit and vegetable consumption, and no regular physical
exercise accounted for most of the risk of acute myocardial
infarction [20]. Although the identified lifestyle factors inde-
pendently increase CAD risk, lifestyle risk factors tend to
cluster in adults, with 20% of the individuals of the general
population having at least three lifestyle risk factors [21]. The
lifestyle factors highlighted by the INTERHEART study are
discussed below.

Tobacco Smoking

Tobacco smoking is a major risk factor for CAD [22]. Since
the average cigarette contains a complex and changing mix of
poisonous compounds with various pathological effects [23],
the exact mechanisms leading to CAD remain unknown [24].

Currently, it is known that smoking leads to atherosclerosis
through endothelial dysfunction and damage, plaque vulnera-
bility with increased risk of rupture, increased inflammatory
and thrombotic state, and increased blood pressure [24].
Tabaco smoking is also under the influence of genetic factors,
including several SNPs associated with smoking initiation,
heaviness, and cessation [25, 26].

Alcohol and Coffee Consumption

Heavy alcohol consumption has been described to increase
risk of CAD, whereas low to moderate intakes might reduce
the risk [27, 28]. Similar to smoking, genetics also influence
alcohol intake [26]. Liu et al. found 99 SNPs associated with
the amount of drinks per week, but did not find a significant
genetic correlation between drinks per week and phenotypic
CAD [26].

A similar U-shaped risk pattern has been described for
coffee consumption: excessive or no observational coffee
and caffeine intake are associated with increased risks for
CAD risk while moderate intakes appear to reduce risk [29,
30]. Genetic studies did not yield evidence for causal links
between caffeine intake and CAD [29, 31], suggesting that
reported beneficial observational findings may be confounded
by the numerous non-caffeine constituents of coffee [30].

Physical Activity and Sedentary Behavior

Physical activity plays an important role in both the primary
and secondary prevention of CAD [32]. Epidemiological stud-
ies show a dose-response relationship leading to a 20% reduc-
tion of cardiovascular events in individuals who practice
leisure-time physical activity. Moreover, in secondary preven-
tion, exercise training has been shown to improve endothelial
function, halt the progression of coronary stenosis, and possi-
bly induce collateral formation leading to improved myocar-
dial perfusion [32]. However, despite these known protective
effects, there is a dangerous trend towards less physical activ-
ity worldwide [33]. In addition, sedentary behavior has been
established as an important driver of chronic diseases, inde-
pendent of physical activity levels [34]. Although twin and
family studies showed that both physical activity and seden-
tary behaviors are potentially heritable [35], GWAS’s were
mostly performed on self-reported data of physical activity,
yielding only a few associated loci [36]. A recent GWAS
using accelerometer data found one locus associated with
overall activity and 4 loci with sedentary behavior, explaining
up to 21% of the heritability of physical activity and 12.9% of
sedentary behavior [37]. Given the large economic and health
burden [38, 39], more research into the genetic architecture of
physical activity and sedentary behavior is needed.
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Diet

The impact of diet on CAD has been studied mostly in obser-
vational studies, which have generally found Mediterranean
and DASH (Dietary Approaches to Stop Hypertension) diets,
which are both rich in fruits, vegetables, and nuts, to be asso-
ciated with lower risk of MI and improved cardiometabolic
factors with effects on blood pressure, blood lipids, inflamma-
tion, endothelial function, and thrombosis [40]. Robust genet-
ic data to further understand the determinants of interindivid-
ual variation in response to diet is largely missing, although
diet may influence epigenetic changes such as DNA methyl-
ation [40, 41].

Lifestyle behavior, especially smoking and alcohol use, can
also be viewed as the willingness of an individual to take
certain health risks. This risk tolerance or behavior may have
a predisposing genetic architecture, as shown by Karlsson
Linnér et al. who found hundreds of loci associated with risk
tolerance and risky behaviors, including 124 SNPs associated
with general risk tolerance [42]. The general risk tolerance
SNPs were associated with genes that were highly expressed
in brain regions such as the prefrontal cortex, basal ganglia,
and midbrain [42].

Gene X Lifestyle Interactions

Genetic and lifestyle factors both contribute to each person’s
risk of CAD and have a complex interplay. Lifestyle factors
themselves are partly determined by genetic factors. In addi-
tion, increasingly more evidence indicates lifestyle can also
modify the effects of genetic variants on CAD. This may be
due to shared etiological pathways between the genetic variant
and lifestyle risk factor, in turn leading to the disease. Another
potential mechanism includes epigenetics, in which gene ex-
pression is altered by lifestyle or environmental factors
through local chromatin environment changes affecting
DNA accessibility despite the absence of DNA alterations
[41, 43].

Some of the complex gene and lifestyle interplay can be
better understood through GxL interaction studies. These in-
teractions can be investigated using several approaches, as
discussed below.

GRS Approach

It is possible to construct a GRS based on the most highly
associated variants of previous GWAS’s and analyze the
interaction between this overall genetic risk and a lifestyle
factor on CAD. However, the number of studies investigat-
ing the combined risks of both genetic and lifestyle factors
is little. To date, two large studies investigated the com-
bined risks of CAD associated with genetics and overall
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lifestyle [2¢¢, 8]. The first study by Khera et al. included
55,685 individuals with 5,103 (9.2%) cases from four co-
horts [8], and the second study by Said et al. included
325,113 individuals with 9,771 (3.0%) cases from the UK
Biobank [2¢¢]. Both studies calculated a weighted GRS
based on previous reports and categorized the population
into quintiles of genetic risk. The lowest quintile was taken
as a low genetic risk, the second to fourth quintile as inter-
mediate risk, and the highest quintile as high genetic risk.
Lifestyle was subsequently categorized as ideal, interme-
diate, or poor [44]. Individuals with poor lifestyle were at
higher risk of CAD compared with individuals in the same
genetic risk category but with an ideal lifestyle. The risk of
CAD increased not only with less than ideal lifestyle, but
also with increasing genetic risk. Importantly, both studies
showed individuals with ideal lifestyle and high genetic
risk were at nearly twice the risk of developing CAD com-
pared with individuals with an ideal lifestyle but low ge-
netic risk. These findings indicate individuals with high
genetic risk have a higher starting risk of developing dis-
ease compared with individuals with similar lifestyle but
lower genetic risk, and even higher risks of events if they
have a poor lifestyle and high genetic risk (Fig. 1).

Although neither study observed statistically significant
interactions between lifestyle categories and genetic risk,
Said et al. estimated that with 80% power and an alpha of
0.005, interaction effects between genetic risk and intermedi-
ate or poor lifestyle would range from 1.21 to 1.50 [2¢]. The
risk of CAD in individuals with high genetic risk therefore
possibly not only starts off at higher risk, but also increases
more strongly with worse overall lifestyle (Fig. 1).

The importance of physical activity in genetic risk groups
of CAD has been reported as well [45]. One study found that
higher grip strength and cardiorespiratory fitness were associ-
ated with a lower risk of incident CAD events across tertiles of
genetic risk of CAD [45].

Genome-Wide Interaction Studies

Instead of selecting lead variants of previous GWAS’s and
testing these for interactions with lifestyle factors, SNPs
across the whole genome can be scanned in a genome-
wide interaction study. Because unveiling GXL interac-
tions requires well-powered studies, the CHARGE Gene—
Lifestyle Interactions Working Group was formed [46]. To
date, this has led to three studies on the interaction between
lipid levels with smoking [47¢], physical activity [48], and
alcohol intake [49¢]. These studies used a joint meta-
analysis in which 2-degree-of-freedom test was adopted
that jointly evaluates interaction and main effects to in-
crease statistical power [50]. Bentley et al. studied the in-
teraction between lipid levels with smoking and revealed
13 new loci associated with lipids, of which several
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Fig. 1 Combined genetic and lifestyle risks increase the risk of coronary
artery disease. The risk of coronary artery disease (CAD) in individuals
with low or high genetic risk is higher amongst individuals with poor
lifestyle compared to a healthy lifestyle. Compared with individuals with

appeared to be driven mainly by their interaction with
smoking [47¢]. The importance of interaction testing was
further highlighted by another study in which 4 novel loci
were discovered when testing for interactions between ge-
netically determined lipid levels and physical activity,
whereas not a single new locus was found in the test with-
out interaction [48¢]. The third study revealed 18 novel
lipid loci, although none of which appeared to be driven
by interactions with alcohol intake [49¢]. Based on these
studies, smoking and physical activity, but possibly not
alcohol use, may be modifiable lifestyle risk factors of
interest to alter blood lipid levels. Even if these interactions
contribute little to the overall variance of blood lipid levels,
insights in these interactions could contribute to our under-
standing of disease pathophysiology.

low genetic risk, individuals with high genetic risk start off at higher risks
of CAD, with the highest risks of CAD amongst individuals with poor
lifestyle and high genetic risk

Twin Studies

One twin study assessed G*L interactions amongst 51,065
Swedish same-sex twins. This study found higher BMI was
associated with lower genetic variance of CAD, suggesting a
more important role for genetics in the development of CAD
in individuals with low BMI [51]. Other lifestyle factors such
as smoking and sedentary behaviors showed no significant
GxL interactions, but rather seemed to increase CAD risk
directly [51].

Candidate Gene Studies

The largest candidate gene study on GxL interactions is a
meta-analysis which investigated the interaction between 45
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CAD loci and smoking in 60,919 cases and 80,243 controls.
In this study, a significant interaction was observed between
rs7178051, located within ADAMTS7, and smoking [52].
Several studies including up to ~ 6,000 individuals reported
interactions between ApoE and smoking as well [53-55].
However, larger meta-analyses did not find support for this
conclusion [52, 56]. This stresses the need for large sample
sizes in and replication of candidate gene studies investigating
GxL interactions [57]. Many other candidate gene studies
tested the interaction between CAD genes and lifestyle risk
factors, including smoking [58—65], alcohol intake [62, 65,
66], diet [67—69], and physical activity [69]. However, these
results should be interpreted with caution as sample sizes were
small and results were not replicated in independent larger
studies.

Future Perspectives

Only recently, studies with sufficient sample sizes have
emerged and reported robust GxL interactions. Although the
effect sizes are small and might add little to the explained
variance of CAD heritability, they increase our knowledge
on complex GxL interplays [15, 16]. This knowledge might
be translated to strategies that pinpoint lifestyle risk factors
with proven interactions and are therefore of increased interest
to modify. Next, in the current era of huge biobanks, several
cohorts will be well powered to perform genome-wide inter-
action analyses on CAD and modifiable risk factors of interest
in the years to come.

In line with most GWAS’s, the GWAS’s on CAD includ-
ed only or mostly white Europeans in order to reduce het-
erogeneity [70]. Logistic, systemic, or historical factors that
make it easier to perform genetic studies in Europeans play a
role as well [70]. As a consequence, little attention has been
paid to genetic variants in other populations. Variants asso-
ciated with GXL interactions may have different effects in
non-Europeans, reducing its broader applicability in the clin-
ic. As long as there is a lack of well-powered cohorts in
other ethnicities, candidate gene studies offer an excellent
approach to validate genes known to interact with lifestyle
risk factors [71].

Conclusion

In this review, we summarized current knowledge on the ge-
netics of CAD, lifestyle factors, and the genetics of lifestyle
factors associated with CAD. We focused on the interplay of
genetics and lifestyle, especially the effect modifications as
determined by GxL interaction studies. The majority of GXL
interaction studies are small-scale candidate gene studies,
lacking replication and therefore providing spurious results.
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Only few studies are robust in number and analysis strategy.
These studies provide evidence of the existence of GXL inter-
actions. Current data suggest that genetics and GxL interac-
tions contribute little to the overall risk prediction for CAD
next to lifestyle and other phenotypic risk factors. However,
well-powered GxL interactions studies are important as they
contribute to our understanding of disease pathophysiology
and may provide insights into improving interventions or per-
sonalized recommendations.
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