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Abstract

The microbiota is increasingly recognized for its ability to influence the development and function
of the nervous system and several complex host behaviors. In this review, we discuss emerging
roles for the gut microbiota in modulating host social and communicative behavior, stressor-
induced behavior, and performance in learning and memory tasks. We summarize effects of the
microbiota on host neurophysiology, including brain microstructure, gene expression, and
neurochemical metabolism across regions of the amygdala, hippocampus, frontal cortex, and
hypothalamus. We further assess evidence linking dysbiosis of the gut microbiota to
neurobehavioral diseases, such as autism spectrum disorder and major depression, drawing upon
findings from animal models and human trials. Finally, based on increasing associations between
the microbiota, neurophysiology, and behavior, we consider whether investigating mechanisms
underlying the microbiota-gut-brain axis could lead to novel approaches for treating particular
neurological conditions.
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INTRODUCTION

The brain integrates complex sensory information and responds to the needs and experiences
of each body system. The microbiota, comprising communities of bacteria, viruses, fungi,
and other microorganisms that live mutualistically in and on animals, is increasingly
recognized as an essential component of normal physiology, with important roles in health
and disease. As the first life forms on the planet, microorganisms are integrated
fundamentally across biological scales. They regulate the biogeochemical cycling of
elements essential for life; form the likely endosymbiotic origins of genomic elements,
eukaryotic organelles, and multicellular organisms; and maintain homeostatic interactions
within and across plant, animal, and atmospheric ecosystems. Recent advances in
sequencing, mass spectrometric, bioinformatic, and gnotobiotic technologies have enabled
investigations into roles for host-associated microbiota in modulating physiological systems,
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including gastrointestinal function, immunity, and metabolism, as well as select host
behaviors. Perturbations in the microbiota have been associated with changes in social,
communicative, stress-related, and cognitive behavior in lab animals and animals in the
wild. Additional evidence suggests that the microbiota influences core neurological
processes, including neurogenesis, synaptic plasticity, neurotransmitter signaling,
neurodevelopment, and neuroinflammation. Interactions between the microbiome,
neurophysiology, and behavior in animal models displaying endophenotypes of neurological
disease have been corroborated by limited human studies linking microbial dysbiosis to such
conditions as autism spectrum disorder (ASD), major depressive disorder, and Parkinson’s
disease. These findings supporting a microbiota-gut-brain axis are conceptually intriguing,
raising the question of whether microbial effects on host brain and behavior represent
evolutionarily conserved processes that impact the fitness of both host and microbiota.
Emerging evidence for microbial influences on chemical communication, social interactions,
stress-related behavior, and performance in learning and memory tasks could contribute to
the notion of a unified holobiont in which animals and their microbiomes have coevolved
together as a primary unit of natural selection. Notably, however, further investigation is
required to test the reproducibility and enhance the rigor of studies in this nascent field, and
additional studies are needed to identify clear molecular and cellular mechanisms underlying
interactions between the microbiota and nervous system.

SOCIAL AND COMMUNICATIVE BEHAVIOR

Chemical Communication

Chemical communication is the most widespread communication modality across kingdoms,
from bacteria and fungi to plants and animals (Steiger et al. 2011). Scents carry information
regarding the individual’s age, sex, group membership, reproductive status, and other
socially relevant variables (Steiger et al. 2011). As such, olfactory signals facilitate several
social communicative behaviors, including territorial marking, mating, and foraging. A
substantial body of literature supports the ability of bacteria and other microorganisms to
produce a variety of volatile chemicals (Kai et al. 2009). In addition, field and laboratory
studies have examined microbial communities in scent glands, secretions, and excretions and
their potential to modify olfactory signals (Ezenwa & Williams 2014). Findings from these
efforts raise the question of whether an animal’s microbiome may influence communication.

Evidence suggests that microbiome-related changes in odorant profiles regulate social
isolation versus attraction in insects. Raising levels of bacterial colonization on red harvester
ants increased the likelihood that an ant would be attacked and ejected from the colony
(Dosmann et al. 2016). In contrast, antibiotic-swabbed ants did not induce this aggressive
response, suggesting that an ant’s normal external microbiota is not necessary for nestmate
recognition. Similar effects were seen in the lower termite, Reticulitermes speratus,
suggesting that colonization with foreign microbes promotes unfamiliar scents that identify
intruders to the colony (Matsuura 2001). Additional studies reveal that the gut microbiota
can stimulate aggregation responses that attract organisms to conspecifics. German
cockroaches that lacked bacteria in the alimentary tract exhibited depleted levels of volatile
carboxylic acids in their feces, which were subsequently less attractive to conspecifics than
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were feces from conventionally colonized controls (Wada-Katsumata et al. 2015).
Inoculating sterile cockroaches with control microbiota corrected these deficits, wherein
levels of attractiveness covaried with bacterial diversity. Similar effects on aggregation of
locusts into vast swarms were attributed to the production of the pheromone guaiacol by
indigenous gut microbes (Dillon et al. 2000). In Drosophila melanogaster, adult flies and
larvae preferred food that had previously been used by other larvae compared to unused,
fresh food (Venu et al. 2014). This preference was abolished when the food was used by
axenic larvae and was further restored by mixing sterile used food with particular
Lactobacillus spp. from the normal fly gut microbiota, suggesting that deposition of normal
flora on food can influence feeding behavior. Another D. melanogaster study revealed a
microbial role in mating preference (Sharon et al. 2010). Flies fed a molasses-based versus a
starch-based medium exhibited different microbiomes and mated preferentially with flies
reared on the same food. Antibiotic treatment eliminated this preference and decreased
levels of cuticular hydrocarbons (CHCs), whereas colonization with Lactobacillus plantarum
restored mating preference and particular CHCs. Although the majority of these studies
imply that microbiome-based changes in chemical signals are mediated by direct synthesis
of particular odorants or pheromones by bacteria, additional studies are required to
determine fully whether host-microbe interactions may be involved.

Several mammals exhibit variations in microbiota composition that correlate with changes in
odorant profiles. Scent gland secretions from badgers contained microbiomes that
discriminated between cubs and adults (Sin et al. 2012). Similar observations revealed that
the meerkat microbiome was predictive of age, sex, and group differences (Leclaire et al.
2014). In a field study of social spotted hyenas versus solitary striped hyenas, scent pouch
secretions contained chemical and microbial profiles that sufficiently distinguished males,
pregnant females, and lactating females (Theis et al. 2013). Alterations in specific microbial
taxa consistently covaried with particular volatile fatty acids in the social versus solitary
hyenas, revealing correlations between microbiome composition, odorant profiles, and social
behavior in mammals. Consistent with this, in laboratory mice, strain, background, and
variations in the major histocompatibility complex gene correlated with differences in both
volatile odor profiles and the microbiome (Zomer et al. 2009). Despite olfactory
communication being less prevalent among primates compared to other mammals, there is
some evidence that changes in the human skin microbiota are associated with differences in
odorant profiles (Verhulst et al. 2011). However, whether the microbiome influences the
production of pheromones with consequences for human behavior remains poorly
understood. Overall, additional research involving transplant of ecological microbiome
samples into laboratory model organisms would be useful for testing causal effects of
microbiome differences on communicative behavior.

Social Interactions

In addition to research on the effects of the microbiome on chemical communication, an
increasing number of studies of laboratory rodents highlight possible roles for the gut
microbiome in modulating intrinsic motivation for social interactions (Table 1). To date, five
independent studies have examined effects of microbiome depletion on social behavior in
animal models, with some conflicting results. In addition to these, two additional studies on
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effects of probiotic treatment on social behavior in animal models have been compelling in
testing causality and identifying potential cellular mechanisms for microbial effects on
behavior. All studies were modestly powered and used standard methods for rodent social
testing with automated tracking and analysis software. Most included examination of both
male and female animals, but some examined only males. In a social approach assay, germ-
free (GF) rats, raised in the absence of microbial colonization, exhibited reduced social
investigation of an unfamiliar age-, sex-, weight-, and microbiome-matched rat than did
conventionally colonized [specific pathogen—free (SPF)] controls (Crumeyrolle-Arias et al.
2014). This deficit was seen only during the first two minutes of the social task, suggesting
increased initial social stress that diminished with habituation. In the three-chamber social
interaction task, mice were given the choice to interact with a novel mouse contained in an
unfamiliar enclosure (novel object) or the novel object alone. Whereas SPF mice exhibited a
typical preference to interact with the mouse over the object, GF mice displayed a
substantial preference for the object over the mouse, denoting deficient sociability and
increased social avoidance (Desbonnet et al. 2014). Similarly, when given the choice to
interact with an unfamiliar versus familiar mouse, GF mice exhibited an abnormal decrease
in preference for social novelty compared to SPF controls. Interestingly, conventionalization
of GF mice with an SPF microbiome at weaning sufficiently corrected deficits in sociability
but not in social novelty, suggesting that social avoidance behavior in particular can be
modulated postnatally with microbiome-based interventions. In contrast to these studies
linking GF status with decreased social behavior, one study of behavioral performance
reported the opposite finding: increased sociability in GF mice compared to SPF controls
(Arentsen et al. 2015). Causes for the discrepancy between the two experiments, which
compared adult male GF versus SPF mice of the same strain (Swiss Webster) in the same
social paradigm (the three-chamber social assay), are unclear. However, differences in the
specific ages of the adult mice tested, the strains of the stimulus mice used, the baseline
microbiota of SPF mice, and the housing conditions used for SPF mice (i.e., in gnotobiotic
isolators or in microisolator cages) could be contributing factors. Additional studies are
needed to demonstrate the reproducibility of microbiota-dependent social behavioral
alterations across testing conditions and experimental designs. More extensive quantitation
of social behavioral parameters across additional paradigms (e.g., ultrasonic vocalizations,
aggression, mating, juvenile play) would provide greater insight into the nature of social
behaviors affected by the microbiota.

Links between the microbiota and social behavior are supported by additional studies that
examine disruptions in the composition of the gut microbiota, rather than the complete
absence of microbes, as in GF mice. Adolescent offspring of antibiotic-treated rats exhibited
altered microbiomes and decreased social investigation (Degroote et al. 2016). Similar
correlations between deficient social behavior and altered gut microbiota profiles were
observed in offspring of pregnant mice exposed to maternal immune activation (Hsiao et al.
2013) or valproic acid (de Theije et al. 2014), but whether microbiota changes are involved
in the etiopathogenesis of impaired social behavior in these mouse models remains unclear.
One recent study provided strong evidence for a causal effect of microbial dysbiosis on the
manifestation of deficient social behavior by using gnotobiotic transplant and treatment
approaches combined with rigorous behavioral, neuroimaging, and electrophysiological
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testing (Buffington et al. 2016). Pregnant mice fed a high-fat diet yielded offspring with
substantial alterations in the microbiota that correlated with abnormal behavior in tests for
reciprocal social interaction, sociability, and preference for social novelty. Transplantation of
the microbiota from offspring of high-fat diet—fed mothers into GF mice recapitulated social
deficits, whereas transplantation of standard microbiota into GF mice corrected social
deficits. Furthermore, restoration of a conventional microbiota in offspring of high-fat diet—
fed mothers corrected impairments in social behavior. This effect of the conventional
microbiota on regulating social behavior could be mediated by the indigenous gut bacterium
Lactobacillus reuters, which was reduced in the gut microbiota of high-fat diet offspring
compared to controls. Treatment of high-fat diet offspring with live cultures of L. reuteriwas
sufficient to correct deficiencies in social behavior and to induce long-term potentiation in
dopaminergic neurons of the ventral tegmental area. Notably, however, treatment of
offspring of immune-activated mothers with another commensal bacterium, Bacteroides
fragilis, had no effect on social interaction in the three-chamber sociability paradigm, despite
ameliorating deficits in ultrasonic vocalizations produced in response to social novelty
(Hsiao et al. 2013). These studies point to the importance of distinguishing between
motivated social investigation versus responsive vocal communication. Altogether, these
findings suggest that specific bacterial species from the gut microbiota can influence social
communicative behavior in a postnatally inducible and reversible manner and highlight the
need to uncover biological bases for bacterial species—specific responses. Additional studies
are needed to elucidate clear molecular and cellular signaling pathways between gut bacteria
and the central nervous system and to determine whether microbial modulation of social
behavior is host or context dependent.

Reciprocal Interactions Between Social Behavior and the Microbiota

In addition to studies that support an effect of the microbiota on modulating social behavior,
there is also evidence that social behavior itself shapes the microbiota. In wild baboons,
social group membership predicted gut microbiome composition. Within social groups,
individuals that interacted physically through social grooming harbored more similar
communities of gut bacteria to each other (Tung et al. 2015). The degree of social interaction
explained variation in the gut microbiota, even after controlling for diet, host genetics, and
shared environment. Similarly, social interactions in chimpanzees were associated with
homogeneity in microbial community profile, and these microbiota appeared to be
transmitted socially to infants through successive generations (Moeller et al. 2016).
Consistent with this, cohoused humans and their pets were identifiable by similarities in
their microbiomes (Lax et al. 2014). Social transmission of the microbiota may be beneficial
for propagating the microbes themselves, and some evidence suggests it could confer
beneficial effects for the host communities as well. In bumble bees and honey bees, for
example, social transmission of the microbiota through exposure to feces from nest mates
was associated with host protection against parasitic infection (Koch & Schmid-Hempel
2011). Although additional research is needed to test the causality and directionality for
interactions between the microbiota and social behavior, these initial studies have raised the
question of whether microbiota-mediated changes in social behavior affect social
transmission of the microbiota and whether there are consequences on both host and
microbial fitness. Social interactions could also propagate disease-causing microorganisms,
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highlighting a need to examine whether pathogenic and mutualistic microbes have
differential effects on the manifestation of social behavior.

The Microbiota and Autism Spectrum Disorder

Emerging research linking the microbiota to social behavior, in addition to nutrition,
immunity, and gastrointestinal function, has motivated examinations of the microbiota in
ASD, a neurodevelopmental disease characterized by impaired social communication and
stereotyped behavior and associated with various medical comorbidities, including
gastrointestinal issues and immune dysfunction. There is evidence that the microbiota may
contribute to abnormal behavior in select animal models that exhibit stereotypies and
impairments in social communication (Buffington et al. 2016, de Theije et al. 2014, Hsiao et
al. 2013). In addition, several studies reveal microbiome abnormalities in ASD individuals
relative to neurotypical controls (Krajmalnik-Brown et al. 2015, Vuong & Hsiao 2016).
Importantly, however, there is little consensus and sometimes disagreement across these
studies on a precise microbiota signature for ASD. Many factors could be confounding,
including heterogeneity in the study cohort with regards to symptom severity, diet, medical
comorbidities, age, sex, and pharmacological exposures. Nonetheless, a few studies reported
beneficial effects of antibiotic treatment for improving behavioral abnormalities in ASD
(Krajmalnik-Brown et al. 2015). Whether these effects are mediated by off-target signaling
of antibiotics, rather than through primary depletion of the microbiome, is unclear. These
clinical studies support an association between microbial dysbiosis and ASD, but caution
should be taken against inferring reverse causality. Controlled trials that test the effects of
microbiome transplant and probiotic treatment in ASD will be important for determining
whether abnormalities in the ASD microbiota could contribute to core symptoms of the
disorder and whether microbiome-based treatments could ameliorate symptom severity.

STRESS-RELATED RESPONSES

Stressor-Induced Behavior and Anxiety

Animals have evolved flexible mechanisms to adapt their behavior in response to integrated
environmental and physiological cues. Situated at the interface of gene-environment
interactions, the composition and function of the microbiota is dependent on host genetics
and shaped critically by environmental factors, including diet, infection, pharmacological
treatments, and stress. Across various experimental paradigms, physical and psychosocial
stressors sufficiently induced abnormal behavior in laboratory animal models concomitant
with altered gut microbiota profiles (Aguilera et al. 2013, Bailey et al. 2011, Bendtsen et al.
2012). Although these findings suggest that exposure to stressors can alter the composition
of the gut microbiota, many studies indicate that the microbiota can in turn influence stress-
related behavior, such as freezing, reduced exploration and thigmotaxis, as manifestations of
the fight-or-flight response (Table 2). To date, exploratory drive and risk avoidance have
been the most frequently studied behaviors in microbiome depletion and probiotic treatment
paradigms. These studies appear to be appropriately powered and have implemented
standard behavioral methodology, using automated tracking software where applicable.
Findings have been widely reproduced across experimental paradigms, behavioral assays,
and model organisms, with a few exceptions.
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Alterations in stress-related behavior have been replicated across several studies of
microbiotadepleted animal models. In the open field test and elevated plus maze, GF mice
exhibited increased exploration of the center of the open field and open arms of the plus
maze as compared to SPF controls (Diaz Heijtz et al. 2011, Neufeld et al. 2011a, Sudo et al.
2004, Clark et al. 2013, Campos et al. 2016, Zheng et al. 2016). This increase in exploratory
behavior at baseline was also seen in a GF zebrafish model (Davis et al. 2016). In response
to physical or psychosocial stressors, however, GF mice and rats displayed elevations in
plasma corticosterone and adrenocorticotropic hormone and reduced exploratory behavior
compared to stressed SPF controls across various tasks typically used to screen for
anxiolytics (Crumeyrolle-Arias et al. 2014, Diaz Heijtz et al. 2011, Sudo et al. 2004).
Likewise, treatment of conventionally colonized mice with antibiotics increased baseline
exploration of the light chamber in the light-dark behavioral assay but resulted in negative
thigmotactic behavior following restraint stress (Desbonnet et al. 2015). Interestingly,
baseline differences in exploration during the step-down task between two strains of mice,
NIH Swiss and BALB/c, were transferable by cross-transplantation of the gut microbiota
(Bercik et al. 2011). These studies similarly reveal that GF animals exhibit high exploratory
behavior at baseline but hyperresponsive stress-induced inhibition of exploratory behavior.
Taken together, these findings reveal potential bidirectional interactions between the
microbiota and stress behavior that may affect host responses to situational stressors.

Conventionalization of young, but not adult, GF mice with standard SPF microbiota
sufficiently reversed abnormalities in exploratory behavior (Diaz Heijtz et al. 2011, Neufeld
et al. 2011a). Similarly, colonization of GF mice with SPF microbiota at 6 weeks was more
efficient at reversing hypothalamic-pituitary-adrenal responses to stress compared to
reconstitution at 14 weeks (Sudo et al. 2004). These studies suggest that the microbiota
influences behavioral networks for stress during a critical time window (Diaz Heijtz et al.
2011).

The importance of the early-life microbiota on programming later-life behavior is supported
further by studies on the effects of maternal insults on the development of offspring
microbiota and behavior. Several recent reports have examined the roles of the maternal and
early postnatal microbiota in mediating detrimental effects of maternal diet,
pharmaceuticals, infection, or stress on offspring exploratory, social, and sensorimotor
behaviors (Buffington et al. 2016, Degroote et al. 2016, Hsiao et al. 2013, Zijlmans et al.
2015). Maternal-to-offspring transmission of microbiota that impacts stress-related behavior
and physiology was supported by evidence that maternal stress altered the maternal vaginal
microbiota and that the inheritance of such microbiota abnormalities was sufficient to induce
negative thigmotactic behavior in the offspring ( Jasarevic et al. 2015). These findings
highlight the importance of early-life microbiota in regulating normal exploratory behavior
and stress responses in animals.

Emerging studies reveal positive effects of probiotics on modulating stress-related behaviors.
In a rat model of chronic stress, treatment with Lactobacillus helveticus NS8 improved
exploratory behavior in the open field and elevated plus maze and reduced corticosterone
and adrenocorticotropic hormone levels (Liang et al. 2015). Moreover, in mouse models of
inflammatory bowel disease and immunodeficiency (Ragl—-/— mice), treatment with L.
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helveticus R0052 and Lactobacillus rhamnosus R0O011 corrected light-aversion behavior in
the light-dark box (Emge et al. 2016, Smith et al. 2014), suggesting that behavioral
improvement conferred by probiotics can occur in diverse physiological contexts. Reduced
thigmotaxis was also observed in zebrafish treated with the commensal bacterium L.
plantarum (Davis et al. 2016), pointing to the ability of select Lactobacillus species to
promote exploratory behavior across model organisms. Corresponding human trials are
lacking, but in a randomized double-blind placebo-controlled study, treatment of healthy
humans with L. helveticus R0052 and Bifidobacterium longum R0175 decreased anxiety-
related scores on the Hospital Anxiety and Depression Scale (Messaoudi et al. 2011). More
research is needed to evaluate the effects of particular bacterial taxa, their mechanistic
interactions with behavioral neurocircuits, any additional physiological side effects that may
be elicited, and, ultimately, the efficacy of microbe-based treatments for behavioral
disorders.

Stressor-Induced Behavior and Depression

In addition to stress-related behaviors that measure exploratory drive and risk avoidance,
exposure to stress often induces abnormal performance in tasks used to measure learned
helplessness and anhedonia. Some recent studies link changes in these behaviors to
alterations in the composition of the gut microbiota in animal models (Dash et al. 2015,
Dinan & Cryan 2013) (Table 3). These investigations have been fewer in number than those
examining stress-induced exploratory and thigmotactic behavior, with four independent
studies on microbiome depletion models and four additional studies on probiotic treatment.
However, the studies appear to be rigorous in methodology, following standard behavioral
protocols and rendering similar overall findings. Compared to SPF controls, GF mice
displayed reduced immobility time in the forced swim and tail suspension tests, common
assessments for screening antidepressants (Campos et al. 2016, Zheng et al. 2016).
Nonobese diabetic (NOD) mice subjected to daily gavage stress exhibited microbial
dyshiosis and increased immobility in the forced swim test, which was reversed by antibiotic
treatment (Gacias et al. 2016). Similarly, maternal separation—induced stress increased
immobility in the tail suspension test in SPF mice but not in GF mice (De Palma et al. 2015).
Furthermore, treatment of SPF mice with the bacterium L. rhamnosus decreased immobility
time in the forced swim test, revealing a beneficial effect of probiotic treatment on stress-
induced learned helplessness (Bravo et al. 2011). Together, these studies suggest that the
microbiome plays an important role in modulating host behavioral responses to stress.

Findings in animals are corroborated by a few human studies revealing correlations between
the microbiome and depression. Across various paradigms, pre- or probiotic treatment
positively affected emotion-related scores and reduced feelings of aggression and rumination
(Pértty et al. 2013, Schmidt et al. 2015, Steenbergen et al. 2015). Fecal microbiota from
major depressive disorder patients were substantially altered relative to those from healthy
controls, with notable increases in Actinobacteria and Bacteroidetes (Zheng et al. 2016).
Notably, transplant of microbiota from depression patients into GF mice was sufficient to
induce elevated immobility times in the forced swim and tail suspension tasks as compared
to transplantation of healthy control microbiota (Zheng et al. 2016), suggesting a possible
role for gut microbial dysbiosis in the manifestation or persistence of stress-related behavior
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in human depression. Metabolomic profiling of mice colonized with the depression
microbiota revealed alterations in hippocampal carbohydrate and amino acid metabolism
(MacQueen & Frodl 2011). However, it remains unclear how the microbiota induces
metabolic changes in specific brain regions and whether these effects are relevant to
behavioral modulation. Overall, this provides evidence that microbiome changes observed in
humans with depression can cause endophenotypes of the disorder in mice.

Sensory Nociception

Nociception or the sensation of pain is an evolutionary trait that is essential for adaptation to
harmful stimuli, such as physical stressors. However, dysregulated nociception (e.g.,
hypernociception) is a key symptom in numerous chronic disorders. Developing evidence
suggests that nociception is linked to dysbiosis of the intestinal microbiota and could
influence pain behavioral responses (Moloney et al. 2016, Theodorou et al. 2014). Early
indications that indigenous microbes can modulate pain came from microbiota manipulation
studies in mice subjected to colorectal distension. Mice pretreated with antibiotics displayed
enhanced visceral hypersensitivity, whereas supplementation of antibiotic-treated mice with
a Lactobacillus strain normalized this response (Verdu et al. 2006). These findings were
corroborated by a separate study demonstrating altered pain responses due to early-life
perturbation of the intestinal microbiota by vancomycin treatment (O’Mahony et al. 2014).
Collectively, these data provided the first demonstrations that the microbiota can modulate
enteric pain responses.

In addition to visceral pain, peripheral pain responses also appear to be controlled by
intestinal bacteria. In one study, hypernociception induced by injection of inflammatory
stimuli in the paw was attenuated in GF compared to SPF mice and was restored following
microbiota conventionalization (Amaral et al. 2008). Inflammatory hypernociception
triggered by carrageenan was associated with elevated local expression of the anti-
inflammatory cytokine //20in GF mice compared to SPF mice, and neutralization of IL-10
was sufficient to restore pain sensitivity. In support of a role for proinflammatory responses
in promoting pain sensitivity, researchers demonstrated that CD11b+ myeloid cells but not
neutrophils or inflammatory monocytes control mechanical hypersensitivity in a model of
tissue injury—induced inflammatory pain (Ghasemlou et al. 2015). These studies suggest a
critical function of the intestinal microbiota in modulating peripheral pain responses through
interactions with the immune system.

Although accumulating literature suggests that pain is triggered by inflammation, bacteria
themselves regulate the activity of nociceptive sensory neurons. In a subcutaneous
Staphylococcus aureus-infection mouse model, infection-induced pain hypersensitivity was
independent of innate immune activation but correlated with bacterial load (Chiu et al.
2013). Treatment of dorsal root ganglia neurons with multiple strains of bacteria, including
Staphylococcus, Streptococcus, Helicobacter, and Pseudomonas, induced action potentials
in nociceptor-expressing neurons, suggesting direct neuronal activation by bacteria. Indeed,
these neurons could be activated by bacterial-derived A-formylated peptides and pore-
forming toxins such as a-hemolysin (Chiu et al. 2013). The inhibitory neurotransmitter y-
aminobutyric acid (GABA) is a key negative regulator of nociceptive sensory neuron

Annu Rev Neurosci. Author manuscript; available in PMC 2019 July 28.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Vuong et al.

Page 10

activation. One study of a rat fecal retention model of intestinal pain showed that GABA-
producing Bifidobacterium had analgesic effects that were dependent on GABA biosynthesis
(Pokusaeva et al. 2016). Although pain is thought to be secondary to immune activation,
these data highlight at least two immune-independent pathways by which bacteria can
modulate nociceptor activity and suggest alternative mechanisms by which the intestinal
microbiota regulates peripheral and visceral pain.

COGNITIVE BEHAVIOR

Learning and Memory

Learning and memory are active processes of acquiring, interpreting, and retaining sensory
information. There is growing evidence that changes in the gut microbiome alter rodent
performance in visual-spatial learning and memory tasks (Table 4). These studies include
five on microbiome depletion and seven on probiotic treatment. Standard behavioral assays
for spatial memory and working memory were used, but many studies examined only male
or female animals, and some appear to be underpowered. Nonetheless, results have generally
been consistent across studies. Compared to SPF controls, GF mice exhibited decreased
working memory behavior in the novel object recognition task (Gareau et al. 2011). SPF
mice treated with a cocktail of antibiotics also displayed substantial deficiencies in object
recognition memory (Frohlich et al. 2016, Mohle et al. 2016) but no difference in spatial
memory behavior in the Barnes maze task (Frohlich et al. 2016). By contrast, rats treated
with ampicillin exhibited impaired spatial memory behavior in the Morris water maze,
suggesting differential effects based on rodent background, behavioral task, type of
antibiotic and/or duration of antibiotic treatment (Wang et al. 2015). In rats treated with
phencyclidine (PCP) to model endophenotypes of schizophrenia, microbial dysbiosis
correlated with impaired performance in an object recognition memory test (Pyndt
Jorgensen et al. 2015). Treatment with ampicillin restored memory-dependent behavior in
the task, suggesting that PCP-induced changes in the microbiota contributed to abnormalities
in cognitive behavior. Additional research is needed to evaluate the effects of GF status and
specific antibiotic treatments across different mouse and rat strains and disease models that
impact learning and memory.

Several studies suggest that select probiotic treatments can modulate learning and memory
behavior in animals. Treatment of ampicillin-exposed rats with Lactobacillus fermentum
NS9 sufficiently restored impairments in spatial memory behavior in the Morris water maze
(Wang et al. 2015). BALB/c mice treated with the gut bacterium B. fongum 1714 exhibited
increased object recognition, fewer probe trial errors in the Barnes maze, and elevated
context and cue-dependent freezing in response to fear conditioning, suggesting improved
episodic, spatial, and long-term learning and memory (Savignac et al. 2015). Beneficial
effects on object recognition memory, but not in spatial memory, were also seen after
probiotic treatment with Bifidobacterium breve 1205, pointing to specificity of cognitive
behavioral modulation to particular bacterial species. In addition, probiotic treatment with L.
helveticus improved deficits in spatial memory behavior seen in mice fed a high-fat Western
diet (Ohland et al. 2013). In contrast, treatment of mice with live, but not heat-killed,
Desulfovibrio vulgaris impaired learning and memory-related behavior in the Morris water
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maze and 8-arm radial maze (Ritz et al. 2016), highlighting differential outcomes based on
specific bacterial species, treatment methods, and behavioral task. Moreover, in a human
clinical study, obese subjects exhibited abnormal microbiome profiles relative to matched
controls, and select microbiota alterations covaried with performance in tasks measuring
speed, attention, and cognitive flexibility (Fernandez-Real et al. 2015). Further studies are
needed to examine the extent to which microbiome changes and particular bacterial species
modulate quantitative parameters of cognitive behavior and to test whether such interactions
contribute to or modify behavior in animal models displaying deficient learning and memory
(e.g., in genetic mouse models for Alzheimer’s disease). In addition, integration of
microbiome profiling into clinical studies of cognitive disorders is needed to determine
whether causal findings in preclinical models apply to human conditions.

MICROBIAL EFFECTS ON NEUROPHYSIOLOGY

Although researchers are beginning to uncover molecular and cellular signaling mechanisms
for how microbial factors alter gastrointestinal function and immunity, exactly how the
microbiota modifies diverse behavioral responses remains unclear. Numerous pathways are
implicated, including vagal nerve innervation, neuroendocrine signaling, and neuroimmune
regulation, and several microbial effects on neurophysiology have been observed (Figure 1).
As the notion of a microbiota-gut-brain axis is still in its infancy, reports of microbial effects
on neurophysiology are recent, with the majority published after 2010. Although
compelling, reproducibility across independent studies has not yet been firmly established,
and further research in this area is warranted.

Global changes in the brain transcriptome were seen across the hippocampus, frontal cortex,
and striatum of GF mice compared to SPF controls, with abnormal expression of genes
relevant to synaptic long-term potentiation, steroid hormone metabolism, the citrate cycle,
and cAMP-mediated signaling (Diaz Heijtz et al. 2011). Deficiencies in microglial
maturation and function have also been reported across various gross brain regions,
including cortex, corpus callosum, hippocampus, olfactory bulb, and cerebellum (Erny et al.
2015). These abnormalities contribute to a growing literature on microbiome-neuroimmune
interactions that mediate behavioral and physiological abnormalities in mouse models for
multiple sclerosis, depression, and stroke, among other disease conditions. Of relevance to
the importance of the gut microbiome in modulating systemic metabolomic profiles, one
study reported an effect of the microbiota on modulating integrity of the blood-brain barrier
(BBB) (Braniste et al. 2014). Remarkably, GF-related defects in BBB permeability were
corrected by postnatal colonization with a single Clostridium species or by supplementation
with short-chain fatty acids—primary metabolic products of bacterial fermentation. Overall,
the importance of the microbiome in modulating host behavior and neurophysiology raises
the prospect of targeting endogenous host-microbiome interactions to develop novel
microbe-based treatments for neurological disorders.

Amygdalar Structure and Gene Expression

Although the molecular mechanisms underlying how the microbiota modifies host social
behavior are unclear, evidence suggests the microbiota alters the neurophysiology of brain
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areas considered key nodes for social and anxiety behavior networks, including the
amygdala and hypothalamus (Goodson 2005). Stereological analysis revealed significantly
increased volume across the lateral and basolateral amygdala and central nucleus of the
amygdala in brains from GF mice compared to SPF controls (Luczynski et al. 2016).
Basolateral amygdalar aspiny interneurons were hypertrophic, characterized by increased
dendritic length and number of branch points. Increases in dendritic length were also
observed in pyramidal neurons, with substantially elevated numbers of stubby and
mushroom-type spines. RNA sequencing revealed global transcriptomic alterations in
amygdala from GF versus SPF mice, with elevated expression of genes relevant for synaptic
localization and immediate early transcriptional responses, and downregulation of genes
relevant to neuronal projections and immune responses. In particular, decreases in nerve
growth factor-inducible protein 1A and A-methyl-p-aspartate (NMDA) receptor subtype 2B
expression were observed in the GF amygdala, among several other brain regions (Arentsen
et al. 2015, Diaz Heijtz et al. 2011, Neufeld et al. 2011a). Changes in expression of brain-
derived neurotrophic factor (BDNF) have been reported in GF versus SPF mice across
several studies. However, results have been conflicting: In one study, BDNF isoform 1V was
elevated in GF amygdala compared to SPF controls (Stilling et al. 2015); in two other
studies, decreased levels of BDNF exon I, 1V, VI, and IX transcript variants were seen in
basolateral amygdala of GF mice compared to SPF controls (Arentsen et al. 2015, Diaz
Heijtz et al. 2011). Similarly, BDNF protein was decreased in amygdala of antibiotic-treated
SPF mice (Bercik et al. 2011). The bases for these discrepancies are unclear, but differences
in amygdalar subregion or mouse strain, age, background, and experience could contribute.
Interestingly, conventionalization of GF mice at weaning with a standard SPF microbiota
restored only a subset of transcriptomic alterations, suggesting an important role for the
microbiome during early development in programming adult baseline amygdalar gene
expression. Modulation of these genes may be of particular relevance to specific behaviors
that can be altered by microbiome interventions postweaning.

Hypothalamic Hormones and Neuropeptides

In addition to the amygdala, evidence suggests the microbiota alters the neuroanatomy and
physiology of the hypothalamus, another important node in the behavioral network for stress
and sociability. One particular study reports that the number of neuropeptide oxytocin-
expressing cells in the paraventricular nucleus (PVN) of the hypothalamus are regulated by
specific bacteria of the gut microbiota (Buffington et al. 2016). Adult offspring of mothers
that were fed a high-fat diet exhibited deficient levels of oxytocin-immunoreactive PVN
neurons, and treatment with the bacterium L. reuteri sufficiently increased oxytocin-positive
cell counts in the PVN. This mechanism was thought to underlie the ability of L. reuterito
promote social behavior in the maternal high-fat diet mouse model. However, molecular
mechanisms linking L. reuterito changes in hypothalamic oxytocin expression remain
unknown, and whether the effects of the microbiota on hypothalamic oxytocin levels and
synaptic strength are specific to this bacterium in particular is unclear.

Other studies raise the notion that select metabolic products from the gut microbiota can
influence social behavior. Intracerebroventricular injections of the short-chain fatty acid
propionate induced deficient social interactions in mice and rats compared to vehicle-
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injected controls (Macfabe 2012). Although propionate is a primary product of bacterial
fermentation and dependent on microbial metabolism, studies examining the effects of
intestinal and systemic, rather than intracerebroventricular, injection of the metabolite are
warranted. Overall, there is some evidence that microbial metabolic products and
downstream modulation of brain neuroactive peptides and transmitters could contribute to
effects on social behavior. However, much remains to be discovered regarding the molecular
and cellular signaling mechanisms by which the microbiota can modulate social interactions.
Furthermore, how microbial effects on other processes, including the mesolimbic reward
system, stress networks, and executive cognitive function, as described herein, could
contribute to modifying social behavior remains poorly understood.

Hippocampal Structure, Neurogenesis, and Neurochemicals

Effects of the microbiota on the hippocampus could contribute to many behavioral
phenotypes, including alterations in learning and memory. Hippocampal volume of the
CAZ2/3 region was increased in GF mice compared to SPF controls (Luczynski et al. 2016).
This correlated with dendritic atrophy of ventral hippocampal pyramidal neurons,
characterized by decreased apical and basilar dendritic length, reduced branch points, and
diminished numbers of stubby and mushroom spines. Dentate granule cells were also
affected, exhibiting decreased numbers of branch points. Recent studies also suggest that the
microbiota modulates hippocampal neurogenesis. Antibiotic-treated SPF mice displayed
decreased numbers of proliferating BrdU- and NeuN-positive mature neurons and
doublecortin-positive neuronal progenitor cells in the subgranular zone of the dentate gyrus
(Mohle et al. 2016). Notably, these deficits in adult neurogenesis were corrected by postnatal
treatment with the probiotic VSL3, which comprises eight bacterial strains: Streptococcus
thermophilus, Bifidobacterium breve, B. longum, B. infantis, Lactobacillus acidophilus, L.
plantarum, L. paracasel, and L. delbrueckii subspecies bulgaricus. In contrast to this,
however, a separate study revealed increased hippocampal neurogenesis in adult GF mice,
which was not corrected by postnatal conventionalization (Ogbonnaya et al. 2015). The
causes of these discrepancies are not clear, but differences between antibiotic treatment and
GF status may contribute. Consistent with this, maternal exposure to peptidoglycans,
components of the bacterial cell wall, were linked to altered neuroproliferation in the
embryonic brain (Humann et al. 2016). In addition to these reports in rodents, one study of
human brain microstructure by diffusion tensor imaging reported correlations between
bacterial diversity of the gut microbiota and fractional anisotropy of the hippocampus as
well as the hypothalamus and caudate nucleus (Fernandez-Real et al. 2015). Together, these
studies suggest that the gut microbiota modulates hippocampal physiology and raises the
question of whether such changes could underlie microbial effects on behavior.

Alterations in hippocampal BDNF expression have been reported widely in response to
microbiome perturbations. Transcript levels of BDNF were decreased in the hippocampal
CAL region of GF brains compared to controls (Diaz Heijtz et al. 2011) and decreased
similarly after antibiotic treatment of SPF mice (Frohlich et al. 2016). BDNF
downregulation was specific to male GF mice, relative to female GF mice and SPF controls
(Clarke et al. 2013). By contrast, a separate study reported elevated hippocampal BDNF
protein in antibiotic-treated SPF mice (Bercik et al. 2011). Rats treated with prebiotic fructo-
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and galactooligosaccharides also exhibited elevated hippocampal BDNF levels (Savignac et
al. 2013). The bases of these incongruities are unclear, but further studies that test effects of
methodological variables are warranted.

Alterations in hippocampal neurochemical pathways have also been associated with changes
in composition of the gut microbiota. GF mice exhibited substantial increases in
hippocampal serotonin and 5-hydroxyindoleacetic acid compared to SPF controls (Clarke et
al. 2013). Decreased expression of serotonin receptor subtype 1A was also seen in the
dentate granule hippocampal subregion of GF mice (Neufeld et al. 2011b). Increases in
expression of dopamine D1 receptor D1a were observed in the dentate gyrus of GF brains
(Diaz Heijtz et al. 2011). Rats treated with ampicillin exhibited decreased hippocampal
levels of NMDA receptor, which was corrected by treatment with L. fermentum NS9 (Wang
et al. 2015). Rats treated with prebiotic fructo- and galactooligosaccharides also exhibited
elevated expression of NMDA receptor subunits NR1 and NR2A (Savignac et al. 2013). SPF
mice treated with the bacterium L. rhamnosus exhibited sustained increases in hippocampal
glutamate and N-acetyl aspartate beginning at one week posttreatment ( Janik et al. 2016).
Overall, disruptions in levels of brain neurotransmitters and their receptors have been
observed in response to manipulations in the gut microbiota, but rigorous mapping of
microbiome-dependent effects on neural circuitry is warranted to gain insight into the
molecular basis of behavioral alterations.

Prefrontal Cortex Myelination and Gene Expression

Emotional states of fear, anxiety, depression, and stress are encoded by neural signaling of
the limbic system. The mood-regulating limbic circuits consist of dynamic communication
between several major brain structures including the nucleus accumbens, medial prefrontal
cortex, amygdala, hippocampus, ventral tegmental area, and hypothalamus. RNA sequencing
revealed overrepresentation of genes involved in myelination in prefrontal cortex from GF
mice compared to SPF controls, with confirmed increases in expression of Mag, Mbp,
Mobp, Mog, and Plp1, which were not seen in frontal cortex, hippocampus, cerebellum,
amygdala, or striatum (Hoban et al. 2016). Electron micrographs corroborated these
findings: GF mice exhibited increased myelin sheath thickness and increased number of
laminae in the prefrontal cortex. These abnormalities were not corrected by
conventionalization of GF mice with an SPF microbiota at weaning, suggesting an effect of
the microbiota on myelination during developmental ages, which aligns with reports that
myelin formation begins on postnatal day 10. Consistent with microbial effects on prefrontal
cortical myelination, stress-exposed NOD mice exhibited altered prefrontal cortex myelin
gene expression and amounts of myelinated fibers that were prevented by antibiotic
treatment. Reduced myelination in medial prefrontal cortex of mice is associated with social
avoidance behavior that occurs after prolonged social isolation (Liu et al. 2012, Makinodan
et al. 2012). Notably, transplant of microbiota from NOD mice into wild-type mice was
sufficient to induce social avoidance behavior and hypomyelination of the prefrontal cortex
(Gacias et al. 2016). These findings suggest dynamic effects of the microbiome on cortical
myelination that could contribute to key behavioral abnormalities.
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CONCLUSIONS

Over the past decade, fundamental studies have revealed compelling effects of the
microbiome on behavior and neurophysiology, inspiring further investigation of the
microbiome-gut-brain axis. Although several neurological phenotypes have been
characterized in response to microbial depletion, gnotobiotic interventions, and other
microbiota-related stressors, principal questions regarding how microbiota changes modulate
host behavior remain unanswered. Importantly, how do microbes communicate with the
nervous system, and which microbial species confer particular host responses? How are the
different routes of gut-brain signaling—neuroendocrine, neuroimmune, neuronal—affected,
and which are most relevant? To what extent are microbial influences on host behavior
dependent on concurrent alterations in nutrition, immunity, and metabolism, among other
physiological processes? In addition, how are microbial effects on each mode of behavior
impacted by the others; for example, are primary alterations in stress responses causal to
abnormalities in social behavior or memory, and how might changes in sensory perception
contribute? Finally, how will our understanding of microbiota-gut-brain communication
shape the development of novel therapeutics for treating behavioral and neurophysiological
disorders? Future research is needed to integrate the various microbial interactions across
body systems toward understanding how they collectively modify host behavior.
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Figure 1.

Neurophysiological abnormalities in microbiota-deficient animals. Abbreviations: AM,
amygdala; BDNF, brain-derived neurotrophic factor; CB, cerebellum; CRF, corticotropin-
releasing factor 1; H, hippocampus; HPA, hypothalamic-pituitary-adrenal; HY,
hypothalamus; NC, nasal cavity; NGFI-A, nerve growth factor-inducible protein A; NR2B,
N-methyl-p-aspartate receptor subtype 2B; OB, olfactory bulb; PFC, prefrontal cortex;
PSD95, postsynaptic density protein 95; S, striatum.
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