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Abstract

Summary: Combinatorial association mapping aims to assess the statistical association of

higher-order interactions of genetic markers with a phenotype of interest. This article presents

combinatorial association mapping (CASMAP), a software package that leverages recent advances

in significant pattern mining to overcome the statistical and computational challenges that have

hindered combinatorial association mapping. CASMAP can be used to perform region-based

association studies and to detect higher-order epistatic interactions of genetic variants. Most

importantly, unlike other existing significant pattern mining-based tools, CASMAP allows for the

correction of categorical covariates such as age or gender, making it suitable for genome-wide

association studies.

Availability and implementation: The R and Python packages can be downloaded from our GitHub

repository http://github.com/BorgwardtLab/CASMAP. The R package is also available on CRAN.

Contact: karsten.borgwardt@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The goal of genome-wide association studies (GWASs) is to find

single-nucleotide polymorphisms (SNPs) that are significantly asso-

ciated with a trait of interest. However, univariate GWAS often fail

to detect associations to rare variants or to variants with weak

effects (Burrell et al., 2013), due to the large number of tests per-

formed and the relatively low sample size. Moreover, higher-order

epistatic interactions, which may explain part of the phenotypic

variation, might be missed by univariate testing. Nevertheless, test-

ing all higher-order interactions between SNPs causes two funda-

mental difficulties: (i) the number of association tests to perform is

too large for naive implementations to be computationally feasible

and (ii) the need to correct for multiple hypothesis testing (e.g.

Bonferroni correction) creates a substantial decrease in statistical

power. Existing association mapping approaches to study epistasis

(Cordell, 2002) or to perform region-based association mapping

(Lee et al., 2014) alleviate these challenges by reducing the search

space to a limited number of combinations of variants chosen a pri-

ori (see Supplementary Section S1). However, this selection is gener-

ally arbitrary and based on incomplete domain knowledge, with the

additional risk that ignoring sets of variants could decrease power.

Recently proposed algorithms (Llinares-López et al., 2015,

2017; Papaxanthos et al., 2016) use state-of-the-art significant pat-

tern mining techniques to overcome those statistical and computa-

tional challenges. These algorithms exploit the concept of testability

(Tarone, 1990) and implement an efficient pruning criterion in a
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branch-and-bound fashion (Terada et al., 2013). The combinatorial

association mapping (CASMAP) package provides an efficient and

user-friendly implementation of these methods. Although the soft-

ware package allows for general applications of significant pattern

mining, it was developed with a strong focus towards GWAS. When

compared with Massive Parallel Limitless Arity Multiple-testing

Procedure (MP-LAMP) (Yoshizoe et al., 2018), the state-of-the-art

significant pattern mining-based software package for GWAS, the

contributions of CASMAP are 2-fold: (i) it allows for the correction

of covariates, such as age or population structure, which could lead

to the detection of spurious associations if not taken into account

and (ii) it provides methods to carry out burden tests for genomic

regions at any starting position and length, in addition to conducting

higher-order epistasis search.

The CASMAP toolbox is easy to install and easy to use.

Implemented in Cþþ, it is available both in Python and R and is

compatible with both the input format defined by the popular soft-

ware PLINK (Purcell et al., 2007) and tab-delimited text files. The

tool creates output files that contain detailed profiling results, a

summary of statistical results and the list of significantly associated

regions or sets of genomic variants.

2 Combinatorial association mapping

In this section, we describe the problems that can be tackled by

CASMAP. We refer the reader to the Supplementary Material for a

detailed description on how to run the tools to address specific use

cases.

2.1 Region-based association studies
Testing genomic regions for association is based on the hypothesis

that aggregating multiple neighboring SNPs will yield a stronger sig-

nal (see Fig. 1). A natural way to perform this type of analysis is to

test genomic regions for association with a phenotype of interest.

These regions can be predefined, as it is the case in burden tests (e.g.

the coding regions of genes). Nevertheless, to avoid restricting our-

selves to pre-specified genomic regions, it is preferable to perform a

genome-wide analysis of all possible regions. It was shown

(Llinares-López et al., 2015) that such an exploration can be effi-

ciently done while retaining statistical power. Additionally, if un-

controlled factors of variation such as age, gender or population

stratification are present in the data, a recent algorithm allows for

the analysis of all regions while correcting for such covariates

(Llinares-López et al., 2017). CASMAP performs region-based associ-

ation studies, without needing to predefine regions of interest, by

integrating into one package the algorithmic properties of the meth-

ods mentioned earlier.

2.2 Higher-order epistasis analysis
Approaches to search for multiplicative interactions of SNPs that

are statistically associated with a phenotype (epistasis) predominant-

ly focus on pairwise interactions only. For many of these methods,

this limitation is a necessary tradeoff to reduce the number of associ-

ation tests that would need to be performed. However, by neglecting

to consider higher-order interactions, interesting signals might be

lost. It was recently shown (Terada et al., 2013) that significant pat-

tern mining techniques can be leveraged to search for significant

interactions up to any order. Moreover, recent work (Papaxanthos

et al., 2016) extended this algorithm to allow correcting for covari-

ates leading to a method which is applicable to GWAS data with

hidden confounders (see Fig. 1). CASMAP provides a GWAS-centric

interface to use these two approaches to carry out higher-order epis-

tasis analyses, correcting for covariates if necessary.

3 Features

3.1 I/O files
The input files consist of the sample data, the phenotype and an op-

tional covariate file. After running the analysis, the output of the

tools are text files whose contents will depend on which analysis

was conducted. For region-based association studies, the main out-

put will consist of significantly associated genomic regions, marked

by a start and end positions (SNPs), with their respective P-value.

To avoid reporting numerous overlapping regions, a clustering post-

processing step is performed and the final output contains the results

of this step. In higher-order epistasis analyses, the main output will

report the sets of SNPs whose association to the phenotype was

found to be statistically significant. Refer to the Supplementary

Material for additional details on the contents of these and addition-

al input and output files.

3.2 Correction for covariates
A key feature of CASMAP is its ability to correct for covariate factors

in the data (Llinares-López et al., 2017; Papaxanthos et al., 2016).

As opposed to other state-of-the-art approaches in significant pat-

tern mining, our tools are well suited to analyze genotype data in the

presence of hidden confounders. If the user is interested in perform-

ing either type of analysis without correcting for covariates, CASMAP

implements two methods that rely on v2 statistical tests (Llinares-

López et al., 2015; Terada et al., 2013).

4 Results

We used CASMAP in a GWAS dataset of near 8000 individuals

(Regan et al., 2011). Individuals in the dataset belong to two differ-

ent subpopulations, thus population structure acts as an important

confounder. After binarizing the SNPs according to a dominant

encoding, and deriving a covariate from the top six principal compo-

nents, our tool performed a region-based association study on a

total of 615 906 SNPs. It took CASMAP �7 min on a single core to

Fig. 1. Overview of the two types of combinatorial association mappings sup-

ported by CASMAP. The input phenotype y and sample data matrix G are bin-

ary. The covariate c is discrete and here represents the genetic ancestry of

the individual (correction for population structure). Input is in PLINK format or

tab-separated text files. The meta-marker for each individual is created differ-

ently depending on the type of analysis: for regions is a Boolean OR and for

sets is the Boolean AND (see Supplementary Section S3)
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identify several associated regions. Furthermore, none of these

regions were identified by single SNP association tests or burden

tests. Additional details on the biological relevance of the results can

be found in Llinares-López et al. (2017).
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