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Abstract

Motivation: Deciphering the functional roles of cis-regulatory variants is a critical challenge in

genome analysis and interpretation. It has been hypothesized that altered transcription factor (TF)

binding events are a central mechanism by which cis-regulatory variants impact gene expression

levels. However, we lack a computational framework to understand and quantify such mechanistic

contributions.

Results: We present TF2Exp, a gene-based framework to predict the impact of altered TF-binding

events on gene expression levels. Using data from lymphoblastoid cell lines, TF2Exp models were

applied successfully to predict the expression levels of 3196 genes. Alterations within DNase I

hypersensitive, CTCF-bound and tissue-specific TF-bound regions were the greatest contributing

features to the models. TF2Exp models performed as well as models based on common variants,

both in cross-validation and external validation. Combining TF alteration and common variant fea-

tures can further improve model performance. Unlike variant-based models, TF2Exp models have

the unique advantage to evaluate the functional impact of variants in linkage disequilibrium and

uncommon variants. We find that adding TF-binding events altered only by uncommon variants

could increase the number of predictable genes (R2 > 0.05). Taken together, TF2Exp represents a

key step towards interpreting the functional roles of cis-regulatory variants in the human genome.

Availability and implementation: The code and model training results are publicly available at

https://github.com/wqshi/TF2Exp.

Contact: wyeth@cmmt.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the functional roles of genetic variants in human dis-

ease is a fundamental challenge in medical genetics. Whole genome

sequencing (WGS) enables clinicians to systematically seek variants

that contribute to disease phenotype. Current clinical approaches

focus primarily on the �2% of the genome coding for proteins, yet

up to 88% of disease-related variants in genome-wide association

studies are located within noncoding regions (Hindorff et al., 2009).

However, predicting the functional impact of noncoding variants

remains a challenge. With the rapid accumulation of WGS data,

there is a recognized need for bioinformatics methods that provide

mechanistic insights into noncoding variants.

Gene expression is a key intermediate phenotype for genetic

studies. Substantial progress has been made on detecting statistical

relationships between variants (single-nucleotide variants and short
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indels) and gene expression levels. These expression quantitative

trait loci (eQTL) are enriched in regulatory regions, including pro-

moters, enhancers and transcription factor (TF) bound regions, re-

vealing the potential functional mechanisms of these variants

(Lappalainen et al., 2013; The Encode Project Consortium, 2012).

Partially based on the success of eQTL analysis, regression-based

models trained on common variants (minor allele frequency, MAF

� 0.05) proximal to genes have been developed to predict gene ex-

pression levels (Gamazon et al., 2015; Manor and Segal, 2013).

Such correlative approaches are useful, yet they lack the resolution

to direct researchers to specific functional variants for two reasons.

First, functional variants are hard to infer in association studies due

to linkage disequilibrium (LD) between variants (Farh et al., 2014).

Second, uncommon variants (minor allele frequency, MAF < 0.05)

are excluded from most association studies, yet, rare variants (MAF

< 0.01) are often causal for familial genetic disorders (Gibson,

2012; Lappalainen, 2015) and have been hypothesized to contribute

to human complex traits (Bomba et al., 2017). Both reasons can be

considered from the perspective of model feature engineering (i.e.

how to incorporate model features). Current models use genotypes

as predictors and defer the annotation of variant function until a

model is constructed. To focus upon function, an alternative choice

is to introduce model features emphasizing regulatory regions,

which should increase the biological insights of gene expression

models.

It has been hypothesized that altered TF-binding events are a

central mechanism by which cis-regulatory variants impact gene ex-

pression (Pai et al., 2015). TFs bind to specific locations in the gen-

ome, which can be identified experimentally by methods such as

chromatin immunoprecipitation combined with sequencing (ChIP-

seq). Machine learning approaches coupled to extensive TF ChIP-

seq data have enabled predictions of TF-bound regions across the

genome (Zhou and Troyanskaya, 2015). Altered or disrupted TF-

binding events have been associated with various diseases, including

osteoarthritis (Dodd et al., 2013), type-2 diabetes (Claussnitzer

et al., 2015) and colorectal cancer (Wang et al., 2016). Recently, the

compilation of altered TF-binding events has increased, and compu-

tational models have emerged to predict such events (Chen et al.,

2016; Shi et al., 2016). However, bioinformatics approaches that

quantify the relationship between altered TF-binding events and per-

sonalized gene expression levels remain elusive.

To bridge this gap, we have developed TF2Exp models to infer

relationships between personalized gene expression and altered TF-

binding events caused by cis-regulatory variants. We have explored

the utility of TF2Exp in answering four important questions: (i) are

alterations of TF-binding events predictive of personalized gene ex-

pression levels?; (ii) what are the characteristics of the functional

altered TF-binding events?; (iii) do TF2Exp models perform as well

as the state-of-the-art variant-based models?; and (iv) are TF2Exp

models able to infer functional variants in LD and uncommon var-

iants? Our results show that TF2Exp models successfully predict the

alteration of gene expression for over three thousand genes, with an

average performance comparable to that of models based on var-

iants. Our framework systematically reveals the mechanism by

which cis-regulatory variants impact gene expression, providing

unique interpretive capacity for future human genetic studies.

2 Materials and methods

2.1 Quantifying gene expression from RNA-seq data
Lymphoblastoid cell line (LCL) RNA-seq and variant-calling data

for 358 individuals from European populations were downloaded

from the GEUVADIS project (Lappalainen et al., 2013) and the

1000 Genomes Project (1000 Genomes Project Consortium et al.,

2015) (Supplementary Notes). Individuals covered 4 populations,

including 89 Utah residents with Northern and Western European

ancestry (CEU), 92 Finns (FIN), 86 British (GBR) and 91 Toscani

(TSI). For each population, we built sex-specific transcriptomes in

which SNP positions with MAF � 0.05 were replaced by N (repre-

senting any of the four nucleotides A, C, G, T) using scripts from

(Grubert et al., 2015). RNA-seq data were processed using Sailfish

(version 0.6.3) (Patro et al., 2014), and expression levels of each

gene were quantified as transcripts per million reads. The resulting

expression data were normalized via multiple steps, including stand-

ardization, variation stabilization, quantile normalization and batch

effects removal (i.e. population and gender, and 22 hidden covari-

ates) by PEER (Stegle et al., 2012) (Supplementary Fig. S1). Any

gene that was either on the sex chromosomes or showed near-zero

variance in expression levels was removed, leaving 16 354 genes for

model training.

2.2 Associating TF-binding events to genes using Hi-C

data
We obtained Hi-C proximity scores measuring physical interactions

between DNA regions (Hi-C fragments) in GM12878 cells (an LCL)

from (Grubert et al., 2015). The average size of Hi-C fragments was

3.7 kb (Grubert et al., 2015). For each gene, the proximal region

was defined as the 62 kb region centered at the start position of that

gene [outermost transcript start position annotated by Ensembl

(Aken et al., 2016) in genome assembly GRCh37]. Proximal regions

were extended to include any overlapping Hi-C fragments, and

extended proximal regulatory regions have a median length of

11.3kb (Supplementary Fig. S2). Within 1 Mb of gene body

(as delimited by the outermost transcript start and end), distal regu-

latory regions were defined as Hi-C fragments interacting with

(proximity score > 0.4), but not overlapping, the proximal region of

that gene. The median distance between distal regulatory regions

and TSSs is 300.0kb (Supplementary Fig. S3). Uniformly processed

GM12878 DNase I hypersensitivity sites (DHSs) and ChIP-seq

peaks for 77 TFs were downloaded from the ENCODE project (The

Encode Project Consortium, 2012). As DHS is a general indicator of

TF binding (Neph et al., 2012), DHSs are referred to as part of the

set of TF ChIP-seq peaks within this manuscript for editorial con-

venience. A TF-binding event was associated to a gene if the ChIP-

seq peak overlapped the proximal or a distal regulatory region of

the gene. The resulting associations between genes and TF-binding

events derived from GM12878 cells were used as the reference for

all studied individuals.

2.3 Predicting sequence variation impact on TF-binding

events
Variant-calling data of each individual was downloaded from the

1000 Genomes Project (release 20130502) (1000 Genomes Project

Consortium et al., 2015). We only considered single nucleotide var-

iants and small indels (<100bp). For each individual, the impact of

a variant within a TF-binding event was evaluated as the binding

score difference between the altered and reference alleles, as deter-

mined by the corresponding DeepSEA (v0.93) TF-binding model

trained on GM12878 data (Zhou and Troyanskaya, 2015).

DeepSEA is a deep learning-based tool that accurately predicts the

binding probability of a TF to any DNA sequence in certain cell

types. To allow for the analysis of multiple variants within a TF-

binding event, we modified DeepSEA to calculate the binding score
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of each allele using the 1100 bp region centered at the ChIP-seq

peak-max position (the original code would center the 1100 bp re-

gion at each variant). Score differences of multiple variants within

the same TF-binding event were aggregated to represent the overall

alteration of that event. TF ChIP-seq peaks with multiple peak-max

positions and overlapped peaks from the same experiment were split

at the center of each pair of neighboring peak-max positions. At het-

erozygous positions, the binding score difference was divided by

two. Lastly, we calculated the LD between variants across studies

individuals using plink2 (Chang et al., 2015).

2.4 Quantitative models of gene expression
LASSO regression on gene expression: We developed a regression

model to predict the expression level of a gene using altered TF-binding

events associated with that gene based on the following equation:

Yi �
Xn

k¼1

bkDTFi;k þ � (1)

where Yi is the expression levels of gene i across the studied individ-

uals, n is the number of TF-binding events associated with gene i,

DTFi;k is the alteration of TF-binding event k across the studied

individuals and bk is the effect size of TF-binding event k.

In equation (1), Yi is the response and DTFi;k is the input feature for

the LASSO regression model, which was trained using the R glmnet

package (Friedman et al., 2010) on a training set of 358 LCLs.

Features with near zero variance were filtered out before model

training using the caret package (Kuhn, 2015). Model performance

was evaluated by 10-fold nested cross-validation, in which internal

folds identified the optimal hyper-parameter lambda, and outer

layers tested the model performance. Model performance was meas-

ured as the square of the correlation between predicted and observed

expression levels (R2). The trained models would select a subset of

TF-binding events as key features of which effect sizes were not

zero. When Hi-C proximity scores were used as the prior to select

features, the prior (penalty.factor in the glmnet function) was set to

‘1 – proximity score’.

Defining TF-TF interactions: For TFs known to interact in the

BioGrid database (Chatr-Aryamontri et al., 2015), we created inter-

action terms between pairs of TF-binding events (one from each TF)

if they satisfied one of the following conditions: 1) two binding

events overlapped by at least 200 bp; or 2) their regulatory regions

were reported to interact in the Hi-C data.

Variant-based models: For each gene, we trained regression models

based on multiple variants to predict the expression level of that gene

following the procedure as in the work of Gamazon et al. (Gamazon

et al., 2015). We only considered common variants (single-nucleotide

variants and short indels with MAF � 0.05) within 1 Mb of gene body

regions. The regression formula for variant-based models is as follows:

Yi �
Xn

k¼1

bkXi;k þ �

where Yi is the expression levels of gene i across studied individuals,

n is the number of variants and Xi;k is the number of minor alleles of

varianti;k.

2.5 External validation with expression data
For external validation of TF2Exp models on microarray data, we

relied on expression levels of 15 997 Ensembl genes for LCLs of 80

CEU, 87 Chinese (CHB) and 89 Japanese (JPT) individuals (Stranger

et al., 2012). For these individuals, variant data was retrieved from

the 1000 Genomes Project. We applied TF2Exp models to predict

gene expression levels from potentially altered TF-binding events

based on the variant data, and compared these predictions with the

gene expression levels reported from the microarray.

To test TF2Exp models on GTEx data (GTEx Consortium, 2017),

called genotype variants and expression levels derived from GTEx

project were obtained from dbGAP (release phs000424.v7.p2). For

each tissue, expression data were normalized similarly to LCLs (see

section ‘Quantifying gene expression from RNA-seq data’): standard-

ization of the data, followed by quantile normalization and batch

effects removal (i.e. gender and 20 hidden covariates) by PEER

(Stegle et al., 2012). GTEx eQTLs data (version 6) were downloaded

from https://gtexportal.org/home/datasets.

3 Results

3.1 TF2Exp: regression models to predict the impact of

altered TF binding on gene expression levels
We developed TF2Exp, a gene-based computational framework to

assess the impact of altered TF-binding events on gene expression

levels (Fig. 1). As detailed in Section 2, variant-calling data (single

nucleotide variants and small indels) and gene expression data for

358 lymphoblastoid cell lines (LCLs) were obtained from the 1000

Genomes (1000 Genomes Project Consortium et al., 2015) and

GEUVADIS projects (Lappalainen et al., 2013). Moreover, TF-

bound regions for 77 distinct TFs and DNase I hypersensitivity sites

(DHSs) were obtained from the ENCODE project for the GM12878

LCL (The Encode Project Consortium, 2012). TF-binding events (in-

clusive of DHSs) were associated to a gene if they overlapped either

the proximal or distal regulatory region of that gene (see Section 2).

The impact of each single variant within a TF-binding event was

scored using DeepSEA (Zhou and Troyanskaya, 2015), and multiple

variants within the same TF-binding event were aggregated to gener-

ate an overall alteration score of that TF-binding event in each indi-

vidual. On average, each gene had 420.0 altered TF-binding events

within 36.6 regulatory regions (both proximal and distal) across the

358 individuals. Based on the computed alteration scores of TF-

binding events in each individual, a regression model was trained by

LASSO (Friedman et al., 2010) for each gene to predict expression

levels and to identify the key contributing TF-binding events. For

users seeking to apply the trained models, note that TF2Exp models

only require genotype data as input and will output the predicted ex-

pression changes for the corresponding genes. The TF2Exp frame-

work is publicly available at https://github.com/wqshi/TF2Exp.

3.2 TF2Exp predicts the expression levels for a subset of

genes
We successfully trained TF2Exp models for 15 887 genes. Average

model performance (R2) by 10-fold cross-validation was 0.049, with

most models having low predictive power (Fig. 2). To assess the impact

of random noise in the model training process, we set up control mod-

els in which gene expression levels were shuffled across individuals

while preserving TF binding features. Control models achieved an aver-

age R2 of only 3.6�10�5 (Fig. 2), indicating that the signal captured

by TF2Exp models is not random. Repeating the randomization pro-

cess 20 times for the genes on chr1 showed mean performance of

4.0�10�5 and maximum performance of 0.048, respectively. To focus

on predictive models, we applied an R2 threshold of 0.05 as in (Manor

and Segal, 2013), resulting in models for 20.1% of genes (hereinafter

referred to as predictable genes). As in the work of Manor et al.

(Manor and Segal, 2013), we observed a significant correlation
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between model performance and variance of expression levels for the

predictable genes (Spearman’s correlation¼ 0.21, P-value< 2.2�10�16;

Supplementary Fig. S4). We performed gene ontology (GO) enrich-

ment analysis using GREAT (McLean et al., 2010). The top 10%

predictable genes were enriched in pathways including graft-versus-

host disease and allograft rejection, terms which are relevant to the

roles of B cells (i.e. the cell type before transforming to LCL) in the

immune system. In contrast, we did not observe any enriched GO

term for the top 10% of genes with the highest expression variance,

highlighting the ability of TF2Exp to capture expression levels rele-

vant to the sample of interest.

We next assessed whether prior knowledge, such as Hi-C prox-

imity scores and known TF-TF physical interactions, could improve

TF2Exp models. We introduced the proximity scores of Hi-C inter-

actions to guide model fitting, so that TF-binding events on highly-

interacting regions would be less regularized by LASSO (Section 2).

We observed that adding Hi-C proximity scores resulted in a slight

R2 improvement of 1.6�10�3 (Wilcoxon signed-rank test, P-value

¼ 1.5�10�41), suggesting that the original TF2Exp models had

captured most of the signal from the Hi-C data. We also tested mod-

els including interaction terms for known TF-TF physical interac-

tions (Section 2). Adding TF-TF interactions significantly reduced

model performance by 2.2�10�3 (Wilcoxon signed-rank test,

P-value ¼ 4.6�10�152, Fig. 2), potentially due to our incomplete

knowledge of TF-TF interactions and/or limited training samples.

Taken together, models incorporating prior knowledge achieved simi-

lar performance to the original ones. Thus, we focused on the original

(and simpler) TF2Exp models in the next stages of the analysis.

3.3 Alterations of DHS, CTCF and tissue-specific TF

binding are the most frequently selected features
We next sought to identify TFs for which binding events were more

frequently selected in TF2Exp models. For the predictable genes,

models selected an average of 4.2 key features (where a feature was

the alteration score of a single TF-binding event). Frequently

selected TFs had more binding events across the genome (Pearson

correlation 0.97, P-value < 2.2�10�16). The top 5 selected TF fea-

tures were DHS, RUNX3, CTCF, EBF1 and PU.1, accounting for

33.6% of the selected features (Fig. 3). Particularly, 42.0% of the

predictable genes had at least one DHS feature, which is in agree-

ment with the well-known relationship between chromatin accessi-

bility and gene expression (Natarajan et al., 2012). CTCF has

diverse roles in gene regulation across multiple tissues (Ong and

Corces, 2014), and the remaining three TFs perform important roles

in LCL tissue-specific regulation: RUNX3 in immunity and inflam-

mation (Lotem et al., 2015), EBF1 in B lymphocyte transcriptional

network expression (Hagman et al., 2012) and PU.1 in lymphoid de-

velopment (Iwafuchi-Doi and Zaret, 2014). Lastly, we observed that

RAD21 and SMC3, despite being among the top 10 TFs with the

highest number of peaks in the training set (Fig. 3), were selected

less frequently than the other 8 TFs (<0.65%), in accordance with

their nature of non-sequence specific DNA-binding.

3.4 Selected TF-binding events correlate with gene

expression levels in vivo
We next sought to assess whether in vivo TF binding of selected fea-

tures correlated with gene expression levels. We obtained CTCF

and PU.1 ChIP-seq LCL data for two independent sets of 45

Expression ∆TF A # 1 ∆TF B #2 ∆TF D  #6

Individual 1 0.9 0.1 0.3 …

… … …

Individual N 0.4 0.0 -0.2 …

Gene expression ~ ∑ +

DBA BCA
Reference cell 
(GM12878)

# 1 # 2 # 3 # 4 # 5 # 6

Individual 1

Individual N

Inferred TF 
binding event

VariantProximal 
regulatory region

TF binding 
event

Score varia�on impact 
on TF binding events

Infer regulatory regions and 
TF binding events

Train regression model

Distal 
regulatory region

Gene 
1Mb1Mb

±2Kb 

Gene bodyA

B

C

358 training individuals

Hi-C Interac�on Hi-C Interac�on

Legend:

Fig. 1. Overview of the TF2Exp framework. (A) Infer regulatory regions and

TF-binding events of each gene based on the reference cell line (GM12878).

Distal regulatory regions are associated to a gene according to Hi-C data. TF-

binding events on the proximal or distal regulatory regions of a gene are

assigned to that gene. (B) Score the alteration of TF-binding events based on

the overlapped variants for each individual. (C) Train regression models for

each gene across the collected individuals

Fig. 2. Performance comparison of alternative TF2Exp models. For each type

of TF2Exp model, performances (R2) of investigated genes (y axis) are plotted

in ascending order with respect to the cumulative percentage of genes (x

axis). The horizontal dashed line indicates the defined performance threshold

of 0.05 for predictable genes
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originally-training individuals (see Supplementary Notes). TF-

binding signals were extracted from the reference GM12878 TF-

binding events (i.e. the ChIP-seq features used in the TF2Exp for

model construction). In predictable genes, 83 CTCF and 72 PU.1

binding events were selected for testing based on their high variance

of binding score change (see Section 2). Eight CTCF (9.7%) and

seven PU.1 (9.6%) of the tested in vivo binding events significantly

correlated with gene expression levels (Pearson correlation, FDR

<0.05), and their correlation coefficients were consistent with the

correlation estimated between the TF sequence alteration score and

gene expression (P-value¼ 1.4�10�4, coefficient ¼ 0.81). Due to

limited size of test samples (n¼45), we did not have sufficient statis-

tical power to detect weakly correlated TF-gene relationships (e.g.

coefficient < 0.29, see Supplementary Notes), which accounted for

most (89.7%) of the tested in vivo binding events. In summary, we

observed that 9.7% of TF-binding events selected by TF2Exp dis-

played detectable correlation (correlation coefficient > 0.29) be-

tween in vivo binding and gene expression levels.

3.5 Selected TF-binding events within proximal regions

have greater effect sizes
We next examined the locations and effect sizes of selected features. In

proximal regions, selected features were mostly within 10 kb from gene

start positions, while, in distal regulatory regions, they were distributed

within �500kb. We observed significant depletion of selected features

in distal regulatory regions compared with proximal regions (Fisher’s

exact test, odds ratio¼ 0.11, P-value< 2.2�10�16). Effect sizes of TF-

binding events decreased rapidly with respect to the distance from gene

start positions (Supplementary Fig. S5A). Such a trend has been

reported for effect sizes of eQTLs (Battle et al., 2014). Selected

features in proximal regions also exhibited significantly larger absolute

effect sizes (Wilcoxon rank-sum test, P-value ¼ 7.3�10�68,

Supplementary Fig. S5B) and more positive effects (Wilcoxon rank-sum

test, P-value ¼ 4.22�10�5) than features in distal regulatory regions.

Nevertheless, the selected distal features of a gene were significantly

enriched in the enhancer regions associated to that gene, as specified in

the FANTOM5 project (Andersson et al., 2014) (Fisher’s exact test,

odds ratio ¼ 1.3, P-value ¼ 0.002, see Supplementary Notes), support-

ing a functional role of the selected distal TF-binding events. Thus,

TF2Exp models are identifying cis-regulatory sequence variants that

bring functional insights into the mechanisms underlying gene expres-

sion levels.

3.6 Uncommon variants increase the number of

predictable genes
As TF2Exp models can distinguish the impact of variants in TF-binding

events, we investigated the contribution of uncommon (MAF< 0.05) var-

iants to model performance. TF2Exp models trained only on uncommon

variants achieved higher average performance (R2 ¼ 0.004) than control

models, indicating that the contribution of uncommon variants was not

random. To further explore the predictive potential of uncommon var-

iants, we divided TF-binding events into two classes: (i) events altered

only by uncommon variants (i.e. do not include any common variants);

and (ii) the rest of events overlapping at least one common variant. Note

that, by definition, class-2 events can still contain uncommon variants.

After adding class-1 events on top of class-2 events, there was a mean per-

formance improvement of 3.8�10�4, and the number of predictable

genes increased to 3177 compared with 3139 genes for models trained

only on class-2 events. To test whether this observation was due to ran-

dom effects, we shuffled class-1 events across individuals. For shuffled

models, the number of predictable genes decreased to 3076, suggesting

that the benefit of using TF-binding events altered only by uncommon

variants was not random. Moreover, in pairwise comparison between the

two models for the same gene (i.e. adding class-1 events or not), 31.4%

of shared predictable genes gained performance increase (6.7�10�3 on

average) after adding, while 37.2% of genes showed performance de-

crease but with smaller alteration (4.7�10�3 on average). Furthermore,

the newly selected features in the improved models were enriched at prox-

imal regulatory regions compared with those models with decreased per-

formance (Fisher’s exact test, P-value¼ 3.2�10�5, odd ratio¼ 1.8).

To avoid noisy uncommon variants, we next focused on TF-

binding events altered only by uncommon variants (class-1 events)

within proximal regions. After adding these events, the number of

predictable genes increased to 3179. Although the two types of mod-

els performed similarly for most cases (Wilcoxon rank sum test,

P-value ¼ 0.51; Fig. 4), there was a significant mean performance

improvement of 5.9�10�4 after adding class-1 events (Welch’s

t-test, P-value ¼ 4�10�4). While 95% of the genes showed small

absolute performance alteration (1.6�10�3 of R2 on average), for

the remaining �5% of genes, adding class-1 events enabled signifi-

cantly larger performance improvement (Fig. 4; Wilcoxon rank sum

test, P-value ¼ 4.6�10�5, estimated difference ¼ 1.5�10�2).

3.7 Alteration of TF-binding events improve the

performance of variant-based models
We compared our TF2Exp models with state-of-the-art models that

predict alteration of gene expression levels based on proximal

variants (Gamazon et al., 2015; Manor and Segal, 2013) (see

Section 2). First, we trained TF2Exp and variant-based models on

the same set of common variants (variants within TF-binding events,

MAF � 0.05) for each gene. Both models showed comparable per-

formance across the shared predictable genes (Wilcoxon signed-rank

test, P-value¼0.15; Supplementary Fig. S6). In addition, the default

variant-based models using all the proximal common variants

Fig. 3. Top 10 TFs with the highest number of binding events and their selec-

tion frequency in predictable genes. Red bars indicate the total number of

TF-binding events selected by TF2Exp models. Blue bars indicate the total

number of genes that selected binding events of the indicated TF as key fea-

tures. The percentage on top of each red bar indicates the ratio between the

number of selected events in TF2Exp models and the total number of peaks

for that TF
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within 1 Mb of the gene body showed better performance than

TF2Exp models trained on common variants (Wilcoxon signed-rank

test, P-value¼0.06), potentially due to variants in unknown TF-

binding events. As uncommon variants are informative for a subset

of TF2Exp models, we trained models on combined features of the

default variant-based model and the default TF2Exp model for each

gene. Combined models achieved better performance than variant-

based models (Wilcoxon signed-rank test, P-value¼0.02, estimated

median difference ¼ 1.8�10�4), in agreement with the positive con-

tribution of proximal uncommon variants observed in the previous

section.

We further explored whether introducing binding events of new

TFs would improve model performance. We collected and added

TF-binding events of 92 new TFs from other cell types (175

ENCODE ChIP-seq datasets) to TF2Exp models, and tested the

model performance of genes in 5 chromosomes (chr1-2 and chr20-22).

High performance genes (R2>0.25) in TF2Exp models gained sig-

nificant improvement (Wilcoxon signed-rank test, P-value¼0.03,

estimated median difference ¼ 5.3�10�4) after the addition of

binding events for new TFs, while the rest of the genes were better

represented with the original models (Wilcoxon signed-rank test, P-

value¼7.7�10�5, estimated median difference ¼ 1.6�10�3).

These findings suggest that additional TF sets are informative, but

model performance is limited by the size of training samples.

3.8 TF2Exp models distinguish variants in LD compared

with variant-based models
Unlike variant-based models, TF2Exp models are able to infer the

functional roles of variants in linkage disequilibrium (LD) based on

the predicted impact of variants on TF-bound regions. Comparing

TF2Exp and variant models on the same set of common variants

(variants within TF-binding events), most selected binding events in

TF2Exp models (62.7%, n¼12 663) overlapped selected variants

(59.8%, n¼9386) in variant-based models for the same gene. Of

the total of overlapped variants, 18.4% were in high LD (r2 > 0.9)

with other variants in the same TF-bound regions, hindering the in-

ference of the causal variants by variant-based models. Using

TF2Exp models, we found that 36.8% of the linked variants showed

at least a two-fold impact on the overlapped TF-bound region com-

pared with the selected variants (Supplementary Fig. S7), suggesting

a more dominant contribution of the linked variants. In addition, a

subset of selected variants (20.1%) overlapped with more than one

selected TF-binding event, indicating that individual variant could

alter multiple mechanisms of gene regulation. Overall, TF2Exp

models provide a quantitative way to evaluate the impact of variants

in LD, suggesting a broader utility for genomic studies than variant-

based models.

3.9 TF2Exp models exhibit robust performance in

external validation datasets
We finally sought to evaluate TF2Exp models of predictable genes

on external datasets. We obtained microarray expression data from

LCLs of 256 individuals (Stranger et al., 2012), including 80 Utah

residents with Northern and Western European ancestry (CEU), 87

Chinese (CHB) and 89 Japanese (JPT) (Section 2). As 79 of the CEU

individuals overlapped with the training individuals of TF2Exp

models, we first evaluated the agreement between the microarray

and RNA-seq data on these individuals. Relative expression levels

across all genes within each individual were concordant between

microarray and RNA-seq experiments (average Spearman’s correl-

ation ¼ 0.76), supporting an overall consistency between the two

datasets. However, when we considered a single gene across the 79

individuals, the correlation between the two platforms was low

(average Spearman correlation ¼ 0.19). Therefore, we expected

models trained on RNA-seq data to have an upper limit perform-

ance when applied to microarray data. We used TF2Exp models

(trained on CEU individuals) to predict gene expression levels on the

CHB and JPT individuals. Predictable TF2Exp models achieved an

average correlation of 0.16 for both populations. Similarly, predict-

able variant-based models achieved an average correlation of 0.17

for both populations.

An example of a high performing gene (FAM105A) in the exter-

nal validation is illustrated in Figure 5. FAM105A is associated with

pancreatic islet function and type 2 diabetes (Pedersen et al., 2017;

Taneera et al., 2015). For this gene, TF2Exp identified 4 contribu-

ting TF-binding events (Fig. 5), of which two of them had greater

weights: DHS (chr22: 45711760-45711910, effect size: �0.325)

and MEF2A (chr22: 45771822-45772122, effect size: 0.334).

Alterations of these key events largely explained the changes of gene

expression across the different individuals. For example, NA18640

had the lowest observed expression level in CHB individuals, as vari-

ant rs104664 of this individual was predicted by TF2Exp to increase

the score of DHS; while rs5765304 in NA18573 increased MEF2A

binding scores, resulting in the highest predicted expression across

all individuals.

To test model performance on tissues other than LCLs, we

applied TF2Exp models of predictable genes on chromosome 1 to

ten tissues with the largest sample sizes from the GTEx project

(GTEx Consortium, 2017). Average Pearson correlations between

predicted and observed expression levels ranged from 0.11 to 0.08

across the 10 tissues (Supplementary Table S1). Despite the expected

performance loss in non-LCL tissues, TF2Exp models displayed

Fig. 4. Performance comparison after adding uncommon-variant only events

in proximal regulatory regions. Each dot represents an evaluated gene-

model. Coordinates (x and y) indicate the cross-validation performances be-

fore or after adding TF-binding events altered only by uncommon variants in

proximal regulatory regions, respectively. The dot shape indicates the magni-

tude of absolute performance alteration, solid for small alteration

(<1.6� 10�3, 95% quantile of the absolute performance alteration) and circle

for the rest genes with larger alteration
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robust performance, highlighting their potential application to other

(non LCL) cells or tissues. Moreover, for eQTLs identified by GTEx

project in these tissues on chromosome 1, TF2Exp correctly predicts

the direction of expression change for 79% of the variants within

key TF-bound regions and, akin to the assessment used in the recent-

ly published ExPecto paper (Zhou et al., 2018), for 91% of top 500

variants with strongest predicted expression impact overlapping key

TF-bound regions within 20 kb of the TSS.

4 Discussion

Deciphering the functional roles of regulatory variants is a critical

challenge in the post-sequencing era. To address this challenge, we

have introduced a novel framework, TF2Exp, which uses alterations

of TF binding as key features to elucidate the functional impact of

regulatory variants and predict personalized gene expression levels.

TF2Exp models based on lymphoblastoid cell line data showed pre-

dictive capacity for 3196 genes, incorporating an average of 4.2

altered TF-binding events per gene model. The most frequently

selected TF-binding events included both general properties (e.g.

alterations within DNase I hypersensitive regions) and tissue-

specific properties (e.g. alterations in TF-bound regions for TFs rele-

vant to the studied lymphoblastoid samples). TF2Exp models could

incorporate uncommon variants to improve model performance,

and provide mechanistic insights into cis-regulatory variants.

TF2Exp models have the potential to address two challenges left

unresolved by variant-based models and classical eQTL studies. For

these approaches, it is difficult to: (i) infer variant function (the

studied variants can be in high linkage disequilibrium with many

others); and (ii) evaluate the impact of uncommon variants (which

are excluded from such analyses). By treating TF-binding events as

functional units, TF2Exp models can evaluate the relative impact of

any variant (single nucleotide variants or small indels) within a TF-

bound region. As in the example presented in Figure 5, for individ-

ual variants, the derived impact within the model is independent of

linkage disequilibrium or allele frequency. Moreover, even though

the inclusion of uncommon (and rare) variants only improved model

performance for a small portion of genes, the resulting TF2Exp

models offer a unique advantage for the inference of functional cis-

regulatory variants, compared with previous variant-based methods

(Gamazon et al., 2015; Manor and Segal, 2013).

Similarly to variant-based methods, the predictive performance

of TF2Exp models is limited, showing utility only for a subset of

genes (20.1%), and even within these genes, model performance

was modest (R2 ¼ 0.21). Such a limited performance is likely attrib-

utable to multiple causes. First, variance of gene expression due to

common variants is quite low [e.g. 15.3% as estimated by Gamazon

et al. (2015)], suggesting that models restricted to DNA sequence

features alone can only account for a portion of the observed vari-

ance in gene expression levels. Second, TF2Exp models are limited

by the availability of ChIP-seq data (78 TFs in LCLs), while tran-

scriptome studies have revealed that human cells express an average

of 430 TFs (The Fantom Consortium, 2014). Though we anticipate

an increasing amount of available ChIP-seq data in the future, a

practical and more immediate solution would be to computationally

predict TF-bound regions. To improve TF-binding prediction, mul-

tiple tools combine DNA sequence and chromatin properties (e.g.

ATAC-seq, DHS or histone modifications) of the target tissue

(Pique-Regi et al., 2011); these types of data are currently available

for >100 primary tissues and cells (Roadmap Epigenomics

Consortium et al., 2015). Third, TF2Exp models focus on TF-

binding events potentially involved in transcriptional regulation, but

other regulatory mechanisms (e.g. post-transcriptional regulation)

or genomic features (e.g. DNA methylation or sequence conserva-

tion) might explain an additional portion of the observed variance

of gene expression. Fourth, TF2Exp models are likely constrained

by the small number of available training samples, as including add-

itional features (e.g. TF-TF interactions and uncommon variants)

decreased model performance. We expect that the expansion of ref-

erence transcriptome datasets will provide more samples for explor-

ing more complex relationships between genes and TF-binding

events, thereby improving model performance.

During the review process of this manuscript, a new related tool

named ExPecto was published (Zhou et al., 2018). Though both

TF2Exp and ExPecto take DNA sequences as input to predict gene

expression levels, the tools differ significantly from each other as

they focus on distinct types of variance of gene expression. ExPecto

uses a single regression model per tissue to predict the variance of

gene expression levels across all the genes (i.e. ‘intra-individual’ vari-

ance). In contrast, TF2Exp uses one model per gene per tissue to pre-

dict the variance of gene expression levels of that gene across the

different individuals (i.e. ‘inter-individual’ variance). Past studies

have shown that intra-individual variance is easier to predict than

inter-individual variance based on regulatory features. For instance,

H3K27ac levels correlate well with broad gene expression in CD4þ
T cells (intra-individual variance; Pearson’s correlation coefficient ¼
0.72) (Karlic et al., 2010), while in lymphoblastoid cells from 47

individuals, they only correlate with the expression levels of 22% of

genes (inter-individual variance) (Waszak et al., 2015). While the

reported model performance measures for TF2Exp and ExPecto are

not directly comparable, emerging independent datasets should en-

able benchmarking of the two tools in the future. It should also be

noted that while the performance of ExPecto did not increase with

the inclusion of distal regions (more than 20 kb distal from the TSS),

the inclusion of distal features in TF2Exp was beneficial (as shown

in Supplementary Fig. S5). We suspect that such difference lies in the

TF2Exp focus on candidate distal regulatory regions supported by

Hi-C and TF binding data.

In conclusion, identifying the impact of cis-regulatory variants

on gene expression is a critical step towards understanding the gen-

etic mechanisms contributing to diseases. TF2Exp models are able

PU.1: 0.02 DHS: -0.32 MEF2A: 0.33
RUNX3: 0.001

rs5765304
NA18573

TF: effect size

NA18640 

rs104664

Interac�on

(Lowest expression)

(Highest expression)

Fig. 5. Key features of TF2Exp for FAM105A gene in the external validation

set. The top panel illustrates the key TF-binding events learned from the train-

ing datasets. The figure legend is the same as for Figure 1. The middle and

bottom panel show the variants within the key TF -binding events and their

inferred roles on gene expression for the two individuals
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to predict the impact of TF-binding on gene expression levels and

provide mechanistic insights into the roles of selected TF-binding

events and cis-regulatory variants. We anticipate that future

enlarged omics data, in LCLs and other cell types, will greatly ex-

pand the application scope of TF2Exp models.
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