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Abstract

Gold standard prognostic models for long-term outcome in patients with severe traumatic brain injury (TBI) use admission

characteristics and are considered useful in some areas but not for clinical practice. In this study, we aimed to build

prognostic models for 6-month Glasgow Outcome Score (GOS) in patients with severe TBI, combining baseline char-

acteristics with physiological, treatment, and injury severity data collected during the first 24 h after injury. We used a

training dataset of 472 TBI subjects and several data mining algorithms to predict the long-term neurological outcome.

Performance of these algorithms was assessed in an independent (test) sample of 158 subjects. The least absolute

shrinkage and selection operator (LASSO) led to the highest prediction accuracy (area under the receiving operating

characteristic curve = 0.86) in the test set. The most important post-baseline predictor of GOS was the best motor Glasgow

Coma Scale (GCS) recorded in the first day post-injury. The LASSO model containing the best motor GCS and baseline

variables as predictors outperformed a model with baseline data only. TBI patient physiology of the first day-post-injury

did not have a major contribution to patient prognosis six months after injury. In conclusion, 6-month GOS in patients with

TBI can be predicted with good accuracy by the end of the first day post-injury, using hospital admission data and

information on the best motor GCS achieved during those first 24 h post-injury. Passed the first day after injury, important

physiological predictors could emerge from landmark analyses, leading to prediction models of higher accuracy than the

one proposed in the current research.
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Introduction

Traumatic brain injury (TBI) is a major cause of neurolog-

ical disability and death worldwide. Deterioration in patients

with TBI is primarily due to secondary brain injury such as hyp-

oxia, energy dysfunction, and increased intracranial pressure (ICP).

Secondary brain insults are often quantified in the acute in-hospital

period, where major complications occur; therefore, they can carry

important prognostic information.1–3

Prognostic models of long-term neurological recovery and

mortality currently considered gold standard were developed based

on hospital admission characteristics.4,5 For unfavorable Glasgow

Outcome Scale (GOS), these models achieved good discriminatory

ability in each other’s development populations (area under the

receiving operating characteristic curves [AUCs] between 0.77 and

0.80); however, in other external populations, their discriminatory

ability was poor (AUCs ranging from 0.66 to 0.76).6 The difficulty

in generalizing these models to other populations originates from

injured populations that are very heterogeneous at the time of injury

and cannot be fully characterized with admission hospital data

only. The incorporation of secondary injuries that occur in the acute

clinical phase in models purely based on baseline static information

could improve characterization of TBI populations and therefore,

outcome prediction.

Research efforts have been made to develop prognostic models

based on post-baseline summarized insults. In general, studies have

described subject-specific pathophysiological data using either

simple measures such as mean, medians, standard deviations, and

duration of insults,7–10 or more comprehensive summary measures

like the ‘‘dose’’ of secondary brain injury given by the area under

the curve over a specific threshold1,11,12 and entropy values.2

However, models developed on this type of secondary injury fea-

tures have not been useful for outcome prediction. Some models

have been built on small sample sizes or for description purposes
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only and may fail to consider important predictors.1,2,7,8,10–12 One

model built on a moderate sample size including many secondary

injury features and important baseline predictors showed good

discrimination ability. Nevertheless, it lacks external validation and

could be biased due to the inclusion of features with no clinical

meaning.3

The goal of this study is to develop prognostic models for long-

term functional outcome after TBI, using hospital admission data,

injury severity, and automated physiological data collected within

the first 24 h after intensive care unit (ICU) admission. To char-

acterize physiological changes over time, we consider about a

thousand summary measures, including those used in previous

smaller studies.2,3,11–13 We hypothesize that secondary injury in-

formation collected early after injury can increase prognostic ac-

curacy over current models based on admission characteristics

only. The novelty of this study is that our models are built based on

a database of patients with TBI and validated in a separate TBI

population, making them more generalizable to other settings. In

addition, this is the most comprehensive study to date of prognostic

models in severe TBI using information until 24 h after injury

(landmark analysis). We expect that our prognostic models will

help improve management of TBI patients and provide more re-

alistic expectations of outcomes.

Methods

Study population

Subjects with severe TBI were enrolled in one of several ob-
servational or clinical trial studies and admitted to the neurosur-
gical ICU of the Ben Taub General Hospital (BTGH) located in
Houston, Texas, in two different time periods: between 1989 and
2000 (training set), or between 2006 and 2012 (test set). On hospital
admission, demographic and clinical data were collected. In the
ICU, physiological data such as ICP, mean arterial pressure (MAP),
and oxygen saturation of arterial blood (SaO2) were recorded by a
monitor every 36 sec. In addition to automated recording of patient
physiology, vital sign data were collected by ICU nurse practi-
tioners hourly. Among other functional outcome measures, the
GOS was measured at 6 months post-injury.

In this study, we were interested in building prognostic models
for 6-month GOS,14 dichotomized in unfavorable (severe disabil-
ity, vegetative, or dead) versus favorable (good recovery, moderate
disability). The BTGH hospital admission and first day ICU data
were used to build our models. Although in the original data the
cohorts combined comprised 1239 patients, our population con-
sisted of 630 TBI patients after excluding subjects who met the
following exclusion criteria, in the order described: died within the
first 24 h after injury or date of death could not be determined
(n = 5); had gunshot wounds or unknown mechanism of injury
(n = 157); had GOS missing 6 months after injury (n = 238); and had
missing automated physiological data throughout the 24-h period
or physiological data could not be recovered (n = 209).

Patients considered for this analysis were enrolled under in-
formed consent from a legally authorized representative or an ex-
ception from informed consent mechanism, depending on each
study Institutional Review Board protocol. The use of these data
was approved by the Institutional Review Board of University of
Texas Health Science Center at Houston (protocol HSC-SPH-16-
0591).

Participating studies in the BTGH database

The observational studies conducted throughout the years 1989–
2000 included studies of jugular venous oxygen saturation, brain
tissue pO2, cerebral blood flow and cerebral blood flow auto-

regulation, and microdialysis monitoring.15–20 The inclusion cri-
teria for these studies was motor GCS <6 on admission or within
48 h after injury, and age >14. The exclusion criteria were GCS 3
with fixed and dilated pupils and severe associated systemic injury.

A randomized trial of ICU management comparing a cerebral
blood flow targeted management strategy to an intracranial pres-
sure targeted management strategy was conducted between 1994
and 1997.21 The inclusion criteria for the trial was motor GCS <6 or
deteriorated to motor GCS <6 within 48 h after injury, age >14, and
admission within 12 h of injury. The exclusion criteria were GCS 3
with fixed and dilated pupils, contraindication to placement of
jugular bulb catheter, severe associated systemic injury, and severe
pre-existing disease.

A clinical trial conducted between 2006 and 2012 enrolled pa-
tients with motor GCS <6 after resuscitation within 6 h of injury.
Exclusion criteria were GCS 3 with fixed and dilated pupils, pen-
etrating trauma, pregnancy, life-threatening systemic injury, and
severe pre-existing disease.22

Except for the clinical trial conducted between 2006 and 2012
(the test set of our study), the rest of the studies did not exclude
penetrating injuries.

Predictors of 6-month GOS

Several non-dynamic (baseline or static) and dynamic (longi-
tudinal) predictors were considered during model building. Base-
line predictors consisted of hospital admission variables and scores
derived from these ones. Physiological, injury severity, and treat-
ment variables recorded during the first 24 h after ICU admission
were defined as dynamic predictors. A full list of dynamic cov-
ariates included in our models, the pre-processing and imputation
of the physiological variables, and additional details can be found
in the Supplementary Appendix 1 and Supplementary Appendix 2.

Model building, testing, and calibration

To build the 6-month GOS prognostic models, the data collected
in the period 1989–2000 were used for model training (n = 472),
and the data gathered between 2006 and 2012 for model testing
(n = 158). In the training and test sets, 63% and 66% of the patients
had unfavorable 6-month GOS, respectively. First, we computed
the non-dynamic and dynamic predictors previously described for
each subject and applied the least absolute shrinkage and selection
operator (LASSO) to select a subset of most predictive variables.
The LASSO penalizes the absolute magnitude of the coefficients in
the logistic regression model and drops variables that do not con-
tribute to making the model’s prediction closer to the true re-
sponse.23 Additionally, LASSO helps to prevent overfitting of
models and is often used for datasets where the number of pre-
dictive variables is much larger than the number of observations.

Second, the subset of features chosen by LASSO was used as
input variables for different machine learning algorithms. Because
in general there is not a single method that dominates all others in
terms of classification performance, we applied various supervised
learning algorithms on the training data and chose the one that gave
the highest classification accuracy in the test set. The supervised
learning algorithms considered were decision trees, random forests
(RF), support vector machines, linear discriminant analysis (LDA),
quadratic discriminant analysis, and logistic regression (LR).24 We
also used the shrunk LASSO coefficients from the selected model
in the first step to make predictions. Some details about these al-
gorithms can be found in the Supplementary Appendix 3. The AUC
in the test set was used to determine model discrimination.

Statistical analysis

For the chosen model, we evaluated overall model performance
using the scaled Brier score (the scaled Brier score of a perfect
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model is 0%). We also computed sensitivity, for specificities of
80%, 85%, and 90%. The rationale for setting high values of
specificity is that a false diagnosis of a poor neurological outcome
has more serious implications than erroneously predicting a fa-
vorable outcome.

The scale of continuous variables in the chosen model was
assessed by testing the significance of spline terms in a restric-
tive cubic spline model. 25 Model calibration was assessed with
the Hosmer-Lemeshow (HL) statistic, calibration slope, and
calibration-in-the-large. A good calibrated model should have a HL
associated p value above 0.05, calibration-in-the-large close to 0,
and a calibration slope close to 1.26

Sensitivity analyses. Because the LASSO may not pick the
most predictive covariates among highly correlated predictors, we
also tried random forests for selection of the most important cov-
ariates from the full set of features. In addition, we modified the
imputation method, pooling 1 h instead of 2 h of self-patient data to
complete missing physiology. To assess temporal confounding
(e.g., differences in populations heterogeneity), we mixed the two
study cohorts, including different patients from the same period in
training and test sets.

Results

Description of study population

Baseline characteristics of the training and test sets are sum-

marized on Supplementary Appendix 4, Supplementary Table S4.

Patients in the training and test sets had similar distributions for

motor GCS, Pupil reactivity, hypotension, age, initial ICP, SAH,

and epidural hematoma, but were significantly different with re-

spect to the injury severity score (ISS; p < 0.001) and the Marshall

CT scan classification ( p < 0.001). ISS score was not associated

with unfavorable GOS either in the training ( p = 0.58) or in the test

sets ( p = 0.75). Marshall CT scan classification was significantly

associated with unfavorable GOS in both the training ( p = 0.02) and

test sets ( p < 0.001).

Two hundred and thirty-eight patients who had missing 6-month

GOS could not be included in this study. Of these, patients who had

recorded physiological data (n = 193) were not significantly dif-

ferent from patients with recorded 6-month GOS and physiological

data (n = 630) with respect to many hospital admission variables,

such as enrollment motor GCS ( p = 0.15), age ( p = 0.99), or pu-

pillary reactivity ( p = 0.18; Supplementary Appendix 4, Supple-

mentary Table S5). However, the set who had recorded 6-month

GOS had higher median ICP at baseline (median ICP = 14; IQR =
13), compared with those who had missing 6-month GOS median

ICP = 11; interquartile range = 10; p = 0.001), and higher best motor

GCS achieved in the first 24 h post-injury ( p < 0.001).

Model building

We computed a total of 959 dynamic features and seven static

features for all the patients in the training data. Because some of the

baseline and dynamic features were not available or could not be

computed for every patient, the training data were reduced to 431

patients. For features with missing data, we assessed their univar-

iate association with the outcome, and excluded from the analysis

those with p values greater than 0.25 (omitted 9 features). The

LASSO model selection chose 35 important predictors of GOS.

Important baseline predictors were the International Mission for

Prognosis and Analysis of Clinical Trials in TBI (IMPACT) core

model prognostic score of unfavorable outcome, presence of epi-

dural hematoma (EDH), and the Marshall CT scan classification.

Among the dynamic predictors, many variables corresponding to

cluster membership, standard deviations, summary measures of

correlation between MAP and ICP, cepstral coefficients, and the

best motor Glasgow Coma Scale (GCS) achieved in the first 24 h

post-injury were deemed important.

The LASSO model with shrunk coefficients achieved the highest

classification accuracy among the methods, followed by RF, LR,

and LDA; the LASSO AUC was equal to 0.85 in the test set (95%

CI: 0.79–0.91), compared with 0.83 for RF, LR, and LDA. Per-

formance of the top classification algorithms on the training and test

sets is presented on Table 1. In addition, the LASSO model with

baseline and post-baseline features performed significantly better

in the test set compared with a model with baseline covariates only

(AUC = 0.85 vs. 0.77; p = 0.01). To assess the contribution of the

first 24 h post-injury physiology in predicting the 6-month out-

come, we performed a LASSO model selection on the complete set

of physiological and baseline features, excluding the best motor

GCS. When we used the LASSO shrunk coefficients to assess

model performance in the test set, the model with physiological and

baseline data did not perform better than a model with baseline

covariates only (AUC = 0.73 vs. AUC = 0.77, respectively). This

indicates that the best motor GCS may be the most important post-

baseline predictor of long-term functional outcome in patients with

TBI when making predictions by the first day after injury.

A LASSO model with baseline covariates and the best motor

GCS had AUC = 86% of discrimination ability (95% CI: 0.80- 0.92)

in the data used for testing. Hence, compared with a model con-

taining several summary measures of physiological data in addition

to the best motor GCS and baseline characteristics, this simpler

model provides similar discrimination power on the test set and is

less likely to overfit the training data. Receiver operating charac-

teristics curves for the LASSO models previously described are

presented on Figure 1.

Prognostic model based on best motor GCS
and hospital admission data

The most parsimonious model with best performance on the test

set contained the following covariates: presence of subarachnoid

hemorrhage (SAH), EDH, IMPACT prognostic score of unfavor-

able outcome, the first 24 h best motor GCS, and Marshall CT scan

classification. This model resulted of applying adaptive LASSO

(ALASSO) to the model with baseline covariates and the best

motor GCS selected by LASSO in the previous section. Adaptive

LASSO was applied with the purpose of removing potential noise

Table 1. Supervised Learning Algorithms with Best

Performance on the Test Data

Methoda
AUCb in Training

set (n = 431)
AUC in Test
set (n = 158)

Least absolute shrinkage and
selection operator (LASSO)

0.90 0.85

Random forests (RF) 0.94 0.83
Logistic regression (LR) 0.94 0.83
Linear discriminant analysis

(LDA)
0.93 0.83

aBaseline, post-baseline motor GCS, and post-baseline physiological
variables were selected by the supervised learning classifiers.

bAUC = Area under the receiving operating characteristic curve.
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factors.27 The AUC of this model was maintained at 86% (95% CI:

0.80- 0.92).

The ALASSO model fit the data well (HL p value = 0.52).

Overall performance of this model given by the Brier scaled score

was 38%. Calibration-in-the-large was -0.06 and the calibration

slope was 1.10. For specificities of 80%, 85%, and 90%, the model

correctly classified patients with unfavorable GOS, 80%, 75%, and

63% of the time, respectively. The equation of the proposed model

for prediction of 6-month GOS is as follows:

where p is the probability of unfavorable 6-month GOS given the

covariates of the model. For Marshall CT scan classification, the

second category is set as the reference category. The coefficients of

the proposed model (1) were obtained by fitting the model to the

combined training and test sets.

Sensitivity analysis results

When we used a different model selection procedure than

LASSO and a different imputation method, the trained data mining

algorithms resulted in similar AUCs on the test set (not shown)

compared with the ones obtained with our preferred methods.

Using patients from different cohorts for model training also gave

similar results, which indicates absence of temporal confounding.

Discussion

We aimed to build prognostic models for 6-month GOS in patients

with TBI based on hospital admission characteristics and on injury

severity, treatment, and physiological data collected during the first

24 h post-ICU admission. Our hypothesis was that secondary injury

that occurs during the first day after injury would improve outcome

prediction over models based on admission characteristics only. The

hospital admission core model developed by the IMPACT group,

based on age, motor score, and pupillary reactivity, achieved an AUC

of 76% on the entire TBI population of this study.

A more comprehensive baseline model developed by this group,

which included as predictors the variables from the core model in

addition to presence of hypoxia or hypotension, Marshall CT scan

classification, glucose, and hemoglobin (the lab model), achieved

an AUC of 79% on our test set.4 The performance of the IMPACT

lab model on the training set of this study could not be assessed due

to the presence of missing data in hypoxia and laboratory variables.

If our hypothesis was proven, significantly higher AUCs would

lead to more reasonable expectations of neurological function re-

covery, making our models useful tools for clinical decision

making. In this study, we used data of 431 patients to build the

models, and an independent dataset of 158 patients for model

testing. Patients in the training and test sought care at the same

hospital but those in the test set were treated more recently. The

rationale of using patients from two different time periods was to

obtain a prediction model that could be more generalizable to future

populations, which would be representative of current practices.

The major contributor to prediction of poor neurological outcome

was the best motor GCS within the first 24 h post ICU admission.

When applied to the test set, a model containing baseline charac-

teristics and the best motor GCS recorded during the first day post-

injury had an AUC of 0.86 with a margin of error of 6%, indicating

an estimate with good precision. In addition, this estimate is un-

biased because it was obtained from a different sample than that of

training, although further validation is needed using data from a

different hospital.

The GCS post-baseline has been shown to be an important

predictor of functional outcome in TBI. For instance, Lu and

colleagues built a model for prediction of 6-month GOS of ex-

cellent discrimination (AUC = 96%, sensitivity = 83.5%, speci-

ficity = 80.73%), where the GCS measurements on Days 7 and 14

post-injury and the change in GCS from the emergency depart-

ment to Day 14 were the most influential attributes.28 In our model,

when the best motor GCS was included in a LASSO model with

baseline characteristics only, the AUC was 10% lower than in Lu and

colleagues; this is likely due to the differential amount of follow-up

used (24 h vs. 14 days). A much earlier prognostication may be

necessary in this population of critically ill patients. Because early

sedation and paralysis affect patient level of consciousness, the

GCS or its components have not been generally included in prog-

nostic models. However, the best GCS recorded or the change in

GCS from enrollment provide a more accurate representation of

clinical severity after injury.

In the past, prognostic models on functional outcomes in TBI

patients that used physiological data over time had performances

that range from acceptable2 to good.1,3 To our knowledge, the model

with highest discrimination power was developed by Guiza and

colleagues.3 By using physiological data of the first day after ICU

admission, they built a model for 6-month GOS with an AUC equal

to 0.87. They showed that dynamic physiology alone significantly

FIG. 1. Receiver operating characteristic curves for least abso-
lute shrinkage and selection operator models built on different set
of features. Best mGCS, best motor Glasgow Coma Scale.

log p= 1� pð Þ½ � ¼ 3:61þ 0:47 · SAH� 0:97 · EDHþ 0:27 · IMPACT � 0:97 · best motor GCS24

� 0:74 · Marshall CTI þ 0:23 · Marshall CTIII=IV þ 0:69 · Marshall CTV=VI
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improved outcome prediction (AUC = 0.68 with static attributes

versus 0.87 with static and dynamic physiological data). Guiza and

colleagues’ findings contradict our study results, which indicate no

added value of physiological data over hospital admission data.

However, they used a smaller dataset of 160 patients for model

development and a bootstrap technique to compute measures of

performance on the same data. In addition, they computed summary

measures like ICP-MAP correlation coefficients every 10 min in 24 h

and first derivative of the correlation signal, which may not be en-

tirely appropriate since a correlation in a specific 10-min time period

lacks clinical significance. Further, it is unclear how they handled

missing data problems. For all these reasons, the AUC they reported

could be biased and unrealistically high. In our study, we computed

the most important features according to Guiza and colleagues,

except for the ones mentioned above, and 360 other features they did

not consider. Further, we used a clinically-driven method of impu-

tation, a larger sample for model building, and a separate population

for testing. Consequently, our values of model performance are more

robust and represent unbiased estimates of accuracy.

We showed that physiological data during the first 24 h post-

injury did not carry valuable prognostic information on this pop-

ulation. However, the best motor GCS recorded provided important

prognostic information independent of hospital admission charac-

teristics. To our knowledge, this is the first study of 6-month GOS

prediction in TBI patients based on a large (relative to past studies)

sample size for model development and an independent sample for

evaluation that uses post-baseline information (see Supplementary

Appendix 4, Supplementary Table S6, for a comparison of our

model and existing prognostic models for 6-month GOS). It would

be worth exploring the predictive value of data collected in the ICU

passing the first day after injury; important physiological predictors

may emerge with longer follow-up. However, accuracy potentially

gained with longer follow-up would be downweighed by extra bias

associated with additional missing ICU data and timing to make

major clinical decisions.
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