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Abstract

Several OCs have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma 

in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs 

in eaglets, little is understood about potential biological effects associated with exposure. We 

screened an existing database of OC concentrations in eaglet plasma collected from the 

Midwestern United States against bioactivity information from the ToxCast database. ToxCast 

bioactivity information consists of concentrations expected to elicit responses across a range of 

biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput 

assays. We calculated exposure—activity ratios (EAR) by calculating the ratio of plasma 

concentrations to concentrations available in ToxCast. Bioactivity data were not available for all 

detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the 

detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were 

consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, 

perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some 

plasma concentrations were greater than what may be expected to elicit biological responses. 

About 125 gene targets, indicative of specific biological pathways, were identified as potentially 

being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most 

consistently identified. Other identified biological responses have potential implications for motor 

coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these 

results mean for bald eagles, given that ToxCast data are generated using mammalian-based 

endpoints. Despite uncertainties and limitations, this method of screening environmental data can 

be useful for informing future monitoring or research focused on understanding the occurrence 

and effects of OCs in bald eagles and other similarly-positioned trophic species.

Capsule:

Corresponding author: Sarah M. Elliott, selliott@usgs.gov. 

EPA Public Access
Author manuscript
Environ Pollut. Author manuscript; available in PMC 2020 January 01.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Environ Pollut. 2019 January ; 244: 861–870. doi:10.1016/j.envpol.2018.10.093.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Comparison of organic contaminant concentrations in bald eaglet plasma to bioactivity data from 

in-vitro bioassays indicates that PFOS, CYP-related endpoints, and sites near urban areas should 

be prioritized for future monitoring focused on understanding the effects of organic contaminant 

exposure in bald eagles.
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Introduction

The presence of organic contaminants (OCs) in aquatic environments has been widely 

documented (Ahrens 2011; Dykstra et al. 2010; Elliott and VanderMeulen 2017; Hites 2006; 

Loos et al. 2009). Furthermore, many OCs, including legacy and current use, have the 

potential to elicit biological effects in exposed organisms. There is evidence that some OCs 

accumulate in organisms such as mussels (Booij et al. 2002; Dodder et al. 2014; Kimbrough 

et al. 2009) and fish (Flanagan Pritz et al. 2014; Stahl et al. 2014; Zhang et al. 2013) leading 

to potential transfer up the food chain to higher trophic organisms such as bald eagles 

(Haliaeetus leucocephalus). In fact, several current-use OCs, such as perfluorinated 

chemicals (PFCs) and flame retardants have been detected in bald eagle nestling (eaglet) 

plasma (Dykstra et al. 2010; Route et al. 2014a; Route et al. 2014b; Venier et al. 2010) 

throughout the upper Midwestern United States. Bald eagle nestlings are particularly useful 

indicators of local contamination because they are fed from a relatively small territory (1–2 

km2; Stalmaster, 1987).

Effects of exposure to legacy OCs, such as DDT, DDE, and PCBs, are widely known and 

include eggshell thinning and developmental deformities (e.g. Bowerman et al. 2003; 

Gilbertson and Morris 1976; Kozie and Anderson 1991). Productivity (number of young 

produced) of bald eagles was inversely correlated with DDE and PCB concentrations in eggs 

(Wiemeyer et al. 1984) and eaglet blood plasma (Bowerman et al. 2003). With the ban of 

DDT, many bird populations began to recover during the 1980’s and 1990’s. Furthermore, 

with declining concentrations of PCBs and other organochlorine chemicals, the relationships 

between concentrations and reproductive success largely disappeared (Donaldson et al. 

1999). Although many bird populations recovered, recovery was not uniform throughout the 

Great Lakes region (Bowerman et al. 2003; Dykstra et al. 1998; Grim and Kallemeyn 1995; 

Kozie and Anderson 1991), for reasons that are not fully understood. Productivity and 

reproductive success appear to be increasing or stable, but OCs are still present in the 

environment with the potential to pose a hazard to the health of bald eagles.

While there is some information on the biological effects of OCs on organisms using 

traditional laboratory exposure methods, data currently include a very limited number of 

current-use chemicals. Furthermore, testing methods and endpoints are not consistent among 

chemicals making it difficult to compare the relative hazard from different OCs. The U.S. 

Environmental Protection Agency’s (USEPA) ToxCast database contains bioactivity data 

(chemical concentrations expected to affect specific gene targets or biological pathways) 

Elliott et al. Page 2

Environ Pollut. Author manuscript; available in PMC 2020 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



from a consistent set of assays for thousands of OCs. Data are generated using high-

throughput in-vitro assays and provide pathway-specific responses of screened chemicals. 

Although the assays are primarily targeted toward mammalian processes, the ToxCast 

database provides an efficient way to screen for potential biological responses in other 

organisms and provides context for the relative hazards of chemicals found in the 

environment (Kavlock et al. 2012). Using chemical-endpoint interaction data from ToxCast, 

initial screening can be used to prioritize future research or management activities to better 

understand or help mitigate the potential hazards associated with exposure to harmful 

chemicals. For example, Blackwell et al. (2017) used ToxCast bioactivity data to screen 

environmental concentrations of various OCs in water samples, providing an indication of 

which chemicals presented the greatest relative hazard to aquatic biota health, which 

biological pathways were more likely affected, and which of the sampled sites warrant more 

study. Use of the ToxCast database in this manner provides an efficient method for screening 

environmental data for a large number of chemicals in a consistent manner.

Our study evaluated an existing database of OC concentrations in bald eaglet plasma using 

bioactivity data from USEPA’s ToxCast database to assess potential biological responses 

from OC exposure in the upper Midwestern United States. Our objective was to provide 

context for previously reported OC data by screening those data against concentrations 

suspected to affect specific biological processes. Although some studies have used ToxCast 

data to screen environmental samples such as water or sediment, few have screened 

concentrations of contaminants in plasma using this approach. Plasma contaminant 

concentrations allow for a direct comparison of contaminant burdens with the ToxCast data, 

removing uncertainties associated with potential trophic transport or biomagnification of 

OCs from sediment or water. This screening can be used to prioritize future monitoring 

efforts by identifying the relative importance of: (1) OCs posing a greater hazard to bald 

eagle health, (2) specific biological responses that may be elicited from OC exposure, and 

(3) sites where bald eagle health may be more threatened by exposure to OCs. This 

information can also be used to guide management activities focused on monitoring and 

minimizing the presence of OCs near areas with active bald eagle nests. For example, 

identification of a particular OC that may pose a hazard to eagle health could lead to actions 

that focus on reducing the loading of that OC to the environment.

Methods

Details regarding initial study design and results for most chemical data can be found in 

Dykstra et al. (2010) and Route et al. (2014a, 2014b). Results not previously reported in the 

aforementioned papers are provided in Supplementary Information. A brief description of 

methods follows to provide context for the current analysis.

Study Areas

Eaglet plasma was collected from one eaglet at 159 eagle nests (sites) located within six 

study areas in the Upper Midwestern United States (Fig. 1, Tables 1 and S1) from 2006 to 

2015. Several sites (95 of 159, or 60%) were sampled in multiple years (Table S1). From 

2006 to 2015, eaglets were sampled at four core study areas: Apostle Islands National 
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Lakeshore (APIS), the upper St. Croix National Scenic Riverway (U-SACN), lower St. 

Croix National Scenic Riverway (L-SACN), and Mississippi National River and Recreation 

Area (MISS). Additional resources allowed for sampling along Wisconsin’s Lake Superior 

South Shore (LSSS) in 2007 and 2008 and downstream from MISS in Pools 3 and 4 of the 

Mississippi River (Pools 3&4) in 2008 and 2009. Study areas were located within or 

adjacent to U.S. national parks and were chosen to represent a gradient of land-use 

characteristics. Because of the proximity of L-SACN, MISS, and Pools 3&4 to the 

Minneapolis-St. Paul metropolitan area, these study areas are strongly influenced by 

activities that accompany developed land use such as wastewater treatment plants, urban 

stormwater runoff, and other direct point sources (e.g. stormwater outfalls, industrial 

discharges, etc.) (Tables 1 and S1). Land use in the other study areas is mostly forested with 

some agriculture. However, APIS and LSSS may also be under the influence from the port 

cities of Duluth, Minnesota and Superior, Wisconsin. Point sources may also contribute to 

atmospheric loading of some OCs providing a mechanism for transport and dispersion 

across a broader geographic area.

Sample Collection and Analysis

Plasma samples (n=381) were collected from one five- to nine-week old eaglet at each site 

and analyzed for various contaminants. Sampling and analytical effort varied throughout the 

study dependent on available funding (Table 1, Table S1). Although analytical effort varied, 

the primary targeted OCs were 84 polychorinated biphenyl (PCB) congeners, 16 

perfluorinated compounds (PFCs), 17 polybrominated diphenyl ether (PBDE) congeners, 

and DDT and its metabolites, DDE and DDD. Beginning in 2010, a suite of current-use 

OCs, including bisphenol A (BPA), octylphenol (OP), 4 phthalates, triclosan/triclocarban, 

and several more pesticides (e.g. chlordane, dieldrin, nonachlor) were added. All samples 

were analyzed at the Wisconsin State Laboratory of Hygiene. Primary targeted OCs were 

determined using gas chromatography/mass spectrometry (PBDEs, DDT, DDE, DDD, 

PCBs, nonachlor, and chlordane) or liquid chromatography/tandem mass spectrometry 

(PFCs) methods. Analytical methods for determination of primary targeted OCs are detailed 

in Dykstra et al. (2010) and Route et al. (2014a, 2014b). Current-use OCs were determined 

using a high-performance liquid chromatography-triple quadrupole mass spectrometric 

method based on methods detailed in Silva et al. (2003), USEPA (1995, variously dated), 

and Ye et al. (2008). A volume of 0.5 mL serum was buffered to low pH followed by liquid/

liquid extraction with methyl tert-butyl ether. Current-use OCs were extracted on a 

Phenomenex Strata-X column and eluted using methanol:acetonitrile (1:1) containing 1% 

acetic acid, evaporated to dryness and reconstituted in 100 μL methanol. Contaminants were 

then separated using binary gradient elution reversed phase chromatography and analyzed 

using a triple quadruple mass spectrometer in the atmospheric pressure chemical ionization 

negative ionization mode.

Quality Assurance/quality control

Laboratory matrix-spike samples were analyzed with environmental samples to monitor 

method performance (Table S2). With few exceptions, percent recovery of most OCs fell 

within 70–130%. PCB3 had consistently low percent recoveries (31–68%), 

perfluorododecanoic acid, perfluorotridecanoic acid, and perfluorotetradecanoic acid had at 
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least one high (>200%) recovery, and percent recovery of isononylphenol was 150% in 

2014. Concentrations were not corrected for recovery for this analysis.

ToxCast database

The ToxCast database is a publicly accessible database containing high-throughput 

screening data for over 9,000 unique chemicals. Chemicals tested in ToxCast come from a 

single source and are prepared and screened in a consistent, standardized manner (Richard et 

al. 2016), greatly increasing the comparability of data between assays. All chemicals are 

analyzed in dose-response, allowing for point-of-departure estimates to be determined for 

each chemical-assay pair, and chemicals can be ranked in terms of relative potency within a 

given assay. The current version of the database (v2, October 2015) (USEPA 2015) includes 

12 assay batteries encompassing cell-free, biochemical-based in vitro assays, cell-based in 

vitro assays, and high-throughput whole organism assays (USEPA 2015). ToxCast assays 

cover a range of biological space, including nonspecific endpoints (cytotoxicity, oxidative 

stress, cell morphology), and endpoints associated with over 200 unique signaling pathways 

(e.g. aryl hydrocarbon receptor, androgen receptor, pregnane X receptor). The bioactivity 

data can be prioritized by specific intended gene targets or broader intended target families 

(groups of gene targets related to similar biological pathways) to assess potential biological 

responses. Data in ToxCast are obtained by testing mammalian cells but can be used to 

provide context for environmental data and an indication of the types of biological responses 

that may be expected in other biota.

Data Analysis

Comparisons of OC concentrations to bioactivity data available from ToxCast were analyzed 

in R (v.3.4.0; R Core Team 2015) using the toxEval package (DeCicco et al. 2018). Plasma 

concentrations were compared against activity cutoff concentration (ACC) values obtained 

from the ToxCast database (USEPA 2015) to calculate exposure—activity ratios (EAR). The 

ACC represents the concentration at which a threshold of response is achieved from in vitro 

tests and was used because it is uniform for all chemicals tested within an assay (Blackwell 

et al. 2017). Data originating from Apredica and Bioseek assays were excluded from this 

analysis because they target mostly nonspecific endpoints that we concluded would not be 

beneficial for evaluating specific biological responses to OCs in bald eagles. Assays 

classified as “background measurement” were also excluded from analysis for a similar 

reason. Individual endpoints are annotated by ‘intended target family’ (ITF) in ToxCast, 

which can be used to group endpoints according to function. We included all ITFs available 

in ToxCast in our analysis, except for ‘zebrafish’ and ‘undefined’ because we determined 

them to be unrepresentative for this analysis. Additionally, PCB congener pairs and triplets 

are not represented in the current version of ToxCast, so were removed from the dataset prior 

to comparisons with bioactivity data.

Data quality flags indicating false positive OC-endpoint matches in ToxCast were used to 

further filter the dataset for our analysis. EAR values calculated with an ACC containing any 

of the following flags were excluded from analysis: only highest concentration above 

baseline (baseline here refers to the noise of an assay, Filer et al. 2016), active; only one 

concentration above baseline, active; noisy data; borderline active; gain AC50 < lowest 
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concentration & loss AC50 < mean concentration; and hit-call potentially confounded by 

overfitting. Several OC-endpoint matches resulted in relatively high (>100) EAR values. The 

dose-response curves associated with these OC-endpoint matches were examined to assess if 

the curve followed a logical dose-response relationship. We determined the dose-response 

curves associated with the high EAR values to be of sufficient quality to include in analysis.

Summary statistics of EAR values were calculated: number of OC-endpoint matches, 

minimum EAR (EARmin), average EAR (EARmean), and maximum EAR (EARmax). EAR 

values associated with the same assay within a given sample were summed to provide an 

indication of total biological response to chemical mixtures (EARmix). This method assumes 

simple mixture additivity of detected chemicals (i.e. individual chemicals may cause the 

same biological response). Additionally, a total EAR (EARTot) was calculated for each 

eaglet sample to identify sites with the greatest overall potential to elicit biological 

responses. This was calculated by summing EAR values for every chemical-endpoint match 

identified in each eaglet.

Results and Discussion

Organic contaminant presence

A summary of chemical concentrations for all OCs detected in at least one sample is 

included in Table S3. Of the detected OCs, 19 (including congeners) had associated 

bioactivity data in ToxCast and will be the focus of the following discussion (Tables 2, S3). 

Detected concentrations of the 19 OCs screened against ToxCast ranged from 0.83 

(PCB187) to 4,200 (perfluorooctanesulfonic acid or PFOS) μg/L. The greatest 

concentrations were generally detected for PFCs; PFOS and perfluorononanoic acid (PFNA) 

were detected at a maximum of 4,200 and 160 μg/L, respectively. Maximum concentrations 

of PBDEs, phthalates, PCBs, and other PFCs were 20, 22, 5.3, and 110 μg/L, respectively. 

For comparison, Venier et al. (2010) reported a maximum PBDE concentration of 6.96 μg/L 

in bald eagle plasma collected across several Great Lakes, substantially lower than observed 

in our study. Concentrations of total PCBs in plasma detected in our study were often within 

ranges reported in bald eagles across several Great Lakes (Bowerman et al 2003; Venier et al 

2010). In general, OCs were detected more often and in greater concentrations in eaglet 

plasma collected near urban centers. Specifically, high PFC concentrations reflected known 

contamination plumes in the Minneapolis-St. Paul metropolitan area where high 

concentrations have been detected in groundwater, surface water, birds and fish (Custer et al. 

2010; Monson 2013; Oliaei et al. 2013; Route et al. 2014b; Yingling 2015).

Organic contaminant prioritization

EARmax values for individual OC-endpoint matches ranged from 0.0004 (perfluorohexanoic 

acid or PFHxA) to 907 (PFOS; Table S4) across all samples. Individual EARmax values were 

orders of magnitude <1 for 16 of the 19 (84%) OCs. EARmax values for PFHxA and 

perfluoroheptanoic acid (PFHpA) were consistently low, compared to the other OCs (Fig. 2). 

However, EARmax was >1 for PFOS, BPA, and PFNA, indicating that plasma concentrations 

were greater than ACC concentrations in at least one sample at some sites. PFOS 

consistently had the highest EAR values among the OCs for which chemical-endpoint 
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interaction data exist. Although analyzed in relatively few samples (n=24 among APIS, 

USACN, L-SACN, and MISS), BPA concentrations resulted in EARmax values similar to 

those observed for many of the PFCs. Several other OCs had EARmax values that were 

≥10% of at least one ACC [e.g. perfluorodecanoic acid = 0.37, perfluoroundecanoic acid 

(PFUnA) = 0.30, OP = 0.14], indicating that focused work on these specific OCs may be 

warranted to more fully understand their distributions and potential hazards to eagle health. 

Taking into account all OC-endpoint matches for a given chemical within a sample, three 

OCs stand out because the total EARmax is >1: PFOS, PFUNA, and BPA (Fig. 2).

Based on EAR magnitudes among the different OCs, PFCs, and in particular PFOS, stand 

out as potentially the most hazardous to bald eagles. Furthermore, the actual hazard from 

total PFCs may be greater than what our analysis shows because numerous PFCs that were 

detected in our study have not been tested in the ToxCast program. Relatively high (>1) 

EAR values associated with PFOS were observed in eaglet plasma across the entire study 

area. However, the highest values mostly occurred at sites near the Minneapolis-St. Paul 

urban area (Table S5) where PFCs are produced. High PFOS concentrations in water, 

sediment, fish, birds, and other biota have been documented in this area, as well as the 

dominance of PFOS in relation to detected PFCs (Custer et al. 2010; Custer et al. 2012; 

Delinsky et al. 2010; Oliaei et al. 2013; Route et al. 2014b). Specifically, Pool 2 in the 

Mississippi River (within our MISS study area) is known to be a hot spot for PFOS, though 

concentrations appear to be decreasing over time (Monson 2013; Route et al. 2014b). 

Additionally, similar mean concentrations of ∑PFCs were detected in tree swallow nestling 

plasma across the Great Lakes basin (Custer et al. 2017), but no association between PFC 

concentrations and egg failure was observed (Custer et al. 2012). PFOS concentrations in 7 

samples (5 from MISS, 2 from L-SACN) exceeded an avian toxicity reference value of 

1,700 μg/L in plasma, a value deemed to be protective of a tertiary avian predator based on 

gross pathological effects (Newsted et al. 2005). Although relatively few plasma 

concentrations exceeded this toxicity reference value, exposure to PFCs can cause sub-lethal 

effects. For example, hepatic PFOS concentrations (mean range 54 to 81 ng/g wet weight) 

were negatively correlated with expression of genes associated with molecular chaperones, 

ribonucleic acid (RNA) processes, and carbohydrate transport and metabolism in common 

cormorants (Nakayama et al. 2008). Similarly, a concentration of 1,500 μg/L caused 0.5 to 

2-fold changes in some thyroid gene expression in exposed chicken cells (Vongphachan et 

al. 2011). Other PFCs such as perfluorobutanesulfonic acid (PFBS), PFHxA, and 

perfluorohexanesulphonic acid (PFHxS) caused more than two-fold changes in thyroid gene 

expression at the same concentration. Comparable results were observed for herring gull 

cells exposed to similar concentrations of perfluorobutyrate, PFBS, PFHxA, PFHxS, 

PFHpA, and perfluoroheptanesulfonate (Vongphachan et al. 2011), all of which were 

detected in eaglet plasma in our study.

Similar to PFCs, PCBs and PBDEs are known to frequently occur in the environment and 

have frequently been detected in biota (Chen and Hale 2010; Wenning et al. 2011; Van Ael 

et al. 2012). However, bioactivity information for many PCB and PBDE congeners included 

in this study is limited in the ToxCast database. For example, only 2 of 54 PCBs and 2 of 10 

detected PBDEs had available information. A total of 53 PCBs (including congener pairs 

and triplicates) were detected in at least half of all samples. Considering the frequent 
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detection of PCBs and limited bioactivity information in ToxCast, this analysis potentially 

greatly underestimates the hazard of PCB exposure to eagles. Because PCBs are legacy 

chemicals, their occurrence in the environment and potential effects have been fairly well 

studied (Bowerman et al. 2003; Gilbertson and Morris 1976). Reduced nest site attentiveness 

was observed in glaucous gulls (Larus hyperboreus) with ∑PCB concentrations in blood as 

low as 50 μg/kg (Harris and Elliott 2011). Geometric means of ∑PCBs in bald eaglet plasma 

assessed as part of our study were >50 μg/kg at LSSS, MISS, and L-SACN (Dykstra et al. 

2010). Given evidence of frequent exposure, more information related to potential sub-lethal 

effects from exposure would be valuable for assessing eagle health.

Although there have been mixed results, PBDEs, and their hydroxylated forms, have been 

implicated in the interference of thyroid circulation in bald eagles (Cesh et al. 2010). Other 

biological effects such as steroid hormone and retinol production show varied responses 

among species exposed to PBDEs and other similar flame retardants (Guigueno and Fernie 

2017). Additionally, patterns in P450 EROD activity among groups of terns generally 

followed patterns of contaminant concentrations such as ∑PCBs and ∑PBDEs (i.e. groups 

with higher contaminant concentrations exhibited greater P450 activity) (Herring et al. 

2010). Although results from laboratory exposures of birds to PCBs and PBDEs show 

inconsistent biological responses, reduced antibody-mediated responses in American 

kestrels (Falco sparverius) exposed to PBDEs (Fernie et al. 2005) and adverse effects on 

cardiac development in domestic chickens (Carro et al. 2013) have been observed. The 

frequent occurrence of PCBs and PBDEs in bald eaglets combined with the limited 

availability of data related to biological responses in bald eagles and other birds suggests 

these chemicals should be a priority for research to better understand the potential biological 

effects resulting from exposure.

Several known or suspected endocrine disruptors (e.g. BPA, OP, phthalates) were detected. 

Of these, our analysis shows that the relative order in terms of highest potential for eliciting 

biological responses is BPA>OP>mono(2-ethylhexyl) phthalate>bis(2-ethylhexyl) 

tetrabromophthalate. The EARmax for BPA was >1 for at least one assay endpoint. 

Biological effects (e.g. impaired growth and development, reduced thyroid hormone 

production, impaired reproduction, etc.) of exposure to these OCs have been documented in 

other vertebrates such as fish, humans, and other birds (e.g. Boas et al. 2010; Flint et al. 

2012; Mankidy et al. 2016).

Biological response prioritization

Values of EARmix were used to assess potential biological responses. These values represent 

exposure to OC mixtures by accounting for every detected chemical associated with a 

specific endpoint (EAR>0). A total of 125 gene targets were identified as potentially being 

affected by detected OCs in this study with EARmix values ranging from <0.0001 to 908 

(Fig. 3). The following discussion will focus on the 29 gene targets with associated EARmix 

≥1 for brevity (Table S5).

Processes related to several of the cytochrome P450 (CYP) genes were identified as 

potentially being inhibited; the highest observed EARmix values were associated with CYP 

gene targets (Fig. 3, Table S5). CYP genes can be related to metabolism of xenobiotic 
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substances (Watanabe et al. 2013) and catalyzation of endogenous steroids in birds (Tsutsui 

et al. 2013). Although the CYP genes identified in this analysis are associated with the 

former, other CYP genes are not specifically covered by the available assays. Our results 

indicate potential for inhibited metabolism of foreign substances in eagles within the study 

area because of exposure to the measured OCs. Although some evidence suggests no clear 

orthologous (evolved from a common ancestor, separated by a speciation event, but retains 

the same function) relationship between bird and human CYP2C genes, these genes are not 

well-characterized in most birds (Watanabe et al. 2013). Inhibition of other CYP genes (e.g. 

CYP7B) can lead to reduced reproductive success in birds as a result of decreased sexual 

behavior (Tsutsui et al. 2013). Though it is unclear if this is the case for the eaglets sampled 

in this study, this information could be used to prioritize future monitoring efforts focused 

on identifying biological responses to validate these results.

The BACE1 endpoint was also often identified as potentially being inhibited, with both a 

high number of OC-endpoint matches and relatively high EARmix values. BACE1 is 

typically associated with the formation of Alzheimer’s in humans (Dominguez et al. 2005). 

Although it is unclear what this might mean for other vertebrates, such as eagles, 

hyperactivity (Dominguez et al. 2005) or more adventurous activity (Harrison et al. 2003) 

was observed in mice expressing BACE1 compared to those not. Other evidence suggests 

that BACE1 may be required for formation and maturation of muscle spindles, so inhibition 

may result in alterations to motor coordination (Cheret et al. 2013).

Four G-protein-coupled receptors (GPCRs; ADORA2A, HTR5A, HTR7, and TBXA2R) 

were the second most commonly identified target family based on EAR magnitudes. These 

endpoints are associated with functions such as cardiac rhythm and circulation, blood flow, 

platelet aggregation, and behavioral functions. There is some evidence of ADORA and 

HTR7 being conserved in chickens, however an ortholog for TBXA2R is lacking 

(Lagerström et al. 2006).

Other gene targets with EARmix>1 represent biological pathways associated with steroidal 

[androgen receptor (AR), glucocorticoid receptor (GR)] and non-steroidal [pregnane-X 

receptor (PXR) and peroxisome proliferator activated receptor gamma (PPARG)] nuclear 

receptors, proteases [matrix metallopeptidase 13 (MMP13)], and phosphatases [protein 

tyrosine phosphatase receptor type F (PTPRF)]. Inhibition of some of these gene targets may 

result in behavioral, skeletal, or reproductive responses. For example, there is some evidence 

that AR plays a regulatory role in aggressive behavior in male song sparrows during the pre-

breeding season (Sperry et al. 2010), in which an AR antagonist slightly decreased the 

number of flights associated with aggressive displays. These results indicate that birds 

exposed to chemicals that affect the AR may be outcompeted for nesting territory or mates 

because they are less likely to confront other males. MMP13 plays a role in recovery from 

tibial dyschondroplasia (a skeletal abnormality in birds) through its role in vascularization 

and ossification processes (Asawakarn and Asawakarn 2012). Therefore, inhibition could 

result in longer recovery times or other skeletal abnormalities which may affect the ability of 

eagles to participate in certain behaviors. Although PTPRF has not been widely studied in 

birds, inhibition in human cells has been linked to proliferation of tumor growth (Bera et al. 

2014).
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Site prioritization

To prioritize sites where eagles may be more affected by exposure to the OCs included in 

our analysis, we used EARTot, which sums EAR values from all OC-endpoint matches 

identified in each sample. Average values of EARTot ranged from 0.8 to 1,026. Sites with 

relatively high EARTot values were consistently high across most samples collected at that 

site in different years (e.g. WH-012, WH-TX05), indicating that the eagles are being 

continuously exposed to OCs at these sites over extended periods of time. All but two sites 

(AS-106 and AS-TX-09, both in APIS) had average EARTot ≥1 (Table S6). Furthermore, 77, 

88, and 91% of sites located within L-SACN, MISS, and Pools 3+4 had average 

EARTot≥100.

Because PFOS was so prevalent throughout the study area, we also calculated EARTot 

excluding PFOS (EARTot-NoPFOS; Table S6) to explore the underlying variability in the 

rest of the chemical data. Values for EARTot-NoPFOS exhibited greater heterogeneity within 

study areas, compared to EARTot, indicating that, for most OCs, contamination may be more 

site specific and related to local sources. Excluding PFOS substantially reduced average 

EAR values (EAR ranged from 8.9E-5 to 5.2) however, average EAR values for 21 (13%) of 

the sites was still ≥1. Almost half (44%) of the sites with EARTot-NoPFOS≥1 were located 

within APIS (Table S6, Fig. 4b). Additionally, two sites within U-SACN had average 

EARTot-NoPFOS≥1. In consideration of EARTot, sites within U-SACN were ranked low 

compared to the rest of the study areas. Using EARTot-NoPFOS values, the overall pattern of 

higher EAR values within L-SACN, MISS, and Pools 3+4 compared to the other study areas 

essentially reverses (Fig. 4). Although several sites within the more affected study areas may 

be given high priority, now sites within APIS and a few within U-SACN would be ranked 

higher on a priority list for further monitoring. When excluding PFOS, 18 (66%) APIS sites 

had EARTot-NoPFOS>1, the highest percentage of the six study areas. This was largely driven 

by BPA, PFNA, and PFUnA EAR values.

There was little variation in EARTot values among sites within a study area, indicating that 

eagles within a given study area are exposed to similar chemical profiles. Despite the low 

intra-area variability, we found evidence of high inter-area variability indicating that, 

because of different chemical profiles among sites, the hazards of OC exposure are not 

similar among different populations (Table S6, Fig. 4). Other researchers have documented 

the importance of contaminant profile heterogeneity among freshwater systems as factors 

influencing which OCs may bioaccumulate (Elliott et al. 2009).

Conclusions

We evaluated the potential sub-lethal biological responses of 19 OCs detected in bald eaglet 

plasma by using bioactivity information (chemical concentrations expected to elicit 

biological responses) from the USEPA ToxCast database. Concentrations of most OCs were 

substantially lower than concentrations expected to affect biological processes, but PFOS, 

PFNA, and BPA concentrations were above activity concentrations in at least one sample. 

Biological processes such as metabolism, behavior, development, and cardiac functions were 

identified as potentially being affected by OCs present in bald eaglet plasma. Some patterns 

emerged pointing to site-specific exposure differences, indicating the importance of local 
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point sources, particularly with respect to PFOS. Although our analysis indicates that among 

the OCs tested PFOS should be given high priority for future monitoring, this screening was 

limited by the availability of contaminant occurrence data and bioactivity information in 

ToxCast. For example, bioactivity information for PCBs and PBDEs was sparse, potentially 

underestimating the overall hazard to eagle health. Additionally, it must be noted that 

identified biological responses do not necessarily mean there will be an observed effect. 

Further research needs to be conducted to assess how and if the identified alterations in 

biological activity result in gross health effects. Nonetheless, this screening provides 

information about expected biological responses from specific chemicals. The information 

can be used to prioritize chemicals and sites for future monitoring or research efforts focused 

on understanding the effects of OC exposure on bald eagles. This information could 

ultimately guide management efforts to mitigate OC influence on bald eagles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study areas where bald eaglet plasma was collected during 2006–2015.
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Figure 2. 
Chemical summaries of maximum exposure—activity ratios (EARmax) for organic 

contaminants detected in eaglet plasma collected from six study areas in the upper 

Midwestern United States, 2006–2015. Values represent the maximum of the sum of EAR 

for all organic contaminant-endpoint matches for a given chemical within a sample. 

Numbers in parentheses after chemical name represent the number of sites (eagle nests) at 

which the chemical was detected. Boxplot whiskers extend to the smaller of the maximum 

value and 1.5 times the interquartile range, and the larger of the minimum value and 1.5 

times the interquartile range. Individual points represent values beyond the ends of the 

whiskers. PFC, perfluorinated chemical; BPA, bisphenol A; PCB, polychlorinated biphenyl.
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Figure 3. 
Summaries of mixture exposure—activity ratios (EARmix) for organic contaminants 

detected in eaglet plasma collected from six study areas in the upper Midwestern United 

States, 2006–2015. Mixture EAR was calculated by summing the calculated EAR for every 

chemical identified as potentially affecting specific (a) intended target families and (b) 

targeted gene endpoints. For brevity, Figure 3b only shows identified gene targets with an 

associated EARmix ≥1 and sample size ≥5. Numbers in parentheses after target family or 

endpoint name represent the number of sites (eagle nests) affected. Boxplot whiskers extend 

to the smaller of the maximum value and 1.5 times the interquartile range, and the larger of 

the minimum value and 1.5 times the interquartile range. Individual points represent values 

beyond the ends of the whiskers.
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Figure 4. 
Average total exposure—activity ratios (EAR) (a) including PFOS, and (b) excluding PFOS 

in bald eaglet plasma samples collected from six study areas in the upper Midwestern United 

States, 2006–2015. Total EAR values represent all chemicals detected within a sample for 

which activity concentrations exist.
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Table 2.

Select summary statistics for the 19 organic contaminants detected in bald eaglet plasma samples from the 

upper Midwestern United States that were screened against available bioactivity information in ToxCast. 

Concentrations are micrograms per liter.

Chemical Minimum
concentration

Median
concentration

Maximum
concentration

Flame retardant

PBDE99 0.12 1.1 15

PBDE47 0.19 3.5 20

Alkylphenol

4-tert-octylphenol 2.95 2.95 2.96

Phthalate

Bis(2-ethylhexyl) tetrabromophthalate 0.4 0.74 1.6

Mono(2-ethylhexyl) phthalate 0.27 1.2 22

Antioxidant

Bisphenol A 0.53 1.05 5.8

Paraben

Butylparaben 0.27 0.27 0.28

Propylparaben 0.51 0.73 3.57

Pesticide

Dieldrin 0.5 0.945 5.7

Polychlorinated biphenyl

PCB187 0.83 1.55 5.3

Perfluorinated compound

Perfluorodecanoic acid 1.1 15 85

Perfluoroheptanoic acid 0.12 0.18 6.6

Perfluorohexanoic acid 0.13 4.9 5.7

Perfluorononanoic acid 0.82 3.7 160

Perfluorooctanoic acid 0.12 0.5 14

Perfluorooctanesulfonic acid 7.5 335 4,200

Perfluoroundecanoic acid 1.1 7.9 110

Antimicrobial

Triclocarban 0.27 0.31 0.58

Triclosan 0.82 0.95 1.8
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