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Abstract

Watersheds are important suppliers of freshwater for human societies. Within
mountainous watersheds, microbial communities impact water chemistry and ele-
ment fluxes as water from precipitation events discharge through soils and under-
lying weathered rock, yet there is limited information regarding the structure and
function of these communities. Within the East River, CO watershed, we conducted
a depth-resolved, hillslope to riparian zone transect study to identify factors that
control how microorganisms are distributed and their functions. Metagenomic and
geochemical analyses indicate that distance from the East River and proximity to
groundwater and underlying weathered shale strongly impact microbial community
structure and metabolic potential. Riparian zone microbial communities are composi-
tionally distinct, from the phylum down to the species level, from all hillslope commu-
nities. Bacteria from phyla lacking isolated representatives consistently increase in
abundance with increasing depth, but only in the riparian zone saturated sediments
we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities
are functionally differentiated from hillslope communities based on their capacities
for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is promi-
nent at depth in weathered shale and saturated riparian zone sediments and could
impact water quality. We anticipate that the drivers of community composition and
metabolic potential identified throughout the studied transect will predict patterns

across the larger watershed hillslope system.
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1 | INTRODUCTION

Soil microbial communities impact our environment by driving
biogeochemical cycles from centimeter to global scales (Rousk &
Bengtson, 2014; Schimel & Schaeffer, 2012). They expedite rock
weathering (Gorbushina, 2007; Krumbein, 1988) recycle organic
material in the subsurface, and facilitate the growth of vegetation by
altering the availability of nutrients in the soil (Wardle et al., 2004).
These changes influence soil nutritional status and productivity and
plant survival and biotic interactions.

Mountains contribute the majority of water discharge in river
basins (Viviroli, Weingartner, & Messerli, 2003) and were previ-
ously considered to be the origin of much of the world's water re-
sources (Rodda, 1994). In recent years, studies have also addressed
their contribution to subsurface carbon storage and carbon cy-
cling (Chang et al., 2014; Hagedorn et al., 2010; Wan et al., 2018).
These environments are comprised of a complex system of com-
ponents, such as forests and meadows, floodplains, and glaciers.
In turn, each of these accommodates various habitats including
soil, bare rock, permafrost, and snow. Development of a predic-
tive understanding of the behavior of such a heterogeneous and
interconnected set of ecosystem compartments is an extremely
complicated undertaking. Employing a scale-adaptive approach in
which different ecosystem compartments are considered as “sys-
tems within systems” could assist in disentangling the processes
that shape overall mountain ecosystem function (Hubbard et al.,
2018; Levin, 1992). A first step toward such a goal is to investigate
structure and functioning within individual montane ecosystem
compartments to provide a basis for future comparative studies
and modeling efforts. In the long term, the “systems within sys-
tems” approach may better enable predictions accompanying nat-
ural or anthropogenic environmental perturbations.

Hillslope and floodplain compartments host the majority of
soils in alpine and subalpine mountain ecosystems, and biogeo-
chemical processes that occur there impact downstream eco-
systems. Runoff and groundwater transport solutes along the
elevation gradient and into aquifers, rivers, and lakes. Soils on
hillslopes and in floodplains, and in general, harbor considerable
microbial diversity (Donhauser & Frey, 2018; Frey et al., 2016;
Rime et al., 2014). Most studies of microbial communities in moun-
tainous soils have been concerned with the microbial community
structure across different climate zones on the mountain slopes
(Bardelli et al., 2017; Djukic, Zehetner, Mentler, & Gerzabek, 2010;
Klimek et al., 2015; Xu et al., 2014; Zhang, Liang, He, & Zhang,
2013). However, most work has focused only on shallow soil, down
to 20 cm (Bardelli et al., 2017; Yuan, Si, Wang, Luo, & Zhang, 2014;
Zhang et al.,, 2013) and sometimes only the top 5 cm (Singh et
al., 2014). The shallow layer of soil is profoundly affected by low
temperatures that frequently drop below 0°C and snow cover that
crucially limits biological, chemical, and physical processes, and
thus microbial life (Zumsteg, Baath, Stierli, Zeyer, & Frey, 2013).
In contrast, the deeper soils and weathered rock in mountain eco-

systems have been little studied. While affected by events taking

place in shallow layers, the microbial communities there are prob-
ably also influenced by moisture gradients and the geochemistry
of the underlying bedrock (Tytgat et al., 2016).

The East River headwaters catchment is a mountainous, high-
elevation watershed, dominated by the Cretaceous Mancos Shale
Formation, with carbonate and pyrite contents of roughly 20% and
1%, respectively (Morrison, Goodknight, Tigar, Bush, & Gil, 2012).
The watershed has a mean annual temperature of ~0°C, with av-
erage minimum and maximum temperatures of -9.2°C and 9.8°C,
respectively. The watershed receives ~600 mm of precipitation per
year, the bulk of which falls as snow, and is representative of many
other headwaters systems within the upper Colorado River Basin
(Hubbard et al., 2018; Pribulick et al., 2016).

The present research focused on a lower montane hillslope
through floodplain transect located within the East River, CO wa-
tershed, which is the focus of the Lawrence Berkeley National
Laboratory-led Watershed Function Project. The intensively studied
site investigated in the current study is referred to as PLM (Pump
House Lower Montane). The Watershed Function Project builds
upon a scale-adaptive investigation, which focuses on different spa-
tial and temporal scales within the East River watershed, explores
how mountainous watersheds retain and release water, nutrients,
carbon, and metals downgradient (Hubbard et al., 2018). The cur-
rent study aims to lay the groundwork for the scale-adaptive, system
within systems approach by identifying ecological niches of interest
that would later be tested in a bottom-up approach across the wa-
tershed. We hypothesize that microbial community composition and
metabolic potential is similar among sites along an altitudinal tran-
sect down the hillslope and that hillslope communities differ from
those of the floodplain riparian zone. Furthermore, we hypothesize
that proximity to shale and groundwater will affect the composition
and functionality of microbial communities, differentiating hillslope

communities from other watershed microbial consortia.

2 | METHODS

2.1 | Site description and sample collection

The PLM intensive study site is located on the northeast facing
slope of the East River valley near Crested Butte, Colorado, USA
(38°55'12.56"N, 106°56'55.39"W) (Figures 1 and A1). Exact lo-
cations were determined at an accuracy of 0.5 m with a Trimble
Geo 7X GPS. All samples were collected during three days in
September 2016 from meadow sites before any intensive re-
search activities were performed. The ground surface at each site
was cleared of vegetation with a hand trawler prior to sampling.
Samples were collected with a manual corer lined with 7.6 cm tall
and 15.2 cm diameter bleached sterile plastic liners. Five soil pro-
file sampling sites abbreviated PLMO, PLM1, PLM2, PLM3, and
PLM4 were chosen along a 230 m hillslope transect. The profiles
terminated at depth in the unsaturated zone, with the exception
of PLM4, which extended below the water table. The base of
PLM3 and PLMé profiles is located near or within the weathered
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FIGURE 1 East River Watershed
hillslope-riparian zone transect sampling
sites. (a) The location of East River PLM
intensive study site. (b) Five PLM sites
are located across a hillslope transect.
PLMO is the highest point of the transect,
and PLM4 is located in the floodplain. (c)
Schematic representation of the sampling
sites. Elevation of the surface, given in
meters above sea level, appears below
the name of the sampling site. Maximum
depth at each sampling site is specified
below the depiction of the sampled core
in centimeters. Horizontal distances
between sites are given at the bottom of Soil
the illustration. Maximum and minimum
water levels are depicted by dashed blue
and red lines, respectively. The PLM6 site
was initially drilled for another study, 5 m
from PLM3 but at the same elevation. A
full view of the East River watershed is
given in Figure Al

Weathered
Mancos Shale

Mancos Shale

Mancos Shale bedrock, while the base of PLMO was located >1 m
above the weathered bedrock. PLMO is at the top of the hill and
PLM4 on the East River floodplain, 2,804 m and 2,757 m above
sea level, respectively (Figure 1). One full core was taken at each
sampling depth, and the soil in between sampling depths was re-
moved with an auger. An additional site, PLM6, was sampled by
drilling and provided access to weathered shale. Samples at PLM6
were taken from a split-spoon, dry drilled core. In total, 20 samples
were collected as follows: PLM0-5, 30, 60 cm; PLM1-5, 30, 60,
100 cm; PLM2-5, 30 cm; PLM3-5, 30, 60, 127 cm; PLM6-50,
170, 200 cm; PLM4-5, 32, 65, 90 cm.

Immediately after extraction, a sample from each site and
depth collected within an individual sterile plastic liner was placed
in a sterile Whirl-Pak bag and manually homogenized. Aliquots of
5 g of soil from each bag were placed in 10 ml of LifeGuard Soil
Preservation Solution for RNA and DNA co-extraction, whereas
the rest of the sample was used for DNA extraction. Care was taken
to avoid roots and small rocks. Samples in sterile Whirl-Pak bags
and preservation solution were placed in a chilled cooler until pro-
cessing at the Rocky Mountain Biological Laboratory (RMBL) later
that day. In the laboratory, roots and small rocks were removed
from sampling bags, and three 10 g subsamples were weighted
from each sample and placed in a -80°C freezer. Samples were
shipped overnight on dry ice to University of California, Berkeley
for DNA and RNA extractions.

Particle size analyses of samples were conducted according
standard methods (Gee & Or, 2002). Geochemical measurements
were made at the Earth and Environmental Sciences department's

Aqueous Geochemistry Laboratory. Water soluble cation-anion

2,801 m

>

445 m 66 m 79 m

— Colorado River
% — Gunnision River
. — East River

Sampled core
Water table levels:
- — - Maximum (spring snowmelt)
- — - Minimum (winter to early spring)

PLM

East River

485 m 27 m

composition was measured by water extraction (1:1 soil:DIW mass
ratio) and ICP-MS. Total inorganic carbon (TIC) and total organic
carbon (TOC) in soil samples were determined using a Shimadzu
TOC-VCSH total inorganic and organic carbon analyzer combined
with a solid sample combustion unit of SSM-5000A. Total nitro-
gen (TN) was analyzed using a Shimadzu Total Nitrogen Module
(TNM-1) combined with the TOC-VCSH analyzer. pH was measured
with an uncertainty of +0.05. For TIC/TOC and IC the uncertainty
is <3% and <5%, respectively. All geochemical measurements for
samples taken at PLMé, nitrate concentration for the sample from
PLMO 30 cm, and sulfate concentrations for samples PLMO 40 cm,
PLM1 60 cm, PLM1 90 cm, PLM2 5 cm, and PLM2 30 cm are not
available.

2.2 | DNA extraction and sequencing

DNA was extracted from 10 g of soil with DNeasy PowerMax Soil Kit
in two batches of 5 g each which were combined during the clean-
ing step. Extraction process followed the manufacturer's protocol
with the following modifications: Soil was vortexed at maximum
speed for an additional 3 min in the sodium dodecyl sulfate reagent
and then incubated for 30 min at 60°C, with intermittent shaking in
place of extended bead beating, as established by Hug et al. (2015).
For DNA precipitation, sodium acetate (1:10 v/v) and isopropanol
(1:1 v/v) were added and samples were incubated overnight (-20°C).
Following incubation, DNA was pelleted by centrifugation (15,300 g,
15 min, 4°C), washed with cold ethanol, and suspended in ddH,0.
DNA was further cleaned with DNeasy PowerClean Pro Clean Up
Kit following the manufacturer's protocol.
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DNA was also co-extracted with RNA from 5 g of soil using
RNeasy PowerSoil Total RNA Kit and Phenol:Chloroform:lsoamyl
Alcohol 25:24:1 saturated with 10 mM Tris (final pH 8.0) and 1 mM
EDTA. RNeasy PowerSoil DNA Elution Kit was used to collect DNA
which was further cleaned using DNeasy PowerClean Pro Clean Up
Kit. The co-extraction and cleaning steps were conducted according
to the manufacturer's protocol. While RNA was extracted for the
purpose of another study, using co-extraction as a second extraction
method was expected to improve the detection of the total diversity
of microbes in the sample (inceoglu, Hoogwout, Hill, & Elsas, 2010).
Overall, two DNA samples were produced from each sampling, one
from DNA extraction and the second from the DNA that was co-ex-
tracted along with RNA. A third DNA sample was extracted from
the 90 cm deep PLM4 sample; thus, a total of 41 DNA samples were
used for further analysis.

Metagenomic libraries were prepared at the Joint Genome
Institute (JGI) after validating concentrations and DNA integrity
using Qubit (Thermo Fisher Scientific) and gel electrophoresis, re-
spectively. Libraries were prepared using NEB's Ultra DNA Library
Prep kit (New England Biolabs) for Illumina with Ampure XP bead
selection aimed to give fragments of 500 base-pair (bp) according to
the manufacturer's protocol. The library was sequenced at JGI using
an lllumina Hiseq 2500, resulting in paired-end, 150 bp sequences.

2.3 | Bioinformatic analyses

Raw reads processing followed protocols described elsewhere
(Hernsdorf et al., 2017). Briefly, reads were trimmed based on qual-
ity scores with Sickle (Joshi & Fass, 2011) and assembly was accom-
plished with IDBA-UD v1.1.1 (Peng, Leung, Yiu, & Chin, 2012) using
kmer size range of 40-140. Only assembled scaffolds with >1 kbp
were included in downstream analysis. Open reading frames were
identified by Prodigal v2.6.3 (Hyatt et al., 2010) using the metagen-
omic setting.

Microbial community structure was assessed according to the
abundance of the ribosomal protein S3 (rpS3) marker gene (Brown
et al., 2015) by modifying the method described by Anantharaman
et al. (2016). Archaeal, eukaryotic, and bacterial rpS3 protein se-
quences were identified using Hidden Markov Models (HMM)
(Finn et al., 2015). Ten rpS3 reference sequences which compose
TIGRFam's TIGO1009 model were added to the protein sequences
that were identified by HMMs and aligned with MAFFT (Katoh &
Standley, 2013). Positions within the alignment with >95% gaps were
removed, leaving 206 amino acids in the longest, nonreference se-
quence. Sequences that had less than 103 nongap positions (50% of
overall nongap positions) were removed from the analysis. This step
ensured that only positions that are truly related to the sequence of
rpS3 were included in downstream analysis.

The amino acid sequences were clustered with the cluster_fast
algorithm from USEARCH software (Edgar, 2010) at a 99% simi-
larity threshold, and the following settings: query_cov = 1, target_
cov = 0.5, and both max_accept and max_reject set to 0. Scaffolds
of DNA sequences that matched the clusters’ open reading frames

were retrieved from the metagenomes. Average coverage was used
as a proxy for relative abundance of different sequence types. In
this analysis, the scaffolds were trimmed to include 2 kbp flanking
the rpS3 gene. If the scaffold spanned less than 2 kbp on both sides,
then the entire scaffold was kept, with a minimal length of 1 kbp.
The relative abundance of each trimmed scaffold was determined
by mapping the reads from each sample to each trimmed scaffold
with bowtie2 (Langmead & Salzberg, 2012). The average coverage
and breadth of coverage of each scaffold in each sample was then
calculated (Olm et al., 2017). Each scaffold is considered to be pres-
ent in at least one sample (at minimum, the sample from which it was
originally assembled) but could be falsely identified in other samples
due to a low breadth cutoff (i.e., false positive). Therefore, we imple-
mented a breadth cutoff of 0.72 based on iterating breadth cutoffs
of 0.1 to 1, to find the lowest breadth cutoff that would retain the
same number of clusters as went into the analysis. The abundance of
organisms at each site was calculated as the average abundance for
the two samples (or three in the case of PLM4 at 90 cm) extracted
from that site.

Genes involved in carbon, nitrogen, and sulfur metabolism
were identified using 86 previously published HMM models
(Anantharaman et al., 2016), and KEGG KOfam database (Aramaki
et al., 2019) (Table A1). Additionally, srdA which encodes for a mem-
brane-bound catalytic subunit of selenate reductase was detected
with a custom HMM model. The model was constructed by aligning
20 amino acid sequences, 934-1222 aa long, determined to be in-
cluded in the srdA specific clade (Harel, Hiaggblom, Falkowski, & Yee,
2016). All matches from HMM search for srdA were aligned, and a
threshold was decided upon according to their clustering in a phylo-
genetic tree. Score cutoffs for custom made and PFAM HMMs were
manually validated and adjusted by aligning the HMM search results,
plotting a phylogenetic tree using FastTree v2.1.9 (Price, Dehal, &
Arkin, 2010), and interrogating clades with NCBI's BLASTP (Boratyn
et al., 2013) against nr database. The abundance of each gene was
determined by mapping the reads from each sample to each scaffold
and calculating the average coverage using the same breadth cutoff
as before.

2.4 | Taxonomy and phylogeny

The longest amino acid sequence from each rpS3 protein sequence
cluster was selected as a representative and was compared to a data-
base of rpS3 protein sequences (Hug, Baker, et al., 2016; Hug, Thomas,
et al., 2016) using the UBLAST function in USEARCH (Edgar, 2010).
Results were filtered to include only the top hits with e-values < 1e-5.
While each cluster roughly correlates with a species, not all clusters
could be taxonomically identified to that level. Therefore, further in-
vestigation relied on phylogenetic distance, which enables a high-res-
olution analysis. A phylogenetic tree was created by aligning only the
representative amino acid sequences using MAFFT with an automated
strategy (Katoh & Standley, 2013) and trimming noninformative posi-
tions. A maximum-likelihood tree was constructed on CIPRES (Miller,
Pfeiffer, & Schwartz, 2010) with RAXML (Stamatakis, 2014), using the



LAVY ET AL.

LG substitution model and bootstrapping, allowing the software to
halt bootstrapping once it reached a consensus. The Eukaryote do-
main branch was set as root, and the tree was manually inspected for
errors. The phylogenetic tree along with rpS3 gene abundance heat-
map were visualized with iTol v4.2.3 (Letunic & Bork, 2016).

2.5 | Statistics

Statistical analysis was conduct in R v3.4.3 (R Development Core
Team, 2012) and Rstudio v1.1.423 (Rstudio Team, 2015). Abundance
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plots, ordinations and UniFrac calculations were conducted with
Phyloseq v1.22.3 (McMurdie & Holmes, 2013). The abundance of
each rpS3 cluster was corrected for uneven sequencing depth across
samples by multiplying the coverage value for each sample by a fac-
tor calculated as the ratio of the number of bp in the largest sample
divided by the number of bp in that sample.

Factor selection of soil chemistry was carried with BIOENV
(Clarke & Ainsworth, 1993) as implemented in the bio.env function
2018), with a Euclidean dis-
tance method and Bray-Curtis matrix. The exhaustive search for

from Vegan v2.4.6 (Oksanen et al..,
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FIGURE 2 Relative abundances of phyla. Results show that Verrucomicrobia decrease in abundance with increasing depth and proximity
to the floodplain site PLM4; Rokubacteria, on the other hand, show the opposite pattern
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correlation between community dissimilarities and environmental
distances requires extremely long time. Therefore, dissimilarities
were partialled out when inspecting variables as recommended by
the bioenv user's manual (Oksanen et al., 2018). The results were
evaluated with Pearson's correlation. The significance of the results
was validated with Mantel test also using Pearson's correlation.
Maps were retrieved from Google maps database using Google
Earth v7.3.2.

3 | RESULTS

For the hillslope samples analyzed, the soils are loamy to silty loam
(Figure A2 and Table A3). Shallow samples from PLMO and PLM1
have higher sand content than downslope PLM3 and PLM4 sam-
ples, which have higher content of clay and silt, potentially as a
result of downslope fining of transported sediments. Soil mois-

ture increases with proximity to the East River, but decreases with

depth (Figure A3 and Table A4). An exception to this is at the flood-
plain, where moisture increases close to the water table (72 cm
below the ground surface at the time of sampling). The hillslope
meadow is dotted with smooth brome (Bromus inermis) and lupines
(Lupine sp.); however, neither occurred within a 50 cm radius of
the sampling sites (qualitative assessment on site). In contrast, the
floodplain is dominated by willows and sedges that are not present
on the hillslope. Gopher activity increases downslope, but does
not occur at the floodplain location (W. Brown, personal commu-
nication, February 2018).

Assembling reads from 41 samples, comprising 610 Gbp of se-
quence data, resulted in 6.5 million scaffolds longer than 1 kbp
(Table A2). On average, 27.8% (+11) of the reads could be mapped
back to these scaffolds. This is an expected result given huge diver-
sity in soil and the near flat nature of most of the rank abundance
curve. The unassembled reads likely derive from the background of
rare organisms in soil. Encoded on the assembled scaffolds, 3,536

rpS3 amino acid sequences were identified and clustered into 1,660
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clusters (at 99% identity), representing 37 microbial phyla. In gen-
eral, the microbial communities are dominated by bacteria (rela-
tive abundance 0.95 + 0.03 SD). The most abundant phyla across
all samples are Acidobacteria, Actinobacteria, Chloroflexi, and
Proteobacteria, but their relative abundances vary considerably
across samples and depths (Figure 2). Species of Verrucomicrobia
and Gemmatimonadetes are abundant at sites high on the hillslope,
but while Verrucomicrobia species abundance decreases with
proximity to the river (Pearson's r = -0.707, p-value < 0.001), the
abundance of Gemmatimonadetes is correlated with both proximity
to the river (Pearson's r = -0.652, p-value < 0.001) and soil depth
(Pearson's r = -0.568, p-value < 0.001).

Proteobacteria species comprise 22.7% (+10.8 SD) of all mi-
crobial abundance. This dominance increases systematically with
distance down the hillslope, largely irrespective of the sampling
depth (Figures 2 and 3a). Gammaproteobacteria species are almost
undetectable in communities higher on the hillslope, whereas al-
phaproteobacterial species are prevalent at all sites (Figure 3a).
Deltaproteobacteria species increase in abundance with increas-
ing proximity to the floodplain and also with increasing proximity
to the water table, with the highest representation observed in
samples from below the water table. Distinct Deltaproteobacteria
species are found in samples close to the water table (Desulfobacca
acetoxidans in clade 1, and Geobacter spp. and Desulfuromonas sp.

in clades 3 and 4, see Figure A4). Some distinct species (clade 2

(a)
PLMO 5 cm -
PLM1 5 cm 4
PLM2 5 cm -
PLM3 5 cm 4
PLM4 5 cm -
PLMO0 30 cm -
PLM1 30 cm -
PLM2 30 cm -
PLM3 30 cm -
PLM4 30 cm -
PLM6 50 cm -
PLMO 60 cm -
PLM1 60 cm -
PLM3 60 cm -
PLM4 65 cm -
VPLM4 90 cm -
PLM1 100 cm 4
PLM3 127 cm
PLM6 170 cm
oPLM6 200 cm
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in Figure A4) occur only below the water table (Syntrophaceae,
Figure A4, clade 2). Thaumarchaeota related to Nitrososphaera sp.
are the dominant archaea at every location other than at the flood-
plain (Figure 3b). At the floodplain site (PLM4), Pacearchaeota are
present in soil samples close to, although above the water table
whereas Bathyarchaeota and Euryarchaeota are present in sam-
ples below the water table.

Out of the 37 microbial phyla that were identified, 20 are candi-
date phyla (CP) (i.5., phyla that lack an isolated representative). Of the
CP, eight are part of the Candidate Phyla Radiation of Bacteria (CPR)
(Figure 4). Members of CP are present at all sites along the hillslope
transect, but their detection is positively correlated with depth of
sampling (Pearson'sr = 0.851, p-value < 0.0001) (Figure 4a). Moreover,
depth could be used as a predictor for the abundance of CP as a lin-
ear regression has an r? = 0.66 and slope = 5.07 (p-value < 0.0001).
Interestingly, CPR bacteria are almost exclusively found at the flood-
plain site and only just above (7 cm above the water table) and within
groundwater-saturated sediment (Figure 4b). Although sampling sites
above and below the water table are close spatially and may experi-
ence similar conditions when groundwater level fluctuate, they har-
bor bacteria from completely different CPR phyla.

We investigated how distance from groundwater and weathered
shale impact microbial community structure. Unweighted UniFrac-
based PCoA ordination, that allows addressing phylogenetic distance

without assigning taxonomic levels, reveals that soils sampled at
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top to bottom of the hillslope transect.
CPR phyla were not detected in samples
other than the six depicted in this figure
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FIGURE 5 Samples cluster based

on proximity to weathered shale and
groundwater-saturated soil. (a) NMDS
based on unweighted UniFrac distance
computed using maximum-likelihood
phylogenetic tree. (b) NMDS based on
weighted UniFrac distances computed
using maximum-likelihood phylogenetic
tree and abundance of each taxon.
Confidence ellipses (95% interval) are
shown in Figure A4
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depths of 5 cm and 30 cm from all field sites group together (Figures
5a and A5a and b). However, the weighted UniFrac PCoA analysis
(considering organism abundances) differentiates these 5 cm from
30 cm soil samples. Considering distance from the river while sup-
pressing information describing depth below ground surface, these
analyses also differentiate samples taken at PLM4 from those taken
at PLMO, PLM1, and PLM2 but not from PLM3, which is closer to the
floodplain. Lastly, weighted UniFrac separates samples from PLM4
from above and below the water table (Figures 5b and A5c and d).
Thus, for soils that contain similar types of organisms, sampling depth
and proximity to weathered rock shift organism abundance relative
levels. Overall, distance from groundwater at the floodplain site and
weathered shale at the hillslope sites seem to be dominant factors in
determining the microbial community structure across the hillslope.
Forty geochemical factors were assessed in order to elucidate
the factors that shape community structure in the soil profile sites.
The combination of soil moisture and concentrations of Na, Se, and
Zn were correlated to microbial community structure (r = 0.751)
(Figure 6). The results were validated with Mantel test (Pearson's
r = 0.751, p-value = 0.001, 999 permutations). Selenium had the
highest concentration in samples taken above the water table,
(PLM4 65 cm, 8.119 + 0.235 ppb) whereas zinc concentrations were
the highest in samples closest to weathered shale (PLM3 127 cm,
95.694 + 0.915 ppb), which also had the highest acidity (pH = 7.98)
(Table A4). Sodium (Na) concentrations were the highest in samples
taken from below the water table (PLM4 90 cm, 9,178 ppb).
Metabolic potential, as depicted by detected genes, differentiates
locations along the hillslope to floodplain transect. Out of 87 Hidden
Markov Models (HMMs), 78 were found to exceed our detection
threshold (see Section 2). An NMDS of gene abundances reveals a
clear depth gradient in samples taken from the floodplain site (Figures
7 and Aé). A depth-dependent trend in overall metabolic potential is
also observed along the hillslope. In addition, gradient in overall meta-
bolic potential correlates with elevation (i.e., position on the hillslope).
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FIGURE 6 NMDS ordination of microbial communities and
correlated geochemical factors. Spearman correlation was tested
using Bray-Curtis distances and Euclidean distance matrix. Out of
40 geochemical measurements (Table A4) only soil moisture, Se,
Na, and Zn were correlated with microbial community composition
(r=0.751, p-value = 0.001). Stress = 0.0788. Numbers in figure are
depth in cm. Raw values are provided in Table A4

The patterns identified in the NMDS are driven in part by genes
encoding enzymes involved in N, fixation (nifDHK), denitrification
(norBC and nosZ), and the Wood-Ljungdahl carbon fixation pathway
(codhC and codhD) (Figure A7). The dsrA and dsrB genes that encode
reversible dissimilatory sulfite reductase are found in groundwater-
saturated saprolite samples PLM4 90 cm, in samples taken 10 cm
above groundwater (PLM4 65 cm), and also present in samples col-
lected at 5 cm depth. However, dsrD which is present only in sam-

ples from below groundwater and in samples taken 10 cm above it
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indicates that dsrA and dsrB are potentially responsible for sulfite
reduction at these locations. Sequences of asrB which encodes for
anaerobic sulfite reductase B were found exclusively in samples
from groundwater saprolite (PLM4 90 cm). Also enriched in samples
from below the water table is the catalytic subunit of thiosulfate re-
ductase phsA, which catalyzes the reduction of thiosulfate to sulfite
and hydrogen sulfide. Selenate reductase encoded by the gene srdA,
which is associated with selenate respiration, is enriched in samples
from below compared to above the water table and weathered shale
compared to soil. The abundance of srdA was found to be correlated
to selenium concentration (Pearson's r = 0.52, p-value = 0.0325).
Unfortunately, selenium measurements for PLM3 127 cm as well as
PLMé6 170 cm and 200 cm, where srdA abundance is the highest,
were not available. These samples were taken from fractured shale
which is rich with selenium, and therefore, it is assumed that adding

these measurements will result in a stronger positive correlation.

4 | DISCUSSION

We integrated metagenomics and soil chemical analyses to inves-
tigate how microbial community structure and metabolic potential
vary within the subsurface across a transect from high on an East
River hillslope to its adjoining floodplain. Our analyses indicate that
communities are differentiated according to depth and proximity to
weathered shale and groundwater, and that microbial communities
of the floodplain soils and sediments differ substantially from those
collected along the hillslope.

Notably, the abundance of species of Archaea, Proteobacteria
and CPR bacteria have distinct spatial patterns. Thaumarchaeota, the
dominant archaeal taxon in soils (Bates et al., 2011), are typically aer-
obic ammonium oxidizers that can drive nitrification (Colman, 2017).
They were detected at every depth sampled across the hillslope,

as found in hillslope soil pits in Colorado by Eilers, Debenport,

(]

® 50cm @ 127cm

® 60cm ® 170cm
® 200cm

Anderson, and Fierer (2012). The absence of Thaumarchaeota at
the floodplain may be explained by extended periods of water sat-
uration. Low redox conditions, inferred based on abundant genes
involved in sulfate and selenate reduction, apparently selected in-
stead for Bathyarchaeota and Euryarchaeota. The decrease in rela-
tive abundance of Alphaproteobacteria and Gammaproteobacteria
with depth has been previously described in soil profiles from
upper montane forest east of Boulder, CO, USA (Eilers et al., 2012).
However, while the relative abundance of Betaproteobacteria was
reported to decline with depth in the Boulder site, it mostly in-
creased with depth at the hillslope. A similar pattern of increased
relative abundance is observed in Deltaproteobacteria. It could be
that the proximity to sulfate and nitrate rich Mancos shale bedrock
supports the increased abundance of these organisms.

Bacteria from CP increase in abundance with depth throughout
PLM sites. They may have eluded prior cultivation studies due to their
low abundances in more commonly sampled shallow soils. However,
CPR bacteria, which elude most cultivation efforts (Solden, Lloyd,
& Wrighton, 2016), are likely dependent on other microorganisms
for basic cellular building blocks (Brown et al., 2015; Kantor et al.,
2013). Other than the two occurrences of Yanofskybacteria species
in deep samples close to the soil-weathered shale transition (127 cm
and 170 cm from PLM3 and PLM6, respectively), bacteria from CPR
phyla were detected only in the floodplain samples. CPR bacteria
are often found in anaerobic environments and have streamlined
genomes, lacking many genes for independent survival. Many are
likely obligate symbionts, and as such they may often associate with
anaerobic hosts, although the identities of their hosts remain un-
clear (Brown et al., 2015; Castelle & Banfield, 2018; Hug, Baker, et
al., 2016).

The abundance of genes encoding methanol dehydrogenase
(mdh1/mxaF/xoxF in Figure Aé) and the catalytic subunit of carbon
monoxide dehydrogenase (coxL in Figure A7) were consistently

lower in the groundwater-saturated floodplain samples than in any
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hillslope samples or floodplain samples from above the water table.
Methanol dehydrogenase is involved in aerobic oxidation of metha-
nol (which could derive from plant biomass or oxidation of methane),
whereas CO dehydrogenase is involved in aerobic oxidation of CO
(possibly produced by plants as a signaling molecule). Sulfite reduc-
tion may be a second biogeochemical process that differentiates mi-
crobial communities at the floodplain from those on the hillslope,
particularly in samples below the water table and immediately above
it, where dsrD, a hallmark for the reverse dsr pathway is relatively
abundant (Anantharaman et al., 2018). Further, genes encoding for
key enzymes (codhC and codhD) in the anaerobic Wood-Ljungdahl
pathway for carbon fixation, and genes for nitrogen fixation (nifDHK)
are relatively abundant at the floodplain site, specifically below
groundwater and immediate above it compared to the hillslope sites.
Interestingly, these samples contained the highest abundance of
genes encoding for form | and Il Ribulose-1,5-bisphosphate carbox-
ylase/oxygenase (RubisCO) enzymes, known to play a role microbial
carbon fixation (Berg et al., 2010). These patterns support the con-
clusion that groundwater-saturated regions of the watershed sup-
port largely anaerobic microbial communities. Overall, the findings
indicate that floodplain site metabolic potential is depth-stratified,
with one microhabitat below the water table that is colonized by
organisms with anaerobic metabolisms, a second within the zone
experiencing seasonal fluctuating redox conditions, and a third
closer to the surface, where communities would experience oxidiz-
ing conditions throughout most of the year. A similar stratification,
with a 70 cm alternating redox zone, was observed within a sediment
profile from the Rifle river riverbed (Danczak et al., 2016). As in the
current work, the microbial community of the alternating redox zone
is easily distinguishable from those in both the shallow and deep
zones. Overall, the spatial layout of the compartments may support
complete redox cycles, analogous to sulfur cycling at oxygen-mini-
mum zones in the ocean (Canfield et al., 2010).

Selenium concentration may be a major factor that differentiates
microbial communities at the floodplain from those on the hillslope.
Selenium occurs in insoluble metal selenides in Mancos Shale
that underlies much of the Gunnison River basin (Colorado, USA;
Elrashidi, 2018), which includes the East River watershed. Oxidation
of selenium to soluble selenite and selenate under mildly reducing
to oxidizing conditions (Presser, 1994) leads to its mobilization and
probably accounts for its presence in pore fluids. Enrichment of srdA
genes, which encode the catalytic subunit of the complex required
for selenate reduction, in sequences from the floodplain site sug-
gests that dissimilatory reduction of selenate (Fakra et al., 2015;
lke, Takahashi, Fujita, Kashiwa, & Fujita, 2000; Maiers, Wichlacz,
Thompson, & Bruhn, 1988; Nancharaiah & Lens, 2015; Williams
et al., 2013) supports microbial growth at this site. Geobacter spe-
cies, which were identified almost exclusively in floodplain samples
(Figure A4, clade 3) and are sometimes capable of selenite reduction
(Pearce et al., 2009), may be responsible for these reactions. The de-
tection of srdA genes in the three deepest samples from the hillslope
(127-200 cm) suggests that selenate reduction may occur periodi-
cally close to the weathered shale-soil interface where seasonally

variable redox conditions induced by groundwater fluctuations may
enable microbe-catalyzed selenium transformations.

Across the hillslope sites, shallow soils have relatively similar com-
munity compositions. This might be explained by the low soil moisture
that these locations experience over much of the year, as well as ex-
posure to low temperatures during late fall and early winter prior to
the onset of insulating snow cover. Further, soil community composi-
tions are homogenized at some sites, likely due to soil mixing as a re-
sult of gopher activity (Yoo, Amundson, Heimsath, & Dietrich, 2005).
Bioturbation may increase soil porosity and permeability and homog-
enize the mineral matrix and microbial community composition within
a site, particularly close to the soil surface (reviewed by Platt, Kolb,
Kunhardt, Milo, & New, 2016). It is also possible that similarity in veg-
etation at the nonfloodplain sites contributes to community similarity.

Between-site heterogeneity, which could arise due to periodic
events or local changes in vegetation, could be eliminated by micro-
bial dispersal. However, microbial dispersal is generally very limited
in soils that are not saturated with groundwater (Elsas, Trevors, &
Overbeek, 1991). Although groundwater and runoff from rain and
snowmelt might transport microbes downslope and into the weath-
ered rock, hydraulic measurements show that overland and lateral
underground transport is likely limited at the hillslope sites (T. K.
Tokunaga, J. Wan, K. H. Williams, W. Brown, A. Henderson, Y. Kim, A.
P. Tran, M. E. Conrad, M. Bill, R. W. H. Carroll, W. Dong, Z. Xu, A. Lavy,
B. Gilbert, S. Romero, J. N. Christensen, B. Faybishenko, B. Arora, E.
R. Siirila-Woodburn, R. Versteeg, J. H. Raberg, J. E. Peterson, & S. S.
Hubbard, Unpublished data). Soil and weathered rock are water-sat-
urated for only a few weeks each year, other than at the floodplain.
During this period, water moves at ~ 10 to 20 m per month parallel to
the surface slope (Tokunaga et al., under review), distances that are
too short to connect communities at our sampling sites.

Our study of a hillslope lower montane meadow to floodplain
transect revealed an ecosystem comprised of distinct subsystems.
Specifically, our results documenting the abundance patterns of
genes involved in selenium, sulfur, carbon, and nitrogen cycles sug-
gest that hillslope and floodplain sites constitute distinct ecosystem
compartments. Further, the hillslope sites are spatially differentiated
into microhabitats close to (or within) weathered shale and proximal
to the surface. Similarly, the floodplain site is resolved into largely
anaerobic and aerobic communities over relatively short vertical
distance, raising the possibility of elemental cycling across the in-
terface. These results clarify the scale of heterogeneity in biogeo-
chemical processes and improve our understanding of how these
processes map onto the watershed.

The ability to make predictions at more than one level of res-
olution requires identification of the processes of interest and the
parameters that affect these processes at different scales (Turner,
Dale, & Gardner, 1989). For that purpose, the current work focuses
on the centimeter to meters scale, serving as a starting point for a
“bottom-up” approach for exploring microbial ecology across the
watershed.

The microhabitats that were identified in the hillslope and
floodplain compartments of the watershed may be considered as
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“systems within systems” at a local scale. However, the term might
also be applicable at a larger scale—one that spans across the en-
tire watershed. Once validated by sampling at other hillslope and
floodplain locations across the watershed, extrapolation of this
knowledge could be used to improve our understanding of eco-
system functioning.
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FIGURE A2 Soil texture. All soils are categorized as silty-loam
(A) with the greatest variability being 20-60% sand content. PLMO
and PLM1 are found to contain more sand than in PLM3 and PLM4
(B) and sand content is correlated with the PC1 which explains
almost 80% of the variability between the samples
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PLM1 30 b1 sep16 scaffold 4162
L2 30 coox sep16 scaffold 3289
PLMA 32 coex redo sep16 scafold 83290
[PLM4 32 coex redo sep16 scafold 93976
PLM4 65 b1 redo sep16 scafold 421672
IPLM4 32 b1 s6p16 scaffold 136831
PLMO 5 coex sep16 scaffold 7550
PLI2 5 b1 sep16 scaffold 173183
PLI1 60 b1 redo sept6 scafold 131814
PLM1 60 coox sep16 scaffold 7762

PLI4 5 coex redo sep1 scaffold 2644
PLIM2 30 coex sep16 scaffold 232798
PLMO 30 b1 sep16 scaffold 12148
PLI4 65 b1 redo sep16 scaffold 12784
PLM3 127 b2 sep16 scaffold 13177
PLM4 65 b1 redo sop16 scaffold 239827

FIGURE A4 A Maximum-Likelihood phylogenetic tree of rpS3 clusters classified as Deltaproteobacteria. Black circles mark branch
support greater than 0.8. Grey scale bar was calculated with the square root of relative abundance of each cluster. Clades of interest are
marked 1 through 5
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FIGURE A5 Samples cluster based on depth and distance from river. (A) and (B) NMDS based on unweighted UniFrac distance computed
using Maximum-Likelihood phylogenetic tree. Ellipses mark 95% confidence interval for samples grouped by site (A) or depth (B). Similar
analysis by weighted UniFrac distances is shown in (C) and (D) where ellipses mark 95% confidence interval for samples grouped by site

(C) or depth (D). Confidence ellipses were not calculated depths of 50 cm, 90 cm, 100 cm, 127 cm, 170 cm and 200 cm as there were not
enough data points to conduct the statistic calculation. For confidence ellipses in (B) and (D) hillslope sites were considered separately from
floodplain sites due to the their apparent sepration on the NMDS plot
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FIGURE A6 NMDS of samples according to abundance of key metabolic enzymes. A. NMDS of key metabolic genes generated using 79
HMMs of carbon, nitrogen, sulfur and selenium metabolic enzymes. Ellipses mark 95% confidence interval for samples grouped by site (A) or
depth (B). Confidence ellipses were not calculated depths of 50 cm, 90 cm, 100 cm, 127 cm, 170 cm and 200 cm as there were not enough
data points to conduct the statistic calculation. For confidence ellipses in (B) hillslope sites were considered separately from floodplain sites
due to their apparent separation on the NMDS plot
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FIGURE A7 Spatial abundance of genes central to metabolic pathways. Samples from the floodplain (blue colored clade) are distinct
from samples from across the hillslope (black colored clade), particularly with respect to carbon fixation and selenate reduction. Sample
names in red denote DNA samples that were co-extracted with RNA (see Section 2). The sources of HMMs their description and detection

cutoffs are given in Table A1
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TABLE A3 Soil texture

Site Depth (cm) Sand (%) Silt (%) Clay (%)
PLMO 5 36.8 40 23.2
10 24.8 52.1 23.2
20 32.8 49 18.2
30 41.6 39.7 18.8
43 50.3 29.7 20
50 41.3 38.1 20.6
60 47.5 33 19.6
69 45.7 32.5 21.8
75 30.6 50.4 19
85 24.4 48 27.6
PLM1 5 311 53.4 15.5
15 33.6 51.7 14.8
24 33.1 49 17.9
34 391 45.7 15.2
44 40.2 47.8 12
53 43.6 41.9 14.5
64 25.2 51.7 231
75 24.8 52.4 22.8
85 24.8 50 25.2
95 351 42 22.8
PLM2 5 22.5 54.2 23.3
15 22.2 52.4 254
25 279 50.4 217
35 26.3 52.7 21
45 24.2 47.3 28.5
85 8 46.2 45.8
PLM3 5 7.3 59.6 33.1
15 2 74 24
25 8.7 63.6 27.7
35 13.3 58.5 28.2
45 15.7 57.2 271
55 14.8 54.2 30.9
65 11.5 51.8 36.7
75 214 48.2 30.3
85 16.7 52.7 30.5
95 26.4 46.5 271
105 24.5 49.5 26
115 23.1 51.4 25.5
123 31.5 47.5 20.9
PLM4 5 0 55 45
15 0.8 56.5 42.7
25 0 62 38
35 0.1 63.5 36.4
45 2.5 62.1 35.3
55 0.5 55.3 44.2
65 10.7 49.2 40.1

75 42.3 371 20.6
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