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Abstract 

For the first time, the design and preparation of magnetic polyvinyl alcohol (Fe3O4@PVA) nanocomposite film as a 
novel nanocatalyst was accomplished by in situ precipitation method. To enhance the catalysis activity, the surface 
modification of this nanocomposite was carried out by sulfonic acid. After the synthesis of this nanocomposite 
film, Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) analysis, field-emission scanning 
electron microscopy (FE-SEM), transmission electron microscopy (TEM) images, X-ray diffraction (XRD) pattern, N2 
adsorption–desorption by Brunauer–Emmett–Teller (BET), thermogravimetric analysis (TGA) and vibrating sample 
magnetometer (VSM) were utilized to confirm the structure of the nanocomposite. The catalytic activity of Fe3O4@PVA 
was investigated by the synthesis of dihydropyrimidine derivatives from an aldehyde, ß-ketoester and urea or thio-
urea. This heterogeneous nanocatalyst can be easily separated by an external magnet and reused for several times 
without any significant loss of activity. Simple work-up, mild reaction conditions and easily recoverable catalyst are the 
advantageous of this nanocomposite film.
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Introduction
Recently, magnetic nanoparticles (MNPs) have raised 
awareness due to their potential application in catalytic 
activity [1, 2]. They have the advantage of both homog-
enous and heterogeneous catalyst including high reactiv-
ity, high dispersion and easy separation. These benefits 
are owning to their nanoscale size and magnetic proper-
ties [3–5]. Among all MNPs, Fe3O4 nanoparticles have 
received considerable amounts of researchers’ interests 

due to their low cost, majestic reactivity and high specific 
surface area which can be easily and rapidly isolated from 
the reaction mixture by using an external magnet [6]. 
Nowadays, the immobilization of biocompatible polymer 
onto magnetic nanoparticles have been highly taken into 
consideration by organic chemists [7–10].

Polyvinyl alcohol (PVA), a water-soluble synthetic bio-
compatible polymer has received great attentions due to 
its high hydrophilicity high density of –OH groups, low 
toxicity, low cost and high chemical resistance [11]. PVA 
was prepared from polyvinyl ester and has been applied 
widely in biomedical and industrial applications [12]. The 
large amount of OH groups and hydrophilicity nature of 
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PVA are the major drawbacks of this synthetic polymer 
reducing its application. The main reason of this incident 
is dissolving in water. Noteworthy, hydrophilicity of PVA 
can be reduced via functionalizing OH groups [14].

Moreover, mechanical properties and water resist-
ance can be improved by modifying PVA with chemical 
or physical cross-linkers. There are several reports about 
functionalizing OH with various groups such as acidic 
functional groups that can solve the hydrophilicity prob-
lem [13]. Over the past years, several methods have been 
announced for the synthesis Fe3O4/PVA nanocomposites 
such as electrospinning technique [15], ex situ [14] and 
in  situ methods [16]. This synthesized nanocomposite 
has been utilized in various fields such as drug delivery as 
membranes for bone regeneration and other biomedical 
application [17, 18].

Proceeding our research on green nanocatalysts as well 
as multicomponent reaction (MCRs) [19–22] are consid-
ered as an important organic synthesis strategy. MCRs 
are one-pot reactions in which more than two reactants 
produce a single product that includes whole atoms of 
starting materials [23, 24]. Recently, MCRs have received 
a lot of attentions for producing various biologically 
active compounds. Dihydropyrimidinone (DHPM) deriv-
atives are the most important class of heterocyclic com-
pounds which have attracted lots of researcher’s attention 
due to their biochemical and pharmacological properties 
[25]. For the first time in 1891, Biginelli announced an 
useful reaction for the synthesis of DHPMs [26]. Because 
of the biological effects of DHPMs such as antiviral, 
antitumor, antibacterial and anti-inflammatory activi-
ties, several methods have been reported for synthesis 
of these compounds containing β-dicarbonyl compound, 
aldehyde and urea or thiourea in the presence of vari-
ous catalysts such as Bronsted acid [27], Lewis acid [28], 
heteropolyacid [29] and Fe3O4 nanoparticles [30]. Most 
of these catalysts have several drawbacks such as tedi-
ous workup, toxic metals, low yields, long reaction time, 
environmental pollution and difficult separation. In the 
recent years, attempting to improve the catalyst in this 
reaction has received a lot of attention.

Herein, we report for the first time the synthesis and 
characterization of Fe3O4@PVA-SO3H nanocomposite 
film and investigate the catalytic application of this nano-
composite film synthesis of dihydropyrimidine (DHPM) 
derivatives.

Experimental
General
The solvents, chemicals, and reagents applied in our 
experiment were entirely purchased from Merck, Sigma 
and Aldrich. Melting points were measured on an Elec-
trothermal 9100 apparatus and fourier transforms 

infrared spectroscopy (FT-IR) spectra were recorded 
through the method of KBr pellet on a Shimadzu IR-470 
spectrometer. Adds that, 1H and 13C Nuclear Magnetic 
Resonance (NMR) spectra were done on a Bruker DRX-
500 Avance spectrometer at 500 and 125  MHz, respec-
tively. Scanning electron micrograph (SEM) images 
were also taken via Sigma-Zeiss microscope along with 
attached camera and transmission electron microscopy 
(TEM) was provided on a Philips CM200. To go through 
the details, magnetic measurements of the solid samples 
were performed using Lakeshore 7407 and Meghna-
tis Kavir Kashan Co., Iran vibrating sample magnetom-
eters (VSMs). Elemental analysis of the nanocatalyst was 
carried out by energy-dispersive X-ray (EDX) analysis 
recorded Numerix DXP-X10P. XRD patterns of the solid 
powders were carried out using a JEOL JDX–8030 (30 kV, 
20  mA). Nitrogen adsorption and desorption isotherms 
were determined using Micromeritics ASAP 2020 appa-
ratus using nitrogen the analysis gas at − 196 °C. The spe-
cific surface areas were calculated by the BET method, 
and the pore size distributions were calculated from an 
adsorption branch of the isotherm by the BJH model. 
At final, we should add that the products were identified 
through the comparison between the spectroscopic/ana-
lytical data and those come from authentic samples.

Preparation of Fe3O4@PVA nanocomposite film
To synthesize the Fe3O4@PVA nanocomposite film excel-
lently, co-precipitation may consider the best approach. 
At first, a homogenous mixture resulted from 2.0  g of 
PVA 72,000 Mw constantly dissolved in 40 mL water (for 
3 h at 80 °C). After that, under nitrogen (N2) atmosphere, 
homogenous PVA was mixed with 12 mL of NH3.H2O in 
a three-necked flask. Next step, 2.5 g of FeCl3·6H2O and 
1.0 g of FeCl2·4H2O were dissolved in 10 mL of deionized 
water and the mixture was added slowly to the NH3-PVA 
solution. Then, in order to precipitate the Fe3O4@PVA, 
the mixture was heated for 120 min at 60 °C and washed 
with deionized water. At final, when the pH was hope-
fully reached to 7, the precipitation was dried at 80 °C in 
an oven.

Preparation of Fe3O4@PVA‑SO3H nanocomposite film
In the beginning, 0.5 g of Fe3O4@PVA in 20 mL CH2Cl2 
was added to a suction flask equipped with a constant-
pressure dropping funnel and a gas inlet tube which is 
conducting HCl gas over an adsorbing solution (i.e., 
water). While it dispersed by an ultrasonic bath for 
30  min, a solution of chlorosulfonic acid (0.25  mL) in 
CH2Cl2 (5  mL) was supplemented dropwise at -10  °C. 
After that, in order to fetch up HCl totally, the mixture 
was at least stirred for 90  min. The consequence was 
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hopefully a powder of nano-Fe3O4@PVA-SO3H was fil-
tered and washed several times with dry CH2Cl2, metha-
nol, and distilled water. The finalized nanocomposite was 
dried under vacuum at 70 °C.

General procedure for the synthesis of DHPMs 4a–w
0.05  g of Fe3O4@PVA-SO3H magnetic nanocatalyst 
was added into a solution consists of 1.50 mmol of an 
aromatic aldehyde, 1.50  mmol of a ß–ketoester, and 
2.00 mmol of urea or thiourea. The mixture was timely 
refluxed in EtOH and the completion of the reaction 
was carefully monitored by thin layer chromatography 
(TLC). As a result, the catalyst was easily separated 
by an external magnet and the products were purely 
obtained from the recrystallization of the hot EtOH 
without more purification. Finally, we characterize 
some products through the FT-IR and some others via 
matching their melting points (Table  3) on literature 
samples.

Spectral data of the selected products

Ethyl 4‑(3‑nitrophenyl)‑6‑methyl‑2‑oxo‑1,2,3,4‑tetrahy‑
dropyrimidine‑5‑carboxylate (4c):  1H NMR (500 MHz, 
CDCl3): δH (ppm) = 1.08 (3H, t, J = 7.1  Hz, CH3), 2.17 
(3H, s, CH3), 3.93 (2H, q, J = 7.1  Hz, CH2), 6.11 (1H, d, 
J = 3.4  Hz, CH), 7.15–7.33 (5H, m, H–Ar), 7.74 (1H, s, 
NH), 9.19 (1H, s, NH); 13C NMR (125 MHz, CDCl3): δC 
(ppm) = 14.0, 15.9, 52.5, 60.7, 105.0, 121.5, 123.6, 127.5, 
132.0, 132.5, 135.5, 140.6, 146.6, 160.6.

Ethyl 4‑(4‑hydroxyphenyl)‑6‑methyl‑2‑oxo‑1,2,3,4‑tet‑
rahydropyrimidine‑5‑carboxylate (4f):  1H NMR 
(500 MHz, CDCl3): δH (ppm) = 1.06–1.09 (3H, t, J = 7 Hz, 
CH3), 2.21 (3H, s, CH3), 3.93–3.97 (2H, q, J = 6.5  Hz, 
CH2), 5.01 (1H, s, CH), 6.65–6.67 (2H, d, J = 8.5 Hz, H–
Ar), 6.99–7.01 (2H, d, J = 8.5 Hz, H–Ar), 7.62 (1H, s, OH), 
9.11 (1H, s, NH), 9.13 (1H, s, NH); 13C NMR (125 MHz, 
CDCl3): δC (ppm) = 14.5, 18.2, 53.8, 59.5, 100.0, 115.4, 
127.8, 135.8, 148.2, 152.6, 156.9, 165.8.

Ethyl 4‑(4‑fluorophenyl)‑6‑methyl‑2‑oxo‑1,2,3,4‑tetrahy‑
dropyrimidine‑5‑carboxylate (4j):  1H NMR (500  MHz, 
CDCl3): δH (ppm) = 1.05 (3H, CH3), 2.22 (3H, s, CH3), 
3.94 (2H, q, CH2), 5.12 (1H, s, CH), 7.16 (2H, H–Ar), 7.22 
(2H, H–Ar), 7.75 (1H, s, NH), 9.23 (1H, s, NH); 13C NMR 
(125  MHz, CDCl3): δC (ppm) = 14.5, 18.2, 53.7, 59.6, 
99.5, 115.5, 115.6, 128.7, 141.5, 149.0, 152.4, 160.7, 162.7, 
165.6.

Ethyl 4‑(3‑hydroxyphenyl)‑6‑methyl‑2‑thioxo‑1,2,3,4‑tet‑
rahydropyrimidine‑5‑carboxylate (4r):  1H NMR 

(500  MHz, CDCl3): δH (ppm) = 1.07–1.123 (3H, t, 
J = 11.5  Hz, CH3), 3.45 (3H, s, CH3), 3.95–4.00 (2H, q, 
J = 11.5  Hz, CH2), 5.05 (1H, s, CH), 6.65–6.69 (2H, d, 
J = 8.5 Hz, H–Ar), 7.55–7. 153 (2H, d, J = 8.5 Hz, H–Ar), 
9.45 (1H, s, NH), 9.11 (1H, s, NH), 9.13 (1H, s, OH).

Methyl 6‑methyl‑2‑oxo‑4‑phenyl‑1,2,3,4‑tetrahydro‑
pyrimidine‑5‑carboxylate (4s):  1H NMR (500  MHz, 
DMSO): δH (ppm) = 2.21 (3H, s, CH3), 3.49 (3H, s, CH3), 
5.10 (1H, d, J = 3.3  Hz, CH), 7.18–7.29 (5H, m, H–Ar), 
7.72 (1H, s, NH), 9.18 (1H, s, NH); 13C NMR (125 MHz, 
CDCl3); δC (ppm) = 18.7, 51.3, 55.6, 101.2, 126.6, 128.1, 
128.9, 143.7, 146.9, 153.9, 166.3.

Methyl 4‑(4‑chlorophenyl)‑6‑methyl‑2‑oxo‑1,2,3,4‑tet‑
rahydropyrimidine‑5‑carboxylate (4t):  1H NMR 
(500  MHz, CDCl3): δH (ppm) = 2.31 (3H, s, CH3), 3.59 
(3H, s, CH3), 5.26 (1H, d, J = 3.5  Hz, CH), 7.26 (4H, m, 
H–Ar), 7.51 (1H, s, NH), 9.11 (1H, s, NH); 13C NMR 
(125  MHz, CDCl3); δC (ppm) = 18.7, 52.6, 57.7, 98.9, 
121.2, 123.6, 127.5, 135.0, 142.6, 146.6, 152.6.

Methyl 4‑(3‑hydroxyphenyl)‑6‑methyl‑2‑oxo‑1,2,3,4‑tet‑
rahydropyrimidine‑5‑carboxylate (4v):  1H NMR 
(500  MHz, CDCl3): δH (ppm) = 2.22 (3H, s, CH3), 3.52 
(3H, s, CH3), 5.04 (1H, s, CH), 6.59–6.65 (3H, m, H–
Ar), 7.03 (1H, m, H–Ar), 7.08 (1H, s, OH), 9.22 (1H, s, 
NH), 9.38 (1H, s, NH); 13C NMR (125 MHz, CDCl3); δC 
(ppm) = 18.3, 51.3, 54.1, 99.5, 113.4, 114.6, 117.2, 129.8, 
146.5, 148.9, 152.8. 157.8, 166.3.

Results and discussion
In this work, Fe3O4@PVA-SO3H magnetic nanocata-
lyst was synthesized after two steps under mild condi-
tions. As it is illustrated in Scheme  1, according to the 
co-precipitation method, the Fe3O4@PVA nanoparticles 
were synthesized under N2 and in presence of PVA, solu-
tion of FeCl3.6H2O and FeCl2.4H2O. Then, in order to 
achieve Fe3O4@PVA-SO3H nanocatalyst, Fe3O4@PVA 
was reacted by chlorosulfonic acid and analyzed by sev-
eral methods. At final, the nanocomposite successfully 
applied as an effective catalyst in the synthesis of DHPM 
derivatives.

Characterization of the nanocomposite
FT‑IR analysis
To study the interactions of PVA film and Fe3O4 nano-
particles, FT-IR analysis may consider one of the best 
tools. As can be seen in Fig. 1, the broad band in 3015–
3529  cm−1 obviously stems from the vibration of OH, 
hydrogen bonds of OH groups in PVA and absorbed 
moisture. Another strong band in 2908–2920  cm−1 
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also indicates that there is an asymmetric stretch vibra-
tion in C–H groups. Moreover, the peaks on 1443–
1460  cm−1 and 1500–1250  cm−1, respectively refer 
to the C–H bending of CH2 and the tensile vibration 
of C=O or C–O–C in the PVA spine. In other words, 
Fe3O4 nanoparticles may interact with PVA via hydroxyl 
groups present on their surfaces. On the other hand, 
the presence of iron oxide in the hydrogel is aligned by 
the absorption bands in 480–500 cm−1. Thus, the peaks 
in 400–600  cm−1 may demonstrate the deformation 
of the iron oxide structure and the OH groups on the 
surface of the Fe3O4 nanoparticles. The vibration band 

of Fe–O–C bond in 1000–1100 cm−1 also confirms the 
interactions between PVA and Fe3O4 nanoparticles.

Energy‑dispersive X‑ray (EDX)
EDX analysis (Fig.  2a) was included to investigate the 
polymer film and the well-sulfonated process in Fe3O4 
nanoparticles. In this way, although the exact ratio of Fe2 

+/Fe3 + might not be obtained through the EDX analysis, 
there are two groups of peaks who may have the signifi-
cant information. First, the peaks in 0.75, 6.5 and 7.1 pos-
sibly characterize the presence of Fe atoms and second, 

Scheme 1  (a) Preparation of: Fe3O4@PVA-SO3H and (b) the synthesis of DHPMs 4a–w in the presence of Fe3O4@PVA-SO3H

Fig. 1  The FT-IR spectra of: Fe3O4@PVA, Fe3O4@PVA-SO3H and recycled Fe3O4@PVA-SO3H



Page 5 of 13Maleki et al. BMC Chemistry           (2019) 13:19 

the peaks in 0.5, 0.25, represent the O and C elements in 
PVA. Briefly, not only do these peaks lucidly show that 
the sample mainly includes PVA, Fe3O4 and SO3H, but 
also there is not any kind of impurity according to the 
EDX chart. Figure 2b confirmed that there is no consid-
erable difference between the values ​​of the elements in 
primary catalyst and recycled catalyst.

Scanning electron microscopy (SEM)
As a matter of fact, the elaborations related to the mor-
phology and size of the nanocatalyst must be also 
explored. Therefore, we adopt SEM to investigate the 
morphology of the pure PVA and prepared nanocompos-
ite. As it is shown in Fig.  3, the roughness may refer to 
the presence of Fe3O4 particles amongst the PVA matrix. 
Furthermore, not only is there not any Fe3O4 aggregation, 
but also the nanocomposite particles are distributed uni-
formly in an average size of 47 nm. It is worth noting that 
the Fe3O4 particles have the nearly spherical shape and 
are part of the Fe3O4@PVA-SO3H nanocomposite film. 
On the other hand, because there is an appreciable adhe-
sion between organic (PVA) and inorganic (Fe3O4) phase, 
the distance between the nanoparticles is much larger 
than diameter of them.

Transmission electron microscopy (TEM)
To lend further support the morphology of the synthe-
sized catalyst, we also include the TEM images in our 
study. In Fig.  4, the magnetic nanoparticles are shown 
by dark spots. Some of them who are marked more solid 
seem to be severely agglomerated. However, most they 
are not. In contrast, polyvinyl alcohol might be recog-
nized by transparent color in the TEM images. Amaz-
ingly, the spherical magnetic nanoparticles who are 
homogenously distributed prove that polyvinyl alcohol 
successfully prevent of coagulation.

Thermogravimetric analysis (TGA)
The thermal behaviour of the prepared 
Fe3O4@PVA-SO3H magnetic nanocomposite film was 
investigated by thermo gravimetric analysis (TGA) over 

Fig. 2  EDX analysis of: a fresh Fe3O4@PVA-SO3H and b the recycled 
Fe3O4@PVA-SO3H

Fig. 3  The SEM image of Fe3O4@PVA-SO3H nanocomposite film

Fig. 4  The TEM image of Fe3O4@PVA-SO3H nanocomposite film
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the temperature range of 20–800  °C under air atmos-
phere. According to the TG curve of MGCS in Fig. 5, the 
first weight loss (from 50 to 150 °C) denotes the evapora-
tion of adsorbed water in the sample. The second weight 
loss (from 200 to 550 °C) occurs when the PVA and SO3H 
groups are decomposed. And, up to 270 °C, there is not 
any weight loss in the nanocomposite (it is stable at least 
until 250 °C). In conclusion, this synthesized film is suit-
able for organic reactions outright because it has a higher 
thermal stability in comparison with PVA.

X‑ray diffraction (XRD)
XRD may be opted by any scientist who would like to 
study the crystallographic structure of the nanocompos-
ites. In fact, the structure and phase are be able to qualita-
tively recognize, if one study angles and relative intensity 
of the peaks within the XRD analysis. Amorphous mate-
rials are definitely without peaks. However, crystalline 
ones who are established organized structure show spe-
cific angles in XRD. The XRD pattern of the Fe3O4@PVA-
SO3H nanocomposite is shown in Fig. 6 and the average 

Fig. 5  The TGA curve of Fe3O4@PVA-SO3H nanocomposite film

Fig. 6  XRD pattern of Fe3O4@PVA-SO3H nanocomposite film



Page 7 of 13Maleki et al. BMC Chemistry           (2019) 13:19 

size of the particles is calculated by the Scherrer equa-
tion; D = kλ/β cosθ. According to the figure, there is a 
large reflection at 2θ = 19.4° for the PVA film. However, 
based on the Fig.  6, the diffraction peaks at the disper-
sion angle (2θ) are 30.39, 35.81, 37.46, 54.01, 57.58, 63.25, 
66.51, 74.86 and 75.88. So, there are strong correlations 
between the pattern and standard JCPDS Card No. (01-
075-0449) and the decrease in the intensity of the pixels 
fairly declines the interaction between poly(vinyl) alkyl 
and iron oxide nanoparticles (the crystallization).

Vibrating sample magnetometer (VSM)
VSM analysis was applied at room temperature to meas-
ure magnetic properties. M and H curves are illus-
trated in Fig.  7 for Fe3O4@PVA and Fe3O4@PVA-SO3H 
composite nanoparticles, respectively. Both of them 
show a phenomenal paramagnetic behaviour with-
out any obstruction or inclination. In fact, in the range 
of applied field with intensity of 10 kOe, for both the 
maximum magnetic saturation (Ms) is 32.95  emu/g 
and 24.15  emu/g, respectively. The amount of satura-
tion absorption may be attributed to the SO3H which is 
coated on the nanocomposite and eliminates the accu-
mulation and formation of the large clusters. This results 
in the decrease in the size of the crystal and the amount 
of Ms.

Brunauer–Emmett–Teller (BET)
The N2 adsorption/desorption isotherm of Fe3O4@PVA@
SO3H composite is shown in Fig. 8, which displays a typi-
cal type IV curve, indicating the presence of mesoporous 
structure. The BET surface area, BJH pore volume and 
pore size is 54.052  m2/g, 0.042  cm3/g, and 3.48  nm, 
respectively. These results confirms relatively suitable 

specific surface area maintenance within the nanocom-
posite preparation and functionalization of MNPs.

Back titration of Fe3O4@PVA‑SO3H in aqueous media
Acidity ([H+]) of the synthesized Fe3O4@PVA-SO3H 
nanocatalyst was explored by the back titration method. 
At first, 0.5  g of Fe3O4@PVA-SO3H, 0.5  g of NaCl, and 
10 mL of NaOH 0.1 M were added to 35 mL of distilled 
water and stirred with a magnet for 24 h. After that, a few 
drops of phenolphthalein were supplemented into the 
mixture and the colour changed to pink. Finally, the mix-
ture was titrated by the solution of HCl 0.1  M to reach 
the neutral pH. Accordingly, the pH of the nanocatalyst 
was calculated 1.61.

Catalytic application of Fe3O4@PVA‑SO3H in the synthesis 
of DHPMs
In order to look into the catalytic activity of the nano-
catalyst, we apply a one-pot synthesis of DHPMs deriv-
atives. At first, the reaction conditions is optimized 
through the condensation of 1.5  mmol of ethyl ace-
toacetate 1, 1.5 mmol of benzaldehyde 2 and 2 mmol of 
urea 3 in the presence of different catalytic amounts of 
Fe3O4@PVA-SO3H in EtOH and under reflux conditions. 
Table 1 represents that 0.01 g of catalyst was enough to 
catalyze the reactions produce high yields of DHPMs 
derivatives. On the other side, the efficiency and the yield 
of the reaction model in EtOH were meaningfully higher 
than those in other solvents and in short reaction times 
(Table  2). Furthermore, we made a considerable com-
parison between our catalysts and several others who 
were previously reported and widely adopted to syn-
thesize DHPMs derivatives. Table  3 greatly summarizes 
them and proposes that our work is hugely in favor of the 

Fig. 7  VSM of Fe3O4@PVA and Fe3O4@PVA-SO3H nanocomposite film
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Fig. 8  N2 adsorption–desorption isotherm of: a isotherm linear plot, b BET surface area plot and c BJH adsorption of pore-size distribution curve of 
Fe3O4@PVA-SO3H
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saving energy, high yields of the products and the reus-
ability of the nanocatalyst.

It should be add that our strategy is be able to pow-
erfully apply to a very wide range of synthesises. For 
instance, a broad range of aromatic aldehydes possess-
ing electron-withdrawing and electron-releasing substi-
tutions, were employed and as a result a different array 
of products were synthesized in an appropriate time. 
Table 4 contains all the aromatic aldehydes supplied the 
desired products with high-to-excellent yields and in 
short reaction times.

Mechanism evaluation
Scheme  2 suggests a mechanism for the synthesis of 
DHPMs derivatives. Initially, intermediate I is formed by 
reaction of the aldehyde with urea or thiourea in the pres-
ence of Fe3O4@PVA-SO3H. Subsequently, the addition of 
the ß-ketoester is followed by cyclization and dehydra-
tion, and finally dihydropyrimidinone is synthesized.

Reusability of Fe3O4@PVA‑SO3H magnetic nanocatalyst
The reusability perhaps is one of the most substantial 
advantages the catalysts may have and it play the key role 
in commercial applications. For that matter, the reusabil-
ity of Fe3O4@PVA-SO3H nanocatalyst was also studied in 
the reaction model. In this way, after completion of the 
reaction, the nanocatalyst were separated by an external 
magnet, washed with ethanol, dried and lastly reused 
in subsequent reactions. Surprisingly, the nanocatalyst 
could be reused at least six times without any appreciable 
loss of the yields in products (Fig. 9).

Table 1  Optimization of  reaction conditions using 
different catalytic amounts

a  Isolated yield

Entry Solvent Catalyst Amount 
(mg)

Time 
(min)

Yielda (%)

1 EtOH – – 10 Trace

2 EtOH Fe3O4@PVA-SO3H 10 10 65

3 EtOH Fe3O4@PVA-SO3H 30 10 82

4 EtOH Fe3O4@PVA-SO3H 40 10 95

5 EtOH Fe3O4@PVA-SO3H 50 10 99

6 EtOH Fe3O4@PVA-SO3H 60 10 99

7 EtOH Fe3O4@PVA-SO3H 70 10 99

Table 2  Optimization of reaction conditions using various 
solvents

a   Isolated yield

Entry Solvent Catalyst Time (min) Conditions Yielda (%)

1 EtOH – – Reflux Trace

2 EtOH Fe3O4@PVA 50 Reflux Trace

3 EtOH Fe3O4@PVA-
SO3H

10 Reflux 99

4 EtOH Fe3O4@PVA-
SO3H

20 r.t. 70

5 MeOH Fe3O4@PVA-
SO3H

10 Reflux 90

6 H2O Fe3O4@PVA-
SO3H

20 Reflux 65

7 CH3CN Fe3O4@PVA-
SO3H

10 Reflux 85

8 PEG-400 Fe3O4@PVA-
SO3H

20 Reflux 95

9 CH2Cl2 Fe3O4@PVA-
SO3H

20 Reflux 68

Table 3  Comparison of the efficiency of Fe3O4@PVA-SO3H with that of other reported catalysts in the synthesis of model 
4a 

a  Isolated yield

Entry Catalyst Conditions Time Yield (%) Ref

1 SnCl2/nano SiO2 EtOH/reflux 40 min 94 [31]

2 Silica-bonded N-propyl sulfamic acid (SBNPSA) EtOH/reflux 3–4 h 90–95 [32]

3 nanoZnO (5 mol %) Solvent free/60 °C 10 h 95 [33]

4 NH4H2PO4 (5 mol %) or NH4H2PO4/SiO2 Solvent free/100 °C 2 h 85 [34]

5 Fe3O4@mesoporous SBA-15 EtOH/65 °C 6 h 85 [35]

6 Fe3O4@PVA-SO3H (50 mg) EtOH/reflux 10 min 99 This work
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Conclusions
In summary, we have introduced Fe3O4@PVA-SO3H 
nanocomposite film prepared by a facile one-step 
in situ green precipitation method. FT-IR, EDX, VSM, 
TGA, XRD, SEM and TEM were applied to confirm 
the formation of nanocomposite. FT-IR spectrum con-
firmed the presence of Fe–O of Fe3O4, PVA hydroxyl 
and S=O bonds of sulfonated groups, indicating the 
formation of the nanocomposite. EDX analysis showed 
the presence of C, S, O and Fe elements. In XRD pat-
tern, the expected peaks were observed in accordance 

with standard cards of Fe3O4 MNPs and PVA film. 
TEM images indicated the uniform dispersion of nano-
particles in the PVA polymer matrix, as well as poly-
vinyl alcohol prevented the agglomeration of MNPs. It 
has been proven by SEM images that spherical Fe3O4 
particles are distributed uniformly in a medium size 
of 47 nm in the PVA films. The VSM curve shows that 
with the sulfonation of the Fe3O4@PVA nanocatalyst, 
only 8.8 emu/g of magnetic property has been reduced, 
which indicates the presence of functional groups in 
the nanocomposite. TGA results exhibited that the 

Table 4  Synthesis of DHPMs 4a–w by using Fe3O4@PVA-SO3H under refluxing conditions

a  Isolated yield

Entry R1 R2 X Product Time (min) Yielda (%) Mp (°C)

Found Reported

1 C6H5 Et O 4a 10 99 201–202 201 [19]

2 4-ClC6H4 Et O 4b 10 98 210–212 213 [36]

3 3-O2NC6H4 Et O 4c 10 97 225–226 224–226 [36]

4 4-O2NC6H4 Et O 4d 10 98 208–209 206–208 [36]

5 2,4-(Cl)2C6H3 Et O 4e 10 95 248–250 248–250 [32]

6 4-OHC6H4 Et O 4f 12 90 230–231 231–233 [36]

7 3,4,5-(CH3O)3C6H2 Et O 4g 10 87 178–180 178–180 [37]

8 3-OHC6H4 Et O 4h 15 85 222–223 221 [19]

9 3,4-(OH)2C6H3 Et O 4i 20 80 247–248 243–244 [38]

10 4-FC6H4 Et O 4j 10 99 181–182 181–183 [39]

11 4-BrC6H4 Et O 4k 10 98 215–217 213 [19]

12 2-OHC6H4 Et O 4l 15 92 201–203 198–200 [37]

13 2-Thienyl Et O 4m 15 95 203–204 200–202 [40]

14 2-Pyridyl Et O 4n 15 95 181–183 182–184 [40]

15 2-Furanyl Et O 4o 10 95 212–213 211–213 [40]

16 C6H5 Et S 4p 10 98 204–205 203 [19]

17 4-FC6H4 Et S 4q 10 96 180–181 179–181 [39]

18 3-OHC6H4 Et S 4r 20 82 184–186 184–186 [37]

19 C6H4 Me O 4s 10 98 215–218 215–218 [36]

20 4-ClC6H4 Me O 4t 10 97 204–206 205–207 [36]

21 4-MeC6H4 Et O 4u 10 92 208–210 209–210 [36]

22 3-OHC6H4 Me O 4v 15 84 224–225 222 [19]

23 C6H4 Me S 4w 10 97 224–227 222–224 [36]
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nanocomposite was stable at least until 250 °C without 
considerable mass loss. The BET-BJH showed reason-
able data for surface area, pore volume and pore size 
of 54.052 m2/g, 0.042 cm3/g and 3.48 nm, respectively. 
This magnetic nanocomposite film was applied as a 
catalyst for the synthesis of DHPM derivatives. The 
catalyst can be easily separated by an external magnet 

and recycled for six times without any appreciable 
loss of activity. Some of the advantageous of the pre-
sent protocol are reusability of the catalyst high-to-
excellent yields, mild reaction conditions and easy work 
up procedure. Furthermore, FT-IR, 1H and 13C NMR 
analyses were performed for the confirmation of the 
synthesized organic products, DHPMs. Finally, this is 

Scheme 2  Plausible mechanism for the synthesis of DHPM derivatives by Fe3O4@PVA-SO3H magnetic nanocatalyst
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the first report on design, synthesis, functionalization 
and characterization of the present nanocomposite film 
and performance as a heterogeneous catalyst in organic 
reactions.
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