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SUMMARY

Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To 

understand their cell type specificities and pathways of action, we generate an atlas of 366,650 

cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, 

stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and 

IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF 

treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells 

that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many 

UC risk genes are cell type specific and co-regulated within relatively few gene modules, 

suggesting convergence onto limited sets of cell types and pathways. Using this observation, we 

nominate and infer functions for specific risk genes across GWAS loci. Our work provides a 

framework for interrogating complex human diseases and mapping risk variants to cell types and 

pathways.

Graphical Abstract

INTRODUCTION

Tissues function through the coordinated actions of diverse epithelial, immune, and stromal 

cell types. Breakdown in any compartment can lead to disease, either due to intrinsic cell 

dysfunction or the compensatory actions of other cells attempting to restore homeostasis. 

This interplay can make it difficult to nominate the causal mechanisms that underlie disease. 

In the specific case of the colonic mucosa, disruptions can lead to ulcerative colitis (UC), a 

subtype of inflammatory bowel disease (IBD) (Xavier and Podolsky, 2007).
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Known disease risk alleles highlight key pathways in the pathogenesis of IBD, including 

innate and adaptive immunity, gut barrier function, and pathogen sensing and response (Liu 

et al., 2015; Rivas et al., 2011). However, the underlying genes at risk loci have not been 

mapped to their cells and pathways of action. Moreover, while histological analysis 

following endoscopy is the current standard of care (Magro et al., 2017), it fails to capture 

fine details of disease – e.g., cell proportions, cell type specific expression, and cell-cell 

interactions - and does not distinguish between pathways associated with chronic 

inflammation vs. disease restitution.

Single-cell RNA-Seq (scRNA-Seq) is helping to advance our understanding of human 

disease by comprehensively mapping the cell types and states within a tissue, disentangling 

changes in the expression of gene programs from those in cell frequencies, and connecting 

them through cell-cell interactions (Tanay and Regev, 2017). Here, we apply scRNA-Seq to 

UC, using intestinal biopsies collected from healthy individuals and UC patients to generate 

and query a single-cell atlas of the healthy and diseased colon.

RESULTS

scRNA-Seq atlas of colon biopsies from healthy individuals and UC patients

We generated 366,650 high-quality single-cell transcriptomes from 68 biopsies (each ~2.4 

mm2) from colonoscopic examinations of 18 UC patients, under different treatment regimes, 

and 12 healthy individuals (Figure 1A, STAR Methods, Table S1). We conducted the study 

in two phases: 115,517 single-cell profiles were collected from 34 colon biopsies of 7 UC 

patients and 10 healthy individuals as a training set (Figure 1A, STAR Methods, Table S1); 

another 251,133 were then collected from 34 biopsies of 11 UC patients and 2 healthy 

individuals as a test set.

To investigate the transitions between healthy and chronically inflamed mucosa, while 

mitigating patient-specific variability, we collected paired samples from each subject in a 

single procedure. For UC patients, these were endoscopically assessed as adjacent normal 

tissue (“non-inflamed”) and inflamed or ulcerated tissue (“inflamed”) (Figure 1A, STAR 

Methods). To estimate intra-subject variation, we obtained two location-matched samples 

(distance of ~1–2 cm) from each of the 12 healthy subjects, as well as from both non-

inflamed and inflamed regions of 3 UC patients. We then separated the “epithelial” (EPI) 

and “lamina propria” (LP) fractions from each sample, and performed scRNA-Seq (STAR 

Methods). We confirmed that expression of an inflammation-associated gene set increased 

from healthy to non-inflamed to inflamed samples (Figure 1B).

A comprehensive census of 51 cell subsets and their molecular signatures

The single-cell profiles partitioned into 51 subsets by clustering (Figure 1C; after correction 

for technical and biological variation, STAR Methods), which we annotated by known 

markers (Figure 1D). The subsets were robust and reproducible, as nearly all were 

represented by all specimens (Figure 1E) and proportionally distributed across patients 

(Figure S1A,B). The discovery and validation cohorts were highly congruent (Figure S1B–
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D), as were replicates collected from the same, and even different, individuals within the 

same disease state (Figure S1E, STAR Methods).

The 51 subsets include 15 epithelial subsets, ordered along the differentiation trajectory 

from intestinal stem cells (ISCs) to mature cell fates (Haber et al., 2017) (Figure 1F; STAR 

Methods). They also include: 8 fibroblast; 4 endothelial; 1 glial; 7 myeloid; 4 B; 10 T (CD4+ 

Tconv, Tregs, CD8+, and γδ); 1 innate lymphoid cell (ILC); and 1 NK cell subsets (Figure 

1C). Missing cell types include submucosal enteric neurons, which require isolation by 

single-nucleus RNA-Seq (Habib et al., 2016), plasmacytoid dendritic cells (DCs), and 

neutrophils (Schelker et al., 2017). Each subset is supported by known and novel markers 

(Figure 1D, Table S2), including transcription factors (TFs), G protein-coupled receptors 

(GPCRs), and cytokines (Figure S2A–C, Table S3). In most cases, further sub-clusters could 

not be distinguished by an additional round of clustering (Table S2; STAR Methods). 

Exceptions included IgA+ and IgG+ plasma cells, and Tregs co-expressing TNFRSF4/OX40 
and TNFRSF18/GITR, which may reflect activated vs. resting Tregs.

Characterization of BEST4+ epithelial cells and RSPO3+ fibroblasts in healthy colon

Our census revealed that enterocytes expressing BEST4 are distinct from other epithelial 

cells (Parikh et al., 2019), and are enriched in genes related to pH sensing and electrolyte 

balance (validated in situ, Figure 1G,H and S1D). This includes the otopetrins 2 and 3 

(OTOP2/3), proton channels that detect pH and underlie sour taste perception (Tu et al., 

2018); carbonic anhydrase VII (CA7), which catalyzes bicarbonate formation; and 

bestrophin-4 (BEST4), which may export bicarbonate (Qu and Hartzell, 2008). BEST4+ 

enterocytes comprised ~1% of the ileal epithelium from two Crohn’s disease (CD) patients 

(11,473 cells; data not shown).

Multiple fibroblast subsets differ by expression of WNT/BMP signaling genes, likely 

reflecting distinct positions along the crypt-villus axis (Powell et al., 2011; Shoshkes-Carmel 

et al., 2018). Some are enriched for WNT2B, WNT4, and DKK3, suggesting they reside 

near the crypt, whereas others are enriched for BMP4, BMP5, and WNT5A/B, and may 

reside near the villus (Figure 1I). Many of these genes are reported markers of subepithelial 

telocytes, a rare population of fibroblasts that supports the epithelium (Shoshkes-Carmel et 

al., 2018); however, in our data they are broadly distributed across all subsets (e.g., FOXL1, 

DKK3, WNT5B; Figure 1I).

One subset of WNT2B+ fibroblasts may support the ISC niche by expression of R-spondin-3 

(validated in situ, Figure 1G–I), which interacts with the ISC receptor LGR5 (de Lau et al., 

2011). RSPO3+ fibroblasts express other WNT/BMP signaling genes and several distinct 

chemokines (Figure 1G,I), which may recruit immune cells to the ISC niche (Biton et al., 

2018). They are also enriched for genes predictive of poor prognosis in colorectal cancer 

(CRC) (Calon et al., 2015), and may support tumor growth by promoting a stem-like 

microenvironment (Figure S5A).

Remodeling of the colon’s cellular composition during disease

The proportions of many cell subsets significantly differed in non-inflamed or inflamed 

samples vs. healthy controls, using both a multivariate test accounting for compositional 

Smillie et al. Page 4

Cell. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dependencies (Figure 2A) and univariate tests (Figure S3A,B) (STAR Methods). These 

include many known changes in UC patients, such as increases in the proportions of mast 

cells (King et al., 1992), CD8+IL-17+ T cells (Tom et al., 2016), and Tregs (Holmen et al., 

2006) (Figure 2A and S3A,B).

Microfold (M) cells are typically associated with lymphoid tissue in the human small 

intestine, where they are important for recognition of the gut microbiota (Mabbott et al., 

2013). In the colon, M-like cells were rarely found in healthy patients, but expanded 17-fold 

during inflammation (validated in situ, Figure S3A,D). They highly express several 

chemokines (e.g., CCL20, CCL23; Figure 1G), suggesting involvement in recruiting 

immune cells to sites of inflammation.

Mucus layer defects (Xavier and Podolsky, 2007) were not explained by changes in 

expression (below), suggesting they may arise post-transcriptionally. While the frequency of 

goblet cells did not change, goblet cell progenitors were reduced during inflammation, both 

as a discrete cell subset (Figure 2A) and along the continuum of differentiation (Figure 1F, 

2D; STAR Methods).

Although the overall number of immune cells increased with disease (Danese and Fiocchi, 

2011), within the B cell lineage, there was a shift from plasma to follicular (FO) cells 

(validated in situ; Figure 2A,B). Among plasma cells, the frequencies of IgA+ relative to IgG
+ cells decreased (Figure S3C), suggesting that inflammation is associated with 

immunoglobulin class-switching (Scott et al., 1986).

An inflammation-associated fibroblast subset is unique to the UC colon

Although most fibroblast subsets were present in both healthy individuals and UC patients, a 

subset that we termed inflammation-associated fibroblasts (IAFs) expanded 189-fold in 

inflamed tissue of some patients (>1% of LP cells, validated in situ, Figure 2A,C). IAFs are 

enriched for expression of many genes associated with colitis, fibrosis, and cancer, including 

IL11, IL24, and IL13RA2 (Figure 1G). IL-11 is a regulator of fibrosis in mice and 

potentially humans (Schafer et al., 2017). IAFs comprise WNT2B+ and WNT5B+ subsets 

(Figure S3E), suggesting they may reflect a distinct state along the crypt-villus axis.

IAFs express markers of cancer-associated fibroblasts (CAFs) (Figure 1G), including FAP, 

TWIST1, and WNT2 (Erez et al., 2010; Kramer et al., 2017). The expression levels of IAF 

markers are correlated between IAFs and 414 bulk RNA-Seq CRC samples (Cancer Genome 

Atlas, 2012) (Figure S5B; Spearman’s ρ = 0.67), more than controls (ρ = 0.33; p < 10−10; 

Mann-Whitney), suggesting an expansion of IAFs in tumors (consistent with increased 

expression of IAF markers in CRC vs. controls; Figure S5B).

Most expression changes during disease are shared by non-inflamed and inflamed tissue

To identify changes in expression associated with disease, we modeled expression as the 

sum of components reflecting cell subset, disease state (healthy, non-inflamed, or inflamed), 

and technical covariates, while correcting for ambient RNA contamination (Macosko et al., 

2015) (Figure S1F, STAR Methods). We distinguished between changes shared across cell 
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subsets in epithelial, innate, or adaptive compartments (Figure 3A–C and S4A–C, Table S4) 

and those unique to each subset (Figure 3D–F and S4D–F, Table S4) (STAR Methods).

Despite their endoscopic assessments, non-inflamed and inflamed tissue had similar DE 

signatures (Figure 3G; Table S4), suggesting that the transcriptional signature of UC 

precedes inflammation or persists after resolution. Across epithelial cells, DE genes reflect 

attempts to restore homeostasis by activating innate immunity, such as antimicrobial and 

antioxidant defense pathways, mucin biosynthesis, and MHC class II machinery (validated 

in situ, Figure 3A,D,H) (Biton et al., 2018; McDonald and Jewell, 1987). Within the stroma, 

fibroblasts induced genes for inflammation, fibrosis, and tissue repair (Gieseck et al., 2017), 

while changes in endothelial cells supported tissue vascularization (Figure 3B,E). Among 

immune cells, myeloid and T cells activated co-stimulatory and co-inhibitory genes, and B 

cells upregulated genes for IgG class switching and affinity maturation (Figure 3C,F).

Concerted metabolic shifts in epithelial cells during inflammation

Comparison between non-inflamed and inflamed UC tissue (Figure S4A–F; Table S4) 

revealed several metabolic changes in epithelial cells accompanying inflammation. For 

example, changes in purine metabolism (e.g., XDH, URAD) may yield uric acid, associated 

with epithelial damage (Chiaro et al., 2017). Epithelial cells also induced the kynurenine 

pathway (Figure 4A), associated with disease severity (Sofia et al., 2018). GPR35, a 

kynurenic acid receptor, is a putative risk gene (Huang et al., 2017).

Mapping changes in 239 KEGG pathways during inflammation (Figure 4B and S5C, STAR 

Methods) revealed other metabolic alterations in enterocytes, including a shift from 

oxidative phosphorylation to glycolysis, induction of arginine biosynthesis enzymes (e.g., 

NOS2, ASS1), and downregulation of enzymes for the degradation of branched-chain amino 

acids, particularly AUH, a putative risk gene (Liu et al., 2015). Enterocytes also induced 

HIF1 pathways, a contributor to the glycolytic shift in monocytes (Kelly and O’Neill, 2015). 

These changes may be driven by impaired production of short chain fatty acids by gut 

bacteria (den Besten et al., 2013), as epithelial cells downregulated pathways for beta-

oxidation and the metabolism of butyrate and propionate, but upregulated pathways for 

dietary fatty acids (e.g., α-Linoleic acid).

Induction of a pro-inflammatory IL-17 response and immune checkpoints in T cell subsets

Among T cells, several CD4+ subsets upregulated IL17A (Figure 3C), which may reflect 

both a per cell increase in IL17A expression, as well as an expansion of Th17 cells. 

Surprisingly, a CD8+ subset had the strongest overall induction of IL17A across both disease 

states (Figure 4CE). In situ analysis revealed both CD4− and CD4+ cells that co-express 

CD8 and IL17A (Figure 4D,E). While CD8+IL-17+ T cells have been reported (Cortez et al., 

2014; Srenathan et al., 2016), CD4+CD8+IL-17+ T cells are largely uncharacterized. These 

cells also activated cytotoxic programs and genes related to Th17 pathogenicity in mice 

(e.g., RBPJ, IL23R; Figure 3F and 4C) (Gaublomme et al., 2015), which may aggravate 

tissue damage. Most subsets of T cells induced co-stimulatory and co-inhibitory programs 

(Figure 4C), consistent with attempts to suppress immune activation (Attanasio and Wherry, 

2016).
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TNF expression shifts to Tregs, FO B and CD8+IL-17+ T cells during inflammation

Monoclonal anti-TNF antibodies are a breakthrough therapy for IBD, but 30% of IBD 

patients do not respond and many acquire resistance (Rutgeerts et al., 2004). TNF expression 

shifted during UC, with a prominent role for Tregs. Baseline expression of TNF per cell was 

highest in CD8+ LP and Activated CD4+Foshi T cells, but in inflamed tissue, TNF was 

induced in Tregs and FO B cells (validated in situ; Figure 5B and S5D). When estimating the 

total amount of TNF expressed by each cell subset (Figure 5A), Tregs accounted for 1% of 

TNF expression in healthy tissue, but over 14% during inflammation (second only to 

activated CD4+ T cells).

IAFs and inflammatory monocytes are associated with resistance to anti-TNF therapy

One of the most enriched genes in IAFs is OSMR, a putative risk gene (Liu et al., 2015) and 

the receptor for Oncostatin M (OSM), a cytokine that predicts anti-TNF response (West et 

al., 2017). OSM and OSMR are thought to be expressed by unknown myeloid and stromal 

cells, respectively (West et al., 2017). OSM was most enriched in inflammatory monocytes 

and DC2s, while OSMR was most enriched in IAFs (validated in situ; Figure 5C). Together 

with the expansion of these subsets during inflammation, this led us to hypothesize that 

cellular remodeling of the colon may explain, in part, the relationship between OSM and 

drug resistance.

We therefore scored cell subsets for gene signatures of anti-TNF resistance and sensitivity, 

based on a meta-analysis of bulk expression data from 60 responders and 57 non-responders 

to therapy (Wang et al., 2016) (STAR Methods). The drug resistance signature was strongly 

enriched in IAFs, inflammatory monocytes, and DC2 cells (Figure 5D,E), and the drug 

sensitivity signature in epithelial cells (Figure 5D). The three genes most associated with 

drug resistance — IL13RA2, TNFRSF11B, and IL11 — are IAF markers that are rarely 

expressed in other cells (Figure 5E). An inverse analysis, using the IAF gene signature to 

infer the pre-treatment levels of IAFs in bulk expression data from 20 drug responders vs. 27 

non-responders (Figure 5F; STAR Methods), confirmed that IAFs are enriched in patients 

who are resistant to anti-TNF. Therefore, IAFs may be implicated in the OSM-mediated 

resistance reported by (West et al., 2017).

Potential resistance mechanisms are that OSM synergizes with TNF (West et al., 2017) or 

phenocopies it. To test these hypotheses, we examined the relationship between TNF and 

OSM signaling across cell subsets. The signatures were strongly correlated across cell 

subsets (even after removing shared genes) and both were correlated to the drug resistance 

signature (Figure 5G). This suggests that OSM phenocopies TNF, activating downstream 

targets in IAFs. IAFs and inflammatory monocytes may thus compensate during TNF 

blockade, contributing to resistance.

Re-wiring of cell-cell interactions via inflammation-associated cell subsets during disease

To more generally chart the rewiring of cell-cell interactions during colitis, we mapped 

receptor-ligand pairs (Ramilowski et al., 2015) onto cell subsets to construct a putative cell-

cell interaction network across disease states (Figure 6A–C), and identified pairs of cell 
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subsets with significantly more receptor-ligand connections than in a null model (STAR 

Methods).

Healthy interactions delineated distinct cellular compartments (Figure 6A), whereas DE 

genes during disease targeted inter-lineage crosstalk and reduced compartmentalization 

(Figure 6B,C), with UC-associated subsets acting as key network hubs (Figure 6D). In 

healthy mucosa, interactions largely reflected gut homeostasis (e.g., DC1 cells and T cells; 

Figure 6A, p < 0.05). Conversely, non-inflamed interactions were enriched between 

epithelial cells and fibroblasts and T cells (Figure 6B, all p < 10−4), while inflamed tissue 

showed re-wiring of interactions between B cells and T cells, and macrophages and 

CD8+IL-17+ T cells (Figure 6C, all p < 10−4). UC-associated subsets (e.g., M-like cells, 

IAFs, inflammatory monocytes) were the most central nodes in the network (Figure 6D), 

indicating that they mediate signals between diverse cell subsets.

Cell-cell interactions predict the infiltration, proliferation, and differentiation of cell subsets 
during inflammation

We hypothesized that shifts in the proportions of cell subsets could be explained by changes 

in cell-cell interaction genes expressed by other cells. To test this, we queried all cell subset 

pairs, examining, for each receptor-ligand set, whether the ligand’s expression level in one 

cell subset was correlated across samples with the proportions of the cell subset expressing 

its receptor (including autocrine interactions). This analysis uncovered hundreds of 

significant interactions (Figure 6E and Table S5; STAR Methods).

For example, IL18 upregulation by enterocytes during inflammation is correlated with 

increased proportions of Tregs, which express its receptor IL18R1 (Figure 6E, Spearman’s ρ 
= 0.68). In mice, IL-18 both inhibits Th17 differentiation and allows for Treg-mediated 

control of gut inflammation (Harrison et al., 2015). However, the role of epithelial cells in 

recruiting Tregs to the colon is largely unknown. The frequency of enterocytes, which 

express IL22RA1, was correlated with the expression by CD4+ Activated Foshi T cells of 

IL22, which regulates intestinal regeneration (Pelczar et al., 2016) (Figure 6E, Spearman’s ρ 
= 0.55). We validated this interaction in human colon spheroid culture, where incubation 

with IL-22 induced an expression program that was significantly enriched in enterocytes vs. 

ISCs (Figure S6A; p < 10−10; Wilcoxon test).

Other factors promote the recruitment of immune cells (e.g., CXCL12 for B cells), the 

expansion of stromal cells (e.g., PDGFD for pericytes; OSM for IAFs), or are autocrine 

signals that may regulate cell survival, proliferation, or death (e.g., MST1 for BEST4+ 

enterocytes; TNFSF10 for post-capillary venules) (Figure 6E). Lastly, we developed a 

LASSO regression model to identify circuits spanning multiple cell types (Figure 6F,G and 

S6B,C; STAR Methods). For example, CD8+IL-17+ T cell proportions are explained by a 

combination of autocrine and paracrine interactions involving epithelial cells, T cells, 

fibroblasts, and glia (Figure 6F).
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Many IBD risk genes are cell type- or lineage-specific and differentially expressed in 
disease

To interrogate IBD genetics using scRNA-Seq, we studied 151 risk loci for IBD and UC 

spanning 346 candidate risk genes (STAR Methods). For most loci, the gene underlying the 

association signal is unknown; however, in some cases, it is possible to implicate a single 

gene because it contains a fine-mapped or nonsynonymous coding variant, or is resolved to a 

region of linkage disequilibrium with no other genes. Using this approach, we compiled a 

set of 57 “GWAS-implicated” risk genes that have a high likelihood of being causally 

associated with IBD (Table S6, STAR Methods).

Mapping these 57 GWAS-implicated risk genes onto our atlas revealed 29 that were 

enriched in specific lineages (Figure 7A) and 36 that were significantly DE during disease 

(Figure S7A,B). In addition to known associations (e.g., NKX2–3 in microvascular cells, 

HNF4A in enterocytes) (Stegmann et al., 2006; Wang et al., 2000), we discovered several 

new relationships (Table S6). For example, intelectin 1 (ITLN1), a lipid raft protein that 

localizes to the epithelial brush border (Wrackmeyer et al., 2006), is enriched in immature 

goblet cells. Some cell subsets are enriched for the expression of several GWAS-implicated 

risk genes (Figure 7B). Notably, M-like cells express many risk genes at higher levels than 

other cells (e.g., NR5A2, CCL20, JAK2; Figure 7A, Table S6), suggesting that M-like cell 

dysfunction may play an important role in the disease.

Co-variation of gene expression within a cell type helps predict functions for IBD risk 
genes

We hypothesized that variation in gene expression across single cells of the same subset can 

power us to infer the functions of IBD risk genes. Past approaches often use “guilt-by-

association” across bulk tissue samples, but cannot distinguish changes in expression from 

changes in cell proportions. In contrast, we measured the covariation of genes across single 

cells within a cell subset, allowing us to isolate co-regulated processes in those cells (Tanay 

and Regev, 2017) (STAR Methods).

In this way, we constructed gene modules for the 57 GWAS-implicated IBD risk genes in all 

expressing cell subsets and annotated them with putative functions (Table S6, STAR 

Methods). For example, within healthy epithelial cells, the C1orf106 module was enriched 

for tight junction and adherens junction genes (q < 10−6 and 10−2, respectively; Fisher’s 

exact test). We recently showed that C1orf106 is involved in cell-cell junctions (Mohanan et 

al., 2018).

Multiple IBD risk genes co-localize in shared gene modules, revealing key pathways in IBD

In many cases, multiple putative IBD risk genes were members of the same gene module, 

allowing us to define 10 “meta-modules” spanning over 50% of GWAS-implicated IBD risk 

genes, which may reflect key disease pathways (empirical q < 0.05; Figure 7C and Table S7; 

STAR Methods). For example, the PRKCB meta-module in healthy macrophages contains 5 

other risk genes (GPR65, ADCY7, PTGER4, PTPRC, SH2B3) and may regulate 

macrophage activation through cAMP signaling. In addition, the JAK2 meta-module in UC-
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associated M-like cells contains 4 other risk genes (CCL20, PTGER4, SH2B3, AHR) and 

may regulate TNF signaling in M-like cells.

Single-cell expression and co-expression help nominate causal genes across GWAS loci

The functional coherence of IBD risk genes suggests that single-cell expression or co-

expression can help pinpoint genes that underlie the signal of association at loci with 

multiple candidate genes. To this end, we identified 20 IBD and UC risk regions (each 

spanning > 1 gene) whose candidate gene sets contain a GWAS-implicated risk gene, which 

we term the “correct” gene for that region (STAR Methods). For each such region, we then 

tested whether the degrees of (1) expression, (2) differential expression, or (3) co-expression 

with other candidate genes (iteratively defined across loci; STAR Methods) could recover 

the “correct” risk gene for the region, relative to a null model in which a gene is randomly 

selected (STAR Methods). The null model had 33% accuracy, which did not improve when 

we selected the gene with the largest DE coefficient in either disease state (Figure 7D). 

However, our predictions significantly improved when we selected the gene with the highest 

expression in any cell subset (Figure 7D; 55% accuracy, empirical p = 0.03) or belonging to 

the largest module of other candidate genes (Figure 7D; 63% accuracy, empirical p = 0.001). 

For CD loci, no method significantly outperformed the null model (Figure 7D), suggesting 

that the unique risk genes for UC and CD are active in distinct locations or only in diseased 

tissue.

Finally, we used this co-expression approach to nominate causal genes across all IBD/UC 

risk loci, including 56 for which the genes driving the association are unknown (Figure 7E 

and Table S7). We recovered many known IBD and UC risk factors (e.g., HNF4A, IFIH1, 

GPR35), but failed to identify others (e.g., RNF186, Figure 7E), highlighting limitations of 

our approach (Discussion). In addition, this analysis yielded predictions for 53 genes that 

were not in the GWAS-implicated set, including RORC, ITGAV, and SMURF1 (Figure 7E).

DISCUSSION

By leveraging scRNA-Seq in a clinical context, we assessed cellular composition, gene 

expression, cell-cell interactions, and IBD risk gene pathways in specific cell subsets from 

intestinal biopsies. While distinguishing cause from effect is challenging, relating single-cell 

data to clinical responses (e.g., IAFs), cell-cell interactions (e.g., enterocytes and T cells), or 

risk gene expression (e.g., M-like cells) can help inform disease etiology and highlight new 

opportunities for therapeutic intervention.

M-like cells were rarely detected at baseline, but expanded during inflammation and acted as 

hubs in the cell-cell interaction network (Figure 6D and S3A,D). This expansion may reflect 

tertiary lymphoid tissue or sentinel cells (Mabbott et al., 2013). M-like cells had the highest 

expression of GWAS-implicated risk genes (Figure 7A,B), including CCL20, whose 

expression was correlated to Treg frequencies across samples (Table S6). They had the 

largest module of predicted risk genes (Table S7), enriched in endocytosis and Th17 

differentiation genes (q < 10−3, Fisher’s exact test), which may reflect the transcytosis and 

delivery of antigens.
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CD8+IL-17+ T cells and Tregs expand from healthy to non-inflamed to inflamed tissue 

(Figure 2A) and become major sources of IL-17 (Figure 4C) and TNF (Figure 5A,B) during 

inflammation, respectively. The former may contribute to T cell pathogenicity and tissue 

damage (Figure 4D,E; 66% co-express CD4). While the latter may have adopted an effector-

like state, they are still more enriched for Treg markers (e.g., FOXP3, CTLA4, IL10) than 

TNF– Treg cells (data not shown). Future work will determine whether TNF+ Treg cells 

contribute to disease pathology or to anti-TNF resistance (Atreya et al., 2011), as well as the 

role of CD8+ T cell plasticity in gut inflammation.

OSM signaling was implicated in anti-TNF resistance via unknown myeloid and stromal cell 

types (West et al., 2017). Here, we show that inflammatory monocytes and IAFs may 

mediate resistance via expression of OSM and OSMR, respectively (Figure 5D). In 

particular, IAFs were enriched in pre-treatment samples from anti-TNF non-responders 

(Figure 5F). In addition, we identified that OSM phenocopies TNF, which may explain anti-

TNF resistance. Future work will determine if IAFs are a robust biomarker of drug response 

or if combining anti-TNF drugs with inhibition of IAF cytokines/receptors can reduce anti-

TNF resistance in UC patients.

IAFs uniquely express IL11, a potential therapeutic target for fibrosis (Schafer et al., 2017), 

suggesting involvement in gut fibrosis. Because they express crypt- (WNT2B+) and villus-

(WNT5B+) associated markers (Figure 1I and S3E), IAFs may reflect a distinct fibroblast 

state. IAFs express several CAF markers, and IAF markers are enriched in CRC tumors 

(Figure S5B), suggesting a shared origin/state. IAF expansion during cancer-associated 

inflammation may affect the tumor microenvironment. Lastly, both IAFs and inflammatory 

monocytes form hubs in the cell-cell interaction network and may impact the proportions of 

other cells (Figure 6E; Table S5).

By leveraging single-cell co-expression, we mapped > 50% of risk genes onto 10 meta-

modules (Figure 7C) and used these meta-modules to nominate causal risk genes across loci 

(Figure 7E). However, this approach may fail to identify risk genes that are lowly expressed, 

active in cells/tissues that were not profiled, or not co-expressed with other risk genes. It 

may also fail when multiple risk genes act at the same locus; however, we find that it 

improves predictions even when scoring genes irrespective of region (rather than selecting 

one gene per region) (Figure S7D; STAR Methods). We hope that these analyses will pave 

the road to combining human genetics and single-cell genomics to better understand 

polygenic disorders by relating risk gene modules to polygenic risk scores, mapping variants 

to single-cell phenotypes, and mapping non-coding variants to cells via single-cell allele-

specific expression and eQTL analysis.

Our work provides a framework for using scRNA-Seq to understand human diseases and 

their therapeutic responses. We identify changes in cell proportions and gene expression 

with disease state, and integrate these to understand mechanisms of cell-cell signaling and 

drug susceptibility. Finally, we nominate risk genes across loci, predicting their cells of 

action, and putative functions, and assemble them into the core pathways that underlie 

disease.
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STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, A.R. (aregev@broadinstitute.org). This study did not generate 

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and tissue samples—Biopsy samples were obtained from Crohn’s disease 

(CD) patients, ulcerative colitis (UC) patients, and healthy individuals after informed 

consent and approval to the Prospective Registry in Inflammatory Bowel Disease Study at 

Massachusetts General Hospital (PRISM:2004P001067). Clinical information and metadata 

for the samples are provided in Table S1. Healthy controls were recruited at the time of 

routine colonoscopy. Healthy controls were patients without a history of inflammatory 

bowel disease (IBD), a 1st degree relative with IBD, a history of an autoimmune disease, 

immune mediated conditions, infectious colitis, colon cancer, a family history of colon 

cancer, and overall healthy with no other disease history (Table S1). UC patients were 

included based on having a clinical diagnosis of ulcerative colitis, and observed to have 

active disease via macroscopic assessment from a physician during an endoscopy. Two 

biopsies were obtained during endoscopy, using biopsy forceps that were used in standard of 

care. Each patient’s biopsies were collected in a region determined by the scoping physician. 

Healthy controls had two bites of endoscopically normal tissue, while UC patients had either 

(1) one non-inflamed and one inflamed region biopsied (15 patients; Table S1) or two 

adjacent non-inflamed and two adjacent inflamed biopsies to account for intra-patient 

variability (3 patients; Table S1). Biopsy bites were immediately placed into cryovials 

containing Advanced DMEM F-12 and placed on ice for transport.

For scRNA-seq, all biopsy samples were obtained from UC patients and healthy individuals, 

including both males and females (Table S1) while spanning a range of ages (20 – 77 years). 

For human spheroid cultures, biopsies were obtained from IBD patients (2 CD patients 

(right colon, males and non-smokers) and a UC patient (right colon, female and non-

smoker)).

METHOD DETAILS

Single cell dissociation from fresh biopsies—Single-cell suspensions from collected 

biopsy bites were obtained using a modified version of a previously published protocol 

(Persson et al., 2013) as detailed below. Typically, two biopsies from the same patient were 

received directly in hand and processed in parallel with an average time from patient to 

loading on the 10X GemCode or Chromium platform of 2.5 total hours, and never exceeding 

3.5 hours. While intact, biopsy bites were handled using a P1000 pipette applying gentle 

suction, and all centrifugation steps done in a temperature controlled 4°C centrifuge. Biopsy 

bites were first rinsed in 30 mL of ice-cold PBS (ThermoFisher 10010–049) and allowed to 

settle. Each individual bite was then transferred to 10 mL epithelial cell solution (HBSS 

Ca/Mg-Free [ThermoFisher 14175–103], 10 mM EDTA [ThermoFisher AM9261], 100 

U/ml penicillin [ThermoFisher 15140–122], 100 mg/mL streptomycin [ThermoFisher 
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15140–122], 10 mM HEPES [ThermoFisher 15630–080], and 2% FCS [ThermoFisher 

10082–147]) freshly supplemented with 200 μL of 0.5M EDTA. Separation of the epithelial 

layer from the underlying lamina propria was performed for 15 minutes at 37°C in a 

rotisserie rack with end-over-end rotation. The tube was then removed and placed on ice 

immediately for 10 minutes before shaking vigorously 15 times. Visual macroscopic 

inspection of the tube at this point yielded visible epithelial sheets, and microscopic 

examination confirmed the presence of single-layer sheets and crypt-like structures. The 

remnant tissue bite was carefully removed and placed into a large volume of ice-cold PBS to 

rinse before transferring to 5mL of enzymatic digestion mix (Base: RPMI1640, 100 U/ml 

penicillin [ThermoFisher 15140–122], 100 μg/mL streptomycin [ThermoFisher 15140–122], 

10 mM HEPES [ThermoFisher 15630–080], 2% FCS [ThermoFisher 10082–147], & 50 

μg/mL gentamicin [ThermoFisher 15750–060]), freshly supplement immediately before 

with 100 mg/mL of Liberase TM [Roche 5401127001] and 100 μg/mL of DNase I [Roche 

10104159001]), at 37°C with 120 rpm rotation for 30 minutes. During this 30-minute lamina 

propria (LP) digestion, the epithelial (EPI) fraction was spun down at 400g for 7 minutes 

and resuspended in 1 mL of epithelial cell solution before transferring to a 1.5mL Eppendorf 

tube in order to minimize time spent centrifuging and provide a more concentrated cell 

pellet. Cells were spun down at 800g for 2 minutes and resuspended in TrypLE express 

enzyme [ThermoFisher 12604013] for 5 minutes in a 37°C bath followed by gentle 

trituration with a P1000 pipette. Cells were spun down at 800g for 2 minutes and 

resuspended in ACK lysis buffer [ThermoFisher A1049201] for 3 minutes on ice to remove 

red blood cells, even if no RBC contamination was visibly observed in order to maintain 

consistency across samples. Cells were spun down at 800g for 2 minutes and resuspended in 

1 mL of epithelial cell solution and placed on ice for 3 minutes before triturating with a 

P1000 pipette and filtering into a new Eppendorf tube through a 40 μM cell strainer 

[Falcon/VWR 21008–949]. Cells were spun down at 800g for 2 minutes and then 

resupended in 200 mL of epithelial cell solution and placed on ice while final steps of LP 

dissociation occurred. After 30 minutes, the LP enzymatic dissociation was quenched by 

addition of 1ml of 100% FCS [ThermoFisher 10082–147] and 80 μL of 0.5M EDTA and 

placing on ice for five minutes. Samples were typically fully dissociated at this step and after 

gentle trituration with a P1000 pipette filtered through a 40mM cell strainer into a new 50 

mL conical tube and rinsed with PBS to 30 mL total volume. This tube was spun down at 

400g for 10 minutes and resuspended in 1 mL of ACK and placed on ice for 3 minutes. Cells 

were spun down at 800g for 2 minutes and resuspended in 1 mL of epithelial cell solution 

and spun down at 800g for 2 minutes and resuspended in 200 mL of epithelial cell solution 

and placed on ice.

Human spheroid cultures for IL-22-enterocyte interaction validation—Human 

biopsies from IBD patients (i.e. 2 CD patients and 1 UC patient, see above) were collected 

for spheroid culture. Each individual bite was minced and then transferred to 10 mL 

epithelial cell solution (HBSS Ca/Mg-Free [ThermoFisher 14175–103], 8 mM EDTA 

[ThermoFisher AM9261], 100 U/ml penicillin [ThermoFisher 15140–122], 100 mg/mL 

streptomycin [ThermoFisher 15140–122], 10 mM HEPES [ThermoFisher 15630–080]). 

Separation of the epithelial layer from the underlying lamina propria was performed for 40 

minutes at 4°C in a rotisserie rack with end-over-end rotation. The tube was then removed 
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and placed on ice immediately for 10 minutes before shaking vigorously 15 times. Visual 

macroscopic inspection of the crypt-like structures was performed. Crypt like structures 

were spun down at 200g for 3 minutes and washed twice with cold PBS and subsequently 

were resuspend with Matrigel. Cells were then seeded in 24 well plates and grow with 50% 

L-WRN media (50% base –Advanced DMEM/F12 [Gibco 12634–010] + 10% FBS, P/S, 

GluM, HEPES) +10uM Y27632 [TOCRIS 1254] +10uM SB 431542 [TOCRIS 1614] for 3 

days before first splitting. Media was then changed every 2 days.

For IL-22 stimulation, spheroids were grown for 3 days and then split 1:3 with fresh media 

containing 20ng/ml recombinant human IL-22 [Peprotech 200–22] or mock. After 3 days, 

spheroids were collected and subjected to bulk RNA-Seq with the SMART-Seq2 protocol 

(Picelli et al., 2014).

Droplet-based scRNA-Seq—Single cells were processed through the GemCode Single 

Cell Platform per manufacturer’s recommendations using the GemCode Gel Bead, Chip and 

Library Kits (V1) or single-cell suspensions were loaded onto 3’ library chips as per the 

manufacturer’s protocol for the Chromium Single Cell 3’ Library (V2) (10X Genomics; 

PN-120233) (Table S1). Briefly, single cells were partitioned into Gel Beads in Emulsion 

(GEMs) in the GemCode or Chromium instrument with cell lysis and barcoded reverse 

transcription of RNA, followed by amplification, shearing (for V1) or enzymatic 

fragmentation (For V2) and 5’ adaptor and sample index attachment. Each biopsy bite was 

sequenced on two channels of the 10X GemCode or Chromium Single Cell Platform, one 

for the epithelial fraction and the other for the lamina propria fraction in order to recover 

sufficient numbers of epithelial and lamina propria cells for downstream analyses. An input 

of 6,000 single cells was added to each channel with a recovery rate of approximately 2,000 

cells. Libraries were sequenced on an Illumina Nextseq or Hi-Seq (Table S1).

SMART-Seq2 for sequencing of human colon spheroids—Libraries were prepared 

using a modified SMART-Seq2 protocol as previously reported (Picelli et al., 2014). RNA 

lysate cleanup was performed using RNAClean XP beads [Agencourt], followed by reverse 

transcription with Maxima Reverse Transcriptase [Life Technologies] and whole 

transcription amplification (WTA) with KAPA HotStart HIFI 2× ReadyMix [Kapa 

Biosystems] for 16 cycles. WTA products were purified with Ampure XP beads [Beckman 

Coulter], quantified with Qubit dsDNA HS Assay Kit [ThermoFisher], and assessed with a 

high sensitivity DNA chip [Agilent]. RNA-Seq libraries were constructed from purified 

WTA products using Nextera XT DNA Library Preparation Kit [Illumina, FC-131–1096]. 

The population and no-cell controls were processed using the same method. The libraries 

were sequenced on an Illumina MiSeq.

Immunofluorescence assay (IFA)—Staining of human colon samples from tissue array 

of inflamed and healthy individuals (TMA, US BioMAX, #CO809a and #CO245) was 

conducted as previously described (Biton et al., 2011). Sections were deparaffinized with 

standard techniques, incubated with primary antibodies overnight at 4°C, and then incubated 

with secondary antibodies at room temperature for 30 min. Slides were mounted with 

Slowfade Mountant+DAPI (Life Technologies, S36964) and sealed.
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Single-molecule fluorescence in situ hybridization (smFISH)—RNAScope 

Fluorescent Multiplex and RNAScope Multiplex Fluorescent v2 (Advanced Cell 

Diagnostics) were used per manufacturer’s recommendations with the following alterations. 

Target retrieval boiling time was adjusted to 12 minutes and incubation with Protease IV at 

40°C was adjusted to 15 minutes. Slides were mounted with Slowfade Mountant+DAPI 

(Life Technologies, S36964) and sealed.

Combined IFA and smFISH—Combined IFA and smFISH was implemented by first 

performing smFISH and then IFA, as described above, with the following alterations. After 

horseradish peroxidase (HRP) enzyme blocking, tissue sections were washed in washing 

buffer, incubated with primary antibodies overnight at 4°C, washed in 1x TBST 3 times and 

then incubated with secondary antibodies for 30 min at room temperature. Slides were 

mounted with Slowfade Mountant+DAPI (Life Technologies, S36964) and sealed.

Imaging of tissue sections—Images of tissue sections were taken with a confocal 

microscope Fluorview FV1200 using Kalman filtering and sequential laser emission to 

reduce noise and signal overlap. Scale bars were added to each image using the confocal 

software FV10-ASW 3.1 Viewer. Images were overlaid and visualized using ImageJ 

software (Schneider et al., 2012).

Antibodies and RNA smFISH probes

Antibodies used for immunofluorescence:  Mouse anti-EPCAM (1:500, ThermoFisher 

MA1–06502), mouse anti-Vimentin (1:500, Millipore MAB3400), mouse anti-CD19 (1:100, 

BioLegend 302201), rat anti-CD45 (1:200, ThermoFisher MA5–17687), goat anti-CD138 

(1:100, R&D Systems AF2780), mouse anti-HLA-DR/DP/DQ (1:200, ThermoFisher MA1–

25914), mouse anti-CD11c (1:100, BD Biosciences 550375), goat anti-CD4 (1:100, R&D 

Systems AF-379-NA), rabbit anti-CD8 (1:100, Invitrogen SP16). Alexa Fluor 488-, 594-, 

and 647-conjugated secondary antibodies were used (Life Technologies).

Human probes used for single-molecule FISH with RNAscope (Advanced Cell 
Diagnostics):  BEST4 (C1), KRT19 (C2), RSPON3 (C1), GREM2 (C2), IL13RA2 (C1), 

PLAU (C3), HLADRA (C1), OSM (C1), HLA-DPB1 (C2), OSMR (C2), SOX8 (C1), 

CCL20 (C2), IL17A (C1).

QUANTIFICATION AND STATISTICAL ANALYSES

Processing FASTQ reads into gene expression matrices—Cell Ranger v2.0 was 

used to demultiplex the FASTQ reads, align them to the hg19 human transcriptome, and 

extract their “cell” and “UMI” barcodes. The output of this pipeline is a digital gene 

expression (DGE) matrix for each sample, which records the number of UMIs for each gene 

that are associated with each cell barcode. DGE matrices were filtered to remove low quality 

cells, defined as cells in which fewer than 250 different genes were detected. This cutoff was 

determined empirically: higher cutoffs led to disproportionate filtering of mast and T cells, 

whereas lower cutoffs did not affect the cell type distribution, but did reduce overall data 

quality. To account for differences in sequencing depth across cells, UMI counts were 
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normalized by the total number of UMIs per cell and converted to transcripts-per-10,000 

(henceforth “TP10K”).

Cell clustering overview—To cluster single cells into distinct cell subsets, we followed 

the general procedure outlined in (Haber et al., 2017) with additional modifications. This 

workflow includes the following steps: partitioning cells into epithelial, stromal, and 

immune compartments, followed by clustering the cells within each compartment, which 

entails the selection of “variable” genes, batch correction, dimensionality reduction (PCA), 

and graph clustering. Each step of this workflow is detailed below.

Partitioning cells into epithelial, stromal, and immune compartments—Cells 

were partitioned into epithelial, stromal, and immune compartments based on the expression 

of known marker genes. First, we clustered the cells within each sample by their gene 

expression profiles (with the clustering procedure below). The clusters were scored for the 

following gene signatures: epithelial cells (EPCAM, KRT8, KRT18), stromal cells 

(COL1A1, COL1A2, COL6A1, COL6A2, VWF, PLVAP, CDH5, S100B), and immune cells 

(CD52, CD2, CD3D, CD3G, CD3E, CD79A, CD79B, CD14, CD16, CD68, CD83, CSF1R, 

FCER1G). Signature scores were calculated as the mean log2(TP10K+1) across all genes in 

the signature. Each cluster was assigned to the compartment of its maximal score and all 

cluster assignments were manually inspected to ensure the accurate segregation of cells. 

Finally, the cells within each compartment were assembled into three DGE matrices, 

comprising all epithelial cells, all stromal cells, and all immune cells.

Variable gene selection—To identify variable genes within a sample, we first calculated 

the mean (μ) and the coefficient of variation (CV) of expression of each gene. Genes were 

then grouped into 20 equal-frequency bins (ventiles) according to their mean expression 

levels. LOESS regression was used to fit the relationship, log(CV) ~ log(μ), and the 1,500 

genes with the highest residuals were evenly sampled across these expression bins. To 

extend this approach to multiple samples, we performed variable gene selection separately 

for each sample to prevent “batch” differences between samples from unduly impacting the 

variable gene set. A consensus list of 1,500 variable genes was then formed by selecting the 

genes with the greatest recovery rates across samples, with ties broken by random sampling. 

This consensus gene set was then pruned through the removal of all ribosomal, 

mitochondrial, immunoglobulin, and HLA genes, which were found to induce unwanted 

batch effects in some samples in downstream clustering steps.

Batch correction—We observed substantial variability between cells that had been 

obtained from different human subjects, which likely reflects a combination of technical and 

biological differences. In some cases, these “batch effects” led to cells clustering first by 

patient or disease phenotype, rather than by cell type or cell state. To eliminate these batch 

differences, we ran ComBat (Johnson et al., 2007) with default parameters on the 

log2(TP10K+1) expression matrix, allowing cells to be clustered by cell type or cell state. 

Importantly, these batch-corrected data were only used for the PCA and all steps relying on 

PCA (e.g. clustering, diffusion map, t-SNE visualization); all other analyses (e.g. differential 

expression analysis) were based on the original expression data.
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Comparison of batch correction methods—We compared ComBat to two other batch 

correction methods that were designed specifically for scRNA-Seq data: MultiCCA (Butler 

et al., 2018) and LIGER (Welch et al., 2018). Both methods were run on the log2(TP10K+1) 

expression data for cells from the epithelial, stromal, and immune compartments, using 

default parameters with n = 20 components to match the original analysis. Following batch 

correction, cell embeddings were visualized using the Barnes-Hut t-Distributed Stochastic 

Neighbor Embedding (t-SNE) algorithm with default parameters. To visualize congruence 

between methods, we then projected the cell subsets that were originally defined using the 

ComBat-transformed data (i.e. Figure 1C) onto the t-SNE coordinates calculated using each 

of the other methods. Inspection of the batch correction methods revealed that ComBat 

performed well in comparison to the other methods, in agreement with a recent comparison 

of batch correction methods (Buttner et al., 2019).

Dimensionality reduction, graph clustering, and t-SNE visualization—Cells were 

clustered at two stages of the analysis: first, to initially partition the cells within each sample 

into epithelial, stromal, and immune compartments (single sample clustering), and second, 

to cluster cells from multiple samples into distinct subsets (multi-sample clustering).

For single-sample clustering, we first ran low-rank PCA on the variable genes of the entire 

log2(TP10K+1) expression matrix (as no consensus list needs to be generated). The Infomap 

graph clustering algorithm (Rosvall and Bergstrom, 2008) was then applied to the k-nearest 

neighbor (k-NN) graph defined using PCs 1 to 20 and k = 50 nearest neighbors. These 

parameters were chosen to “over-cluster” the cells, ensuring that cells from distinct 

compartments were not grouped together.

In contrast, for multi-sample clustering, we ran low-rank PCA on the variable genes of the 

batch-corrected expression matrix, chosen as described above. We then applied Phenograph 

(Levine et al., 2015) to the k-NN graph defined using PCs 1 to 20 and a varying k, which 

was selected through close inspection of the data (see “Selecting the number of nearest 

neighbors for graph clustering”): k = 750 for epithelial cells, k = 250 for stromal cells, and k 
= 250 for immune cells. Although most clusters were stable over a range of k, some rare 

epithelial subsets, such as tuft cells and M cells, were initially merged with larger clusters. 

We therefore re-clustered the epithelial cells with fewer neighbors (k = 50) to achieve higher 

granularity in the clusters and added clusters corresponding to BEST4+ enterocytes, 

enteroendocrine cells, and M cells to the original set of clusters. Additionally, we partitioned 

the immune cells into myeloid, B cell, and T cell compartments based on DE genes within 

each cluster, and repeated the clustering using the k-NN graphs defined with PCs 1 to 15 and 

k = 50 for myeloid cells, k = 100 for B cells, and k =100 for T cells. After clustering the 

cells, we merged pairs of clusters that were separated by fewer than 5 differentially 

expressed (DE) genes with AUC > 0.60, a permissive cutoff that merges only highly similar 

clusters. Finally, the Barnes-Hut t-Distributed Stochastic Neighbor Embedding (t-SNE) 

algorithm was run on the PCs with perplexity = 20 and for 10,000 iterations to produce two-

dimensional embeddings of the data for visualization (Figure 1C).

Selecting the number of nearest neighbors for graph clustering—To select the 

number of nearest neighbors, k, for clustering, we examined a range of choices (typically k 
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= 25, 50, 100, 250, 500, and 750). In general, we tried to select a k yielding the highest 

granularity clusters that were still biologically distinct, as determined through inspection of 

their marker genes. We also looked at the stability of cluster assignments over the full 

parameter range and tried to select a k yielding stable and well-resolved clusters. Therefore, 

the final choice of k reflects both data-driven clustering and expert knowledge. To ensure 

that all transcriptionally distinct cell subsets were identified, we sub-clustered each cell 

subset and identified those sub-clusters that were supported by discriminative differentially 

expressed genes (see “Identifying transcriptionally distinct sub-clusters”).

Identifying transcriptionally distinct sub-clusters—To systematically determine 

whether transcriptionally distinct subpopulations of cells may exist, we sub-clustered each 

cell subset using its k-NN graph defined using PCs 1 to 10 and k = 250 (see “Dimensionality 

reduction, graph clustering, and t-SNE visualization”). These parameters were selected to 

yield relatively few sub-clusters, such that that any of the major differences would be found. 

We then searched for differentially expressed genes that could accurately distinguish 

between the cells in each sub-cluster vs. all other cells with an area under the curve (AUC) 

exceeding 0.75. Sub-clusters containing highly discriminative marker genes were then 

flagged for further analysis (Table S2).

Comparison of training and test sets by a classification based approach—To 

compare the training and test sets, we first trained a Random Forest classifier to predict the 

subset of each cell, using the cell subsets that were originally defined from the training set 

(Figure 1C). The Random Forest was trained separately for cells in the epithelial, stromal, 

and immune compartments, with the input data constructed as follows. First, we used 

ComBat (Johnson et al., 2007) to generate a batch-corrected log2(TP10K+1) expression 

matrix containing the variable genes (X1). Second, we performed PCA on this matrix to 

obtain a 20-dimensional embedding of the batch-corrected data (X2). Third, we used LIGER 

to compute a separate batch-corrected 20-dimensional embedding of the data (X3). These 

three matrices (i.e., X1, X2, and X3) were then combined to form the input feature matrix, X. 

We note that ComBat and LIGER provide similar but complementary descriptions of the 

data and both sets of features were deemed important by the Gini Importance measure (data 

not shown). The Random Forest was trained with 1,000 trees and default parameters, except 

that in order to account for class imbalances, we weighted each class by the inverse of its 

class frequency.

Across all cells, the “out of bag” error, which provides an unbiased estimate of the test error, 

was 10.7%, suggesting this model can be used to accurately infer subsets for the test data. 

Classification errors were mostly between similar cell subsets (Figure S1C), such as CD69− 

and CD69+ mast cells, with two major exceptions. Our model performed less well for 

cycling immune cells, which are composed of cells from many different types, and 

CD8+IL-17+ T cells.

Next, to confirm that this model can be applied to the test dataset, we co-embedded the 

single cells from both datasets (see “Dimensionality reduction, graph clustering, and t-SNE 

visualization) and labeled them according to their predicted cell subsets (Figure S1D). 

Following removal of doublets from the test dataset (see “Doublet removal”), the two 
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datasets aligned well with no major incongruences. In some cases, the merged dataset 

contained increased sub-cluster resolution (e.g., immature and mature BEST4+ enterocytes 

vs. only one cluster of BEST4+ enterocytes), due to an increase in cell number, or 

discernible patient-specific sub-clusters, but the classifier accurately classified these cells 

into their larger groups.

Comparison of intra- vs. inter-individual variability—To assess levels of biological 

and technical variation in our scRNA-Seq profiles, we analyzed the epithelial and lamina 

propria compartments of 18 replicate biopsies collected from the same individual (12 

healthy, 3 non-inflamed, 3 inflamed). For each pair of samples, we measured the Pearson 

correlation between their logit-transformed cell proportions, as well as their mean gene 

expression levels. We then compared intra-individual and inter-individual correlations across 

healthy, non-inflamed, and inflamed tissue regions (Figure S1E).

Doublet removal—Following the initial clustering, we removed all clusters consisting of 

likely cell doublets from epithelial, stromal, myeloid, B cell and T cell compartments, then 

repeated the steps outlined in “dimensionality reduction, graph clustering, and t-SNE 

visualization”. Doublets were identified through expert annotation of the marker gene lists 

for each cell cluster and corresponded to clusters with markers from distinct lineages (e.g. 

clusters with B cell and T cell markers). However, within the immune compartment, cells 

from distinct lineages sometimes clustered together (e.g. cycling B cells and cycling T cells) 

and these cells were then separated back into their source lineages. Doublet removal was 

therefore an iterative process alternating between removing doublets, assigning cells to the 

correct compartments, and graph clustering and t-SNE visualization.

Cell lineage dendrogram—As an auxiliary tool, cell subsets were manually organized 

on a dendrogram reflecting known lineage relationships (Figure 1D, top). This tree is 

organized as follows. Under epithelial cells we split Absorptive and Secretory subtrees. The 

Absorptive subtree included further subtrees for Transit Amplifying (TA) cells (Absorptive 

TA 1, Absorptive TA 2), Immature cells (Immature Enterocytes 1, Immature Enterocytes 2, 

Enterocyte Progenitors), and Mature cells (Enterocytes, BEST4+ Enterocytes). The 

Secretory subtree included subtrees for progenitor cells (Secretory TA, Immature Goblet) 

and for mature cells (Goblet, Tuft, and Enteroendocrine). Stem cells, Cycling TA cells, and 

M cells were placed directly under the node corresponding to all epithelial cells. The 

Stromal subtree had Fibroblast, Endothelial, and Glial subtrees. Fibroblasts were subdivided 

into WNT2B+ (WNT2B+Foshi, WNT2B+Foslo 1, WNT2B+Foslo 2, RSPO3+), WNT5B+ 

(WNT5B+ 1, WNT5B+ 2), inflammatory fibroblast, and myofibroblast subtrees. The 

Endothelial cell subtree included branches for Endothelial, Microvascular, Post-capillary 

venules, and Pericytes. The Immune subtree was partitioned into myeloid and lymphoid 

lineages. Myeloid cells included subtrees for Mast cells (CD69+ Mast, CD69− Mast) and 

Monocytes (Macrophages, Cycling Monocytes, Inflammatory Monocytes, and DCs (DC1s, 

DC2s)). Lymphoid cells included subtrees for NK cells, ILCs, B cells, T cells (subdivided 

into CD4+ T cells (CD4+ Activated Foslo, CD4+ Activated Foshi, CD4+ Memory, Tregs, 

PD1+, MThi) and CD8+ T cells (CD8+ IELs, CD8+ LP, CD8+IL-17+, and CD8+ Cycling)), 

and B cells (Plasma cells, Follicular B cells, Germinal Center B cells, and Cycling B cells).
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Scoring samples for inflammation-associated genes—To validate our endoscopic 

assessments of tissue inflammation, we constructed a gene signature of the following 

inflammation-associated genes: IFNG, IFNGR1, IFNGR2, IL10, IL12A, IL12B, IL12RB1, 

IL12RB2, IL13, IL17A, IL17F, IL18, IL18R1, IL18RAP, IL1A, IL1B, IL2, IL21, IL21R, 

IL22, IL23A, IL23R, IL2RG, IL4, IL4R, IL5, IL6, JUN, NFKB1, RELA, RORA, RORC, 

S100A8, S100A9, STAT1, STAT3, STAT4, STAT6, TGFB1, TGFB2, TGFB3, and TNF. We 

separately scored EPI and LP samples for these signatures, then combined these 

measurements by calculating their mean z-scores. P-values between healthy and non-

inflamed or inflamed samples were computed using a one-sided Wilcoxon test. P-values 

between non-inflamed and inflamed samples were computed using a one-sided paired 

Wilcoxon test within each subject.

Epithelial cell differentiation—The diffusion map and diffusion pseudotime (Figure 2D) 

for epithelial cells were estimated with Scanpy v0.4.2 (Wolf et al., 2018a) on the 

log2(TP10K+1) expression matrix, with the following parameters: n_pcs = 20, n_neighbors 
= 30, n_dcs = 20, n_branchings = 1, min_group_size = 0.001. The differentiation map 

(Figure 1F) was estimated using the partition-based graph abstraction (PAGA) method 

implemented in Scanpy v1.4 (Wolf et al., 2018b) using the same parameters. In both cases, 

one of the LGR5+ISC was randomly selected as the root cell. To identify significant changes 

in epithelial cell differentiation with UC, we estimated diffusion pseudotimes separately for 

absorptive and secretory cells, and used mixed effects models to assess significance (see 

“Identifying significant changes in gene signatures and pseudotime during disease”).

Estimation of cell proportions—Because EPI and LP samples were separately 

processed and sequenced, cell proportions estimated from each sample type are not directly 

comparable. Therefore, rather than combining the cell subset proportions from different 

sample types (e.g. using a weighted mean across EPI and LP samples), we determined for 

each cell subset whether it was EPI-associated or LP-associated and calculated its 

proportions using only samples of that type. As expected, EPI samples mostly consisted of 

epithelial cells (89% ± 15% epithelial cells on average) with some tissue-resident immune 

cells, such as CD69− mast cells, CD8+ IELs, and CD8+IL-17+ T cells, whereas LP samples 

primarily contained immune and stromal cells (84% ± 18% immune and stromal cells on 

average).

Identifying statistically significant differences in cell proportions—To identify 

changes in cell proportions between healthy, non-inflamed, and inflamed tissue, we used 

multiple statistical tests that each capture distinct but complementary types of information: 

(1) a Dirichlet-multinomial regression, (2) a Fisher’s exact test, and (3) a Mann-Whitney 

test. We describe each of these below. A major concern with the comparison of cell 

proportions in scRNA-Seq data is that they are not independent of each other. Because all 

proportions sum to 1, an increase in the proportion of one cell subset will necessarily lead to 

a decrease in the proportions of other cell subsets. To account for these dependencies, we 

used a Dirichlet-multinomial regression model, which tests for differences in cell 

composition between disease states (e.g., inflamed vs. healthy), while accounting for the 

proportions of all of the other cell subsets. This regression model and its associated p-values 
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were calculated using the “DirichReg” function in the DirichletReg R package. Because this 

is a multivariate test, its results may at times appear counter-intuitive and may not be 

congruent with univariate tests, such as a t-test, which examine each cell subset 

independently. We therefore also performed a Fisher’s exact test on the numbers of cells 

from each subset that were isolated from non-inflamed or inflamed specimens vs. healthy 

specimens. This test reflects how enriched each cell subset is in each disease state, but does 

not account for the sample from which each cell was isolated. Therefore, we also performed 

a non-parametric Mann-Whitney test on the proportions of each cell subset in non-inflamed 

or inflamed specimens vs. healthy specimens.

Comparison of IgA+ and IgG+ plasma B cells—The mean log2(TP10K+1) expression 

levels of the IgA heavy chain genes (IGHA1, IGHA2) and IgG heavy chain genes (IGHG1, 

IGHG2, IGHG3, IGHG4) were scored across all plasma cells. After examining the 

distribution of these scores, we empirically determined that an expression cutoff 

corresponding to log2(TP10K+1) = 6 accurately discriminated among IgA+ and IgG+ cells. 

In total, 94% of all plasma cells were classified as either IgA+ or IgG+, with only 0.2% 

classified as IgA+IgG+ “double positive” cells (likely corresponding to doublets).

Downsampling single cells for mean expression analysis—To facilitate 

downstream analyses, a separate dataset was constructed containing 50,375 down-sampled 

cells. These data were used solely for the estimation of the expression distribution within 

cell subsets, but all other analyses were based on the full dataset. We verified that the mean 

expression levels from the full and down-sampled datasets were strongly correlated across 

cell subsets (mean Pearson’s r = 0.999). To down-sample cells, we first calculated the 

number of cells obtained from every cell subset in each sample. We determined a fixed 

number of cells to retain from each of these subset-sample groups (purposefully not 

preserving their original proportions) that would yield approximately 50,000 cells in the 

down-sampled dataset. Finally, the highest quality cells (measured by the number of genes 

per cell) were retained from each of these groups. Using this method, samples and cell 

subsets with relatively many cells (e.g. plasma cells) were heavily down-sampled, whereas 

samples and cell subsets with relatively few cells (e.g. tuft cells) were largely retained intact.

Differential expression analysis—Differential expression (DE) tests were performed 

using MAST (Finak et al., 2015), which fits a hurdle model to the expression of each gene, 

consisting of logistic regression for the zero process (i.e. whether the gene is expressed) and 

linear regression for the continuous process (i.e. the expression level). To reduce the size of 

the inference problem, separate models were fit for each level of the cell tree (see “Cell 

lineage dendrogram”, above), comparing cells within the given group to all other cells (e.g. 

ISCs vs. non-ISCs). The regression model includes terms to capture the effects of the cell 

subset and the disease state on gene expression, while controlling for cell complexity (i.e. 

the number of genes detected per cell).

Specifically, we used the regression formula, Yi ~ X + D + N, where Yi is the standardized 

log2(TP10K+1) expression vector for gene i across all cells, X is a binary variable reflecting 

cell subset membership (e.g. ISCs vs. non-ISCs), D is the disease state associated with each 

cell, and N is the number of genes detected in each cell. Overall, we fit three types of DE 
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models, which varied by the encoded disease states: (1) to identify cell subset markers and 

DE genes in UC patients relative to healthy controls, we used three disease states: Healthy, 

UC non-inflamed, and UC inflamed; (2) to identify DE genes between non-inflamed and 

inflamed patient samples, we used two disease states: UC non-inflamed and UC inflamed; 

and (3) to identify genes that are specific to cell subsets in healthy subjects and UC patients, 

we used two disease states: Healthy and UC. Additionally, a few heuristics were used to 

increase the speed of the tests: we required all tested genes to have a minimum fold change 

of 1.2 and to be expressed by at least 1% of the cells within the group of interest, and cells 

were evenly downsampled across groups so that a maximum of 2,500 cells were tested for 

each cell subset. In all cases, the discrete and continuous coefficients of the model were 

retrieved and p-values were calculated using the likelihood ratio test in MAST. Q-values 

were separately estimated for each cell subset comparison using the Benjamini-Hochberg 

correction. Unless otherwise indicated, all reported DE coefficients and q-values correspond 

to the discrete component of the model (i.e. the logistic regression).

Estimation of the droplet contamination rate and filtering of putative ambient 
RNA contaminants—Droplets encapsulate single cells with small portions of the 

extracellular environment, leading to low but persistent levels of contamination by ambient 

RNA (Macosko et al., 2015). To correct for this, we explicitly modeled droplet 

contamination. First, we partitioned individual cells into the following groups: epithelial 

cells, fibroblasts, endothelial cells, myeloid cells, B cells, and T cells. We reasoned that each 

group should uniquely express a subset of genes that are not found in other cells; for 

example, B cells uniquely express IGHA1 and T cells uniquely express CD3D. Therefore, 

the off-target expression of such genes in the incorrect group (e.g. IGHA1 expression in T 

cells) should reflect contamination rather than intrinsic gene expression. Moreover, we 

hypothesized that the levels of such off-target gene expression could serve as an accurate 

indicator of contamination rates in the entire dataset. To test this hypothesis, we compared 

the mean expression levels of genes within each group (i.e. in-group expression) to a 

weighted mean of their expression levels in all other cells (i.e. out-group expression), which 

is a proxy for the composition of extracellular RNA (e.g. B cells vs. non-B cells, Figure S1F, 

see “Normalization and scaling of expression levels for contamination filtering” below for 

additional details). As expected, known markers for cell groups were enriched at the edges 

of the point distribution, where differences between in-group and out-group expression were 

greatest. For example, known B cell markers were enriched on the left edge of the point 

distribution (e.g. IGHA1 and IGJ, Figure S1F), while markers for other cell types were 

enriched on the right edge, likely reflecting contamination (e.g. CD3D and TPSAB1, Figure 

S1F). We noticed two other patterns yielding insights into contamination: (1) genes with 

sufficiently high out-group expression always had non-zero in-group expression, and (2) 

there is a linear relationship between in-group and out-group expression levels, particularly 

for contaminants on the right edge of the point distribution (Figure S1F). Taken together, 

these observations suggest that contamination uniformly affects all genes and that the overall 

levels of contamination for each gene are proportional to its representation in the 

extracellular RNA pool.
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Therefore, to estimate the contamination rate for each cell group, we fit a robust linear 

model to the genes on the right edge of the point distribution, whose expression is almost 

entirely driven by contamination. Surprisingly, the fitted models were nearly identical across 

groups (slope = 1.33 ± 0.07, intercept = −7.22 ± 0.33) and we constructed a consensus 

model using the mean slope and mean intercept. This model corresponds to a contamination 

rate between 0.5% and 5% of the total RNA pool in each sample. We used this model to 

identify potential contaminants in all cell subsets by conservatively flagging genes with 

residuals < 5 (i.e. 32-fold increase over the estimated contamination rate) and genes in each 

cell subset whose expression did not exceed 1% of its total expression across all cells. This 

approach filtered out nearly all identifiable contamination, assessed by manual inspection of 

the filtered and unfiltered gene lists.

Normalization and scaling of expression levels for contamination filtering—
The composition of extracellular RNA is different for each sample; for example, EPI 

samples have high levels of MUC2, while LP samples have high levels of IGHA1. Any 

attempt to identify droplet contamination should therefore account for the distribution of 

samples that cells were isolated from. For example, the expression of genes in B cells (i.e. 

in-group expression) should be compared to their pooled expression levels in non-B cells 

(i.e. out-group expression) using the same samples that the B cells were recovered from. 

Thus, rather than using a simple mean to measure the in-group and out-group expression 

levels for a gene, we used a weighted mean of its expression in each sample, where the 

weights were determined as the fraction of in-group cells belonging to that sample. More 

specifically, the in-group expression of gene i for cell group q is:

Iiq = ∑
j

wq j ⋅ 1
T j

∑
k ∈ q j

xik

where xik is the expression level of gene i in cell k, qj is the set of all cells that were isolated 

from sample j that belong to cell group q, Tj is the total number of cells in sample j, and wqj 

is the weight for cell group q in sample j. Similarly, the out-group expression of gene i for 

cell group g is:

Oig = ∑
j

wq j ⋅ 1
T j

∑
k ∈ Q j

xik

where Qj is the set of all cells that were isolated from sample j that do not belong to cell 

group q. The weight for cell group q in sample j, wqj, is equal to the proportion of cells from 

cell group q that were isolated from sample j:

wq j =
|q j|

∑k |qk|

Importantly, the normalization factor, Tj, normalizes the expression to the total number of 

cells in the sample, ensuring that expression levels are comparable across cell groups.
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Gene specificity—For each expressed gene, we tested whether that gene was specific to 

any cell subset (e.g. Tregs) or any node of the cell hierarchy dendrogram (e.g. CD4+ T cells). 

We defined a gene as specific to a cell group if it was significantly (i.e. adjusted p-value < 

0.05) and positively differentially expressed in all pairwise comparisons to non-overlapping 

cell subsets and its mean expression level within the group was at least 2-fold higher than its 

mean expression in all non-overlapping cell subsets. In addition, we searched for cases 

where a gene gained, lost, or changed its cell specificity between health and UC. Note that a 

change in gene specificity may, however, simply reflect the gain or loss of statistical power, 

rather than a statistically significant change in gene expression. Therefore, to confirm that a 

gene was no longer specific to a cell subset in a given cohort (i.e. healthy subjects or UC 

patients), we required that another cell subset have significantly greater expression of the 

target gene within that cohort.

Scoring gene signatures and identifying significant changes between health 
and disease—To prevent highly expressed genes from dominating a gene signature score, 

we scaled each gene of the log2(TP10K+1) expression matrix by its root mean squared 

expression across all cells (using the ‘scale’ function in R with center = FALSE). The 

signature score for each cell was then computed as the mean scaled expression across all 

genes in the signature. To identify statistically significant changes in gene signature 

expression within each cell subset, we compared the change in expression of the gene 

signature to a null distribution that was estimated from 100 background sets of genes. Each 

background gene set was selected to have matching expression levels, using 20 equal-

frequency expression bins that were defined using the healthy cells within the cell subset. 

Mixed effects models were used to identify significant changes in background-adjusted 

expression levels (see “Identifying significant changes in gene signatures and pseudotime 

with disease”).

Estimation of false discovery rate—Unless otherwise specified, false discovery rates 

were estimated with the Benjamini and Hochberg correction (Benjamini and Hochberg, 

1995), using the “p.adjust” R function with the “fdr” method.

Identifying significant changes in gene signatures and pseudotime with 
disease—To identify significant changes in diffusion pseudotime (Figure 2D) or in the 

expression levels of gene signatures (Figure 4B) with disease, we used mixed linear models, 

which account for the uneven distribution of cells across samples. Mixed linear models were 

implemented using the “lme” function in the “nlme” R package, using a fixed effect term for 

disease state (i.e. healthy, non-inflamed, or inflamed) and a random intercept that varies with 

each sample: Yi ~ D + (1 | S), where Yi is the vector of covariate i values across cells, D is 

the disease state associated with each cell, and S is the sample that each cell was isolated 

from. P-values for the fixed terms were estimated with the “anova.lme” function.

Acquisition of gene sets—Human transcription factors were obtained TcoF-DB v2 

(Schaefer et al., 2011). Human G-protein coupled receptors were obtained from UniProtKB 

(search term: family = “g protein coupled receptor”, reviewed = “yes”, organism = “Homo 

sapiens (Human) [9606]”) (UniProt Consortium, 2018). Human transporters were obtained 
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from UniProtKB (search term: keyword = “Transport [KW-0813]”, reviewed = “yes”, 

organism “Homo sapiens (Human) [9606]”). Human pattern recognition receptors were 

obtained from PRRDB (Lata and Raghava, 2008) and supplemented with Human Gene 

Nomenclature Committee (HGNC) “C-type lectin domain containing” gene family members 

(Yates et al., 2017). Human cytokines were obtained from the KEGG pathway for 

“Cytokine-cytokine receptor interaction” (Kanehisa et al., 2017).

Acquisition of gene signatures—All pathways related to metabolism, inflammation, 

and stress were obtained from KEGG (Kanehisa et al., 2017), except in the following cases, 

for which the pathways were not found in KEGG: IFN-a, IFN-g, and IL-2/Stat5 pathways 

were obtained from MSigDB (Liberzon et al., 2015) and the OSM pathway was obtained 

from WikiPathways (Slenter et al., 2018). The T cell signatures for cytotoxicity (GNLY, 

GZMB, GZMK, IFNG, NKG7), co-inhibition (CTLA4, PDCD1, TIGIT, HAVCR2, LAG3, 

BTLA, PDPN, CD160, GP49A, LILRB4, CD274, CD200, CD244, PILRA, SIRPB1, 

LAIR1, CEACAM1, KLRA7, KLRA3. KLRA9, PTGER4, KLRD1, KLRC1, PROCR), and 

co-stimulation (CD28, CD226, TNFRSF4, TNFRSF9, ICOS, CD27, TNFSF14, CD80, 

TNFSF4, CD86, TNFSF11, CD276, CD40LG, TNFRSF18) were derived from known 

markers. Gene signatures for resistance and susceptibility to anti-TNF blockade were 

obtained from a meta-analysis of 55 responders and 55 non-responders (Wang et al., 2016). 

The gene signature for poor colorectal cancer prognosis was obtained from a meta-analysis 

of thousands of CRC patients, and the top 25 genes in the signature were used (Calon et al., 

2015).

Acquisition of microarray and bulk RNA-Seq datasets—We downloaded the 

following bulk datasets for comparison to our single-cell data: (1) Microarray data from 

colon biopsies of 20 responders and 27 non-responders to TNF blockade, downloaded from 

the Gene Expression Omnibus ((Arijs et al., 2009); accession GSE14580); and (2) 

Normalized expression matrix for 414 colon adenocarcinoma samples from The Cancer 

Genome Atlas (Cancer Genome Atlas, 2012) sequenced on both the Illumina HiSeq and 

Illumina Genome Analyzer.

Comparison of TNF signaling and response to anti-TNF therapy—We scored 

each cell subset for gene signatures related to TNF signaling and response to anti-TNF 

therapy. To ensure that these gene signatures were disjoint for correlation analysis, we 

removed all shared genes from the gene signatures related to anti-TNF response.

Analysis of bulk RNA-Seq data from human colon spheroids treated with IL-22 
vs. controls—To test the effects of IL-22 treatment on human colon spheroids, we 

constructed gene signatures for the top 100 differentially expressed genes in IL-22 treated 

spheroids vs. non-treated controls (“IL-22 signature”). Differential expression was measured 

as the mean log2(TP10K+1) fold change between the conditions across all of the bulk RNA-

Seq samples. These gene signatures were then scored to enterocytes from healthy individuals 

(see “Scoring gene signatures and identifying significant changes between health and 

disease”).

Smillie et al. Page 25

Cell. Author manuscript; available in PMC 2020 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using receptor-ligand pairs to infer cell-cell interactions—To identify cell-cell 

interactions, we mapped the FANTOM5 database of literature-supported receptor-ligand 

interactions (Ramilowski et al., 2015) onto our lists of cell subset markers and differentially 

expressed genes within healthy, UC non-inflamed, and UC inflamed cells. We restricted our 

analysis to high-confidence interactions by requiring cell subset markers to have a discrete 

model coefficient greater than 1 and adjusted p-value less than 0.05. To identify changes in 

this network with disease, we also constructed networks where the receptor and/or ligand 

were significantly differentially expressed, again requiring genes to have a discrete model 

coefficient with magnitude greater than 1 and adjusted p-value less than 0.05. To ensure that 

these differentially expressed genes had sufficiently high expression, we also required them 

to be cell subset markers in cells isolated from healthy subjects or the relevant disease state 

(i.e. UC non-inflamed or UC inflamed).

For all networks, we quantified the interaction strength between two cell subsets as the 

number of unique receptors and ligands connecting them, resulting in adjacency matrices 

summarizing all cell-cell interactions within the dataset. Statistical significance was then 

empirically assessed by permuting the receptors and ligands among all cell subsets in a 

degree preserving manner (using edge swaps but only for uniquely connecting pairs), thus 

preserving the number of receptors and ligands encoded within each cell subset, but 

changing the connectivity between cell subsets. After running 10,000 total permutations, p-

values were computed as the number of times the edge strength in the permuted network was 

greater than or equal to the edge strength in the true network.

To plot cell-cell interaction networks, we applied the Fruchterman-Reingold layout 

algorithm to a network defined using the −log10 transformed p-values, using only the edges 

with p-value < 0.05. Although edge weights were used to generate the layout, they were 

removed from the final visualization for visual clarity.

Using receptor-ligand interactions to predict cell proportions—For each 

receptor-ligand pair in the cell-cell interaction network, we computed the Spearman 

correlation coefficient between the mean log2(TP10K+1) ligand gene expression in the 

ligand-expressing cell and the logit-transformed proportions of the receptor-expressing cell 

across samples.

Defining IBD associations and candidate risk genes—We compiled a list of IBD, 

UC, and CD associations from recent large-scale IBD genome-wide association and fine-

mapping studies (de Lange et al., 2017; Huang et al., 2017; Jostins et al., 2012; Liu et al., 

2015). Risk variants can act either in cis or in trans and estimating the precise effect of any 

given variant is an active area of research that is beyond the scope of this work. We therefore 

opted to map the genetic associations to all genes in their region of linkage disequilibrium 

(LD). After removing associations mapped to more than 50 variants (though fine-mapping if 

available, or in LD with the best association SNP with R2 > 0.6), we arrived at 211 

associations (comprising 120 associations for both UC and CD, 31 associations unique to 

UC, and 60 associations unique to CD) that collectively spanned over 531 candidate risk 

genes (comprising 285 genes for both UC and CD, 63 genes unique to UC, and 199 genes 

unique to CD).
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Defining putative IBD risk genes—Although the gene driving the signal of association 

is often unknown, in some cases, we can pinpoint a gene that is particularly likely to be 

associated with disease risk. These putative risk genes were defined as genes containing a 

fine-mapped or nonsynonymous protein coding variant, or which were the only genes in 

their region of LD (Table S6). To this set, we added SLC39A8, as an additional IBD risk 

gene, which contains a fine-mapped variant associated with IBD risk (MJD and RX, 

unpublished data). In total, we identified 82 putative risk genes (comprising 48 risk genes 

for both UC and CD, 9 risk genes unique to UC, and 25 risk genes unique to CD).

Construction of gene modules—To construct modules of co-regulated genes, we first 

used MAGIC v0.1 (van Dijk et al., 2018) to impute gene expression data in the log2(TP10K

+1) matrices for epithelial, stromal, and immune cells. MAGIC was run with the 

recommended settings from its GitHub repository (including optimal t selection, ka = 4, and 

all other parameters set to their default values). To construct gene modules, we calculated 

the Pearson correlation coefficient between a query gene and all other genes in a cell subset 

using the imputed expression data. While prior studies of RNA-Seq data have used 

permutation tests to estimate a null distribution of correlation coefficients to determine 

cutoffs for gene module membership, this approach did not work well with MAGIC 

imputation, due to computational constraints. We therefore used a fixed cutoff, retaining the 

top 100 genes with the largest correlation coefficients for each gene module. We constructed 

gene modules for all candidate IBD risk genes, using cell subsets where the gene is 

expressed in at least 1% of all cells. Modules were defined as those containing a significant 

excess of putative IBD risk genes (q < 0.05). To estimate q-values for a given module size, 

we constructed modules from 100 datasets in which the gene labels were permuted, and 

modules were calculated with the same seed genes. The false discovery rate was then 

empirically determined for each of the module sizes (q = 0.05, 0.01, and 0.001 for modules 

with 3, 4, and 5 UC GWAS-implicated genes, respectively). Note that because modules are 

based on imputed expression data (van Dijk et al., 2018), we verified that their genes were 

expressed in their respective cell types (Figure S7C).

Optimal set cover of IBD risk gene modules—To identify a minimal number of 

modules to explain the greatest number of putative IBD risk genes, we used the greedy set 

cover algorithm. The algorithm is initialized with an empty set of “covered” IBD risk genes. 

At each step of the algorithm, we add the meta-module with the largest number of 

“uncovered” IBD risk genes (i.e. genes not in the “covered” set) to this “covered” set.

Nominating IBD risk genes from candidate regions of genetic association—To 

determine whether scRNA-Seq data can help nominate “causal” genes from candidate gene 

sets, we first collapsed all risk variants into 165 unique regions (comprising 99 regions for 

both UC and CD, 24 regions unique to UC, and 42 regions unique to CD), reflecting distinct 

risk loci. Of these, 99 regions (comprising 57 regions for both UC and CD, 19 regions 

unique to UC, and 23 regions unique to CD) had candidate gene sets containing more than 

one gene, including at least one putative risk gene, which we termed the “correct” gene for 

that region. (In cases where a region contained multiple independent associations each with 

distinct candidate gene sets, we selected the largest such set). For each candidate gene set, 
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we then identified the gene with either (1) the highest mean expression level across all cell 

subsets and disease states; (2) the largest DE coefficient in non-inflamed tissue; (3) the 

largest DE coefficient in inflamed tissue; or (4) the largest module containing other 

candidate risk genes (iteratively defined; see Nominating IBD risk genes using gene 

modules). We assessed the probability of selecting the “correct” risk gene using each of 

these four criteria and compared these results to a null model in which genes were randomly 

selected from risk regions across 1,000 trials. Missing values were replaced with zeros and 

ties were broken by random sampling. To estimate statistical significance, we compared the 

accuracy (defined as predicting the “correct” risk gene) of each method to the null 

distribution.

Nominating IBD risk genes using gene modules—We developed a method that 

nominates risk genes based on their degree of co-regulation with other candidate genes from 

across all IBD risk loci. This method uses no a priori knowledge of putative risk genes; 

instead, it is initialized with the full set of 531 candidate genes defined across all disease risk 

loci. Our method assumes that IBD risk genes are co-regulated in gene modules within cell 

subsets, as we observed for GWAS-implicated risk genes (Figure 7C). To measure this co-

regulation, we therefore construct gene modules for each candidate gene in each of the cell 

subsets that express it, yielding 20,630 gene modules for the 531 candidate genes in both 

healthy and diseased tissue (see Construction of gene modules).

We then iteratively score each gene based on the maximal number of other candidate genes 

it shares a gene module with, across all such modules: genes belonging to the largest 

candidate gene modules receive the highest scores. To do so we use an iterative procedure. 

Because the set of all candidate genes initially contains many false positives, we iteratively 

weight each gene according to our confidence that it is a risk gene, as follows. First, under 

the assumption that each risk region contains exactly one risk gene, the weight for gene i is 

initialized according to the probability that it is the risk gene: wi =1/Ni, where Ni is the size 

of its candidate gene set (i.e. the number of genes in the risk region). Thus, genes from large 

candidate gene sets are initially assigned small weights, and those from small candidate gene 

sets are initially assigned large weights. Next, we score each gene module J according to the 

number of candidate genes that it contains, adjusted by the weight associated with those 

genes: xj = ∑j∈J, wj for all genes j found in module J. Each gene is then mapped to its 

highest scoring module and the probability for each gene i of obtaining its module score, pi, 

is estimated from the empirical distribution of module scores. Finally, we update the weights 

associated with each gene i according to the posterior probability that it belongs to the risk 

module for its risk region: wi = 1 − pi /∑k ∈ Ci
1 − pk  where Ci is the candidate gene set 

containing gene i (i.e. the genes that are in the same LD region as gene i). These weights, 

which reflect our degree of confidence that a given gene is a risk gene, are iteratively 

updated in this manner until they converge on a final estimate (n = 10 iterations was 

sufficient).

To relax the assumption that each candidate gene set contains exactly one risk gene, we 

follow the same procedure outlined above to estimate the weights for each gene. However, 

rather than using these weights to nominate one risk gene per risk region, we calculate the 
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scores for all genes and use these scores to globally nominate risk genes irrespective of their 

genetic locus.

DATA AND CODE AVAILABILITY

Processed data generated by this study are available at the Single Cell Portal (SCP259). Raw 

data will be available for download from the controlled-access data repository, Broad 

DUOS. Code used in this study will be available at http://www.github.com/cssmillie/

ulcerative_colitis.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 51 cell subsets in colon mucosa of 18 ulcerative colitis and 12 healthy 

individuals

• M-like cells, inflammatory monocytes/fibroblasts, CD8+IL17+ T cells expand 

in disease

• Oncostatin M circuit in inflammatory monocytes/fibroblasts may affect drug 

response

• Co-expression of genes within cells allows inference of causal genes across 

risk loci

Single cell analyses of samples from patients with ulcerative colitis delineate how 

expression patterns and shifting cell populations shape disease, and provides a framework 

for linking GWAS risk loci with specific cell types and functional pathways.
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Figure 1. Single-cell atlas of colon biopsies from healthy individuals and ulcerative colitis (UC) 
patients.
A. Study design. See also Table S1. B. Confirmation of inflammation status. Mean 

expression of an inflammation signature (STAR Methods) in cells from healthy (blue), non-

inflamed (green), and inflamed (red) biopsies (Wilcoxon test, * p = 0.05; ** p = 0.01; *** p 
= 0.001); boxplots: 25%, 50%, and 75% quantiles; error bars: standard deviation (SD). C. 
Cell census. t-stochastic neighborhood embedding (t-SNE) of cells, colored by cell subset 

(legend, STAR Methods). D. Subset specific markers. Expression of marker genes (columns) 

across cell subsets (rows) ordered by cell lineage relationships (left, color legend, STAR 

Methods). E. Reproducible cell subset distributions across samples (discovery and validation 

sets). Fraction of cells (y axis) in each cell subset (bars) that are derived from each healthy 

(blue), non-inflamed (green), or inflamed (red) sample. Bottom: total cell count in subset 

(see also Figure S1A). F. Epithelial differentiation. Inferred differentiation trajectory (STAR 

Methods) for epithelial cell subsets including absorptive (right) and secretory (left) lineages. 

G-I. New colon cell subsets and their markers. G,I. Fraction of expressing cells (dot size) 

and mean expression level in expressing cells (dot color) of select marker genes (columns) 

across subsets (rows). H. Representative images of combined single-molecule fluorescence 

in situ hybridization (smFISH) and immunofluorescence assay (IFA) of colon tissue 
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microarray (TMA, STAR Methods) for BEST4+ enterocytes (left, white arrow) and RSPO3+ 

fibroblasts (right, white arrow) in healthy colon. Inset, x3 magnification; scale bar, 50 m. 

Also see related Figures S1, S2 and Tables S1, S2, and S3.
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Figure 2. Changes in cell composition and differentiation in UC.
A. Cell proportion changes. Significant changes in cell frequency (y axis) for non-inflamed 

(light blue) and inflamed (white) samples relative to healthy (dark blue) (Dirichlet-

multinomial regression, adjusted p, * = 0.05, ** = 0.01, *** = 0.001); error bars: SEM. B. 
Relative reduction in plasma cells among B cells in inflamed colon. Left: representative 

images of combined smFISH and IFA of plasma cells in TMA from healthy (left) and 

inflamed (middle) human colon; yellow arrow: plasma cell, red arrow: B cell; scale bar, 50 

m; Inset, x2.5 magnification. Right: fraction of plasma cells out of total B cells (y axis) in 

field of view (n = 9 biopsies per condition; * p < 0.05, t-test, error bars: SEM). C. Expansion 

of IAFs in inflamed colon. Left: representative images of combined smFISH and IFA of 

IAFs in TMA from healthy (left) and inflamed (middle) human colon; scale bar, 50 m; 

Right: number of IAFs (y axis) in the field of view (100 m2 per image; n = 9 and n = 7 

healthy and inflamed biopsies, respectively; *** p < 5*10−4, t-test, error bars: SEM). D. 
Reduction in epithelial progenitors with disease. Distribution of diffusion pseudotimes 

(STAR Methods) for absorptive (top) and secretory (bottom) epithelial cells, colored by 

disease state, both significantly shifted to later pseudotimes during disease (likelihood ratio 

test, p = 10−4). Also see related Figure S3.
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Figure 3. Shared lineage-specific and cell-specific expression changes in non-inflamed and 
inflamed tissues.
A-G. Lineage- and cell-specific expression changes are shared by non-inflamed and 

inflamed vs. healthy tissue. A-F. DE genes shared by the disease states (STAR Methods) 

with their effect size during inflammation (discrete DE coefficient, x axis) and statistical 

significance (y axis). (A-C) Shared changes among multiple cell subsets within (A) 

epithelial, (B) innate (stromal/myeloid), or (C) adaptive compartments; (D-F) Unique 

changes in specific cell subsets within each compartment. Select genes are highlighted; all 

marker genes are reported in Table S2. G. Discrete DE coefficients estimated for non-

inflamed (x axis) and inflamed (y axis) samples vs. healthy samples, for genes that were 

significantly DE in at least one disease state (96,445 gene-by-subset coefficients, 

Spearman’s ρ = 0.71, p < 10−16). H. Upregulation of epithelial-MHCII expression in 

inflamed colon. Representative images of combined smFISH and IFA of epithelial cells from 

TMA of healthy (left) and inflamed (right) human colon; scale bar, 50 m; Inset, x5 

magnification, dashed line: HLA-DRA+ epithelial cell. Also see related Figure S4 and Table 

S4.
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Figure 4. Cell-specific expression changes in UC highlight metabolic reprogramming in epithelial 
cells.
A. Induction of kynurenine pathway in epithelial cells in UC. DE genes (rows) from the 

kynurenine pathway (left) in inflamed vs. healthy samples across cell subsets (columns). Dot 

size: fraction of expressing cells in healthy (grey outline) or inflamed (black outline) 

samples; dot color: significant DE model coefficients (q < 0.05, MAST hurdle model, 

discrete coefficient). B. Metabolic reprogramming of enterocytes in UC. Expression changes 

of KEGG pathways (rows) captured by a mixed linear model (color bar) in inflamed vs. 

healthy samples, for epithelial subsets (all subsets in Figure S5C); black outlines: q < 0.05. 

C. CD8+IL-17+ T cells induce IL17A/F, IL23R, and cytotoxic, co-stimulatory and co-

inhibitory programs in UC. Distribution of gene and program expression (y axis) in T cells 

(x axis) from healthy (left), non-inflamed (middle), and inflamed (right) samples (Wilcoxon 

test, * p = 0.05, ** p = 0.01, *** p = 0.001). D. IL17A expression by CD4+CD8+ cells. 

Representative image of combined smFISH and IFA of CD4, CD8 and IL17A in inflamed 

human colon TMA (left), showing (inset) CD4+CD8−IL17A+ (yellow outlines; upper panels, 
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from yellow inset) and CD4+CD8+IL17A+ (red outlines; lower panels, from red inset) cells; 

Insets, x5 magnification. E. Number of CD4-CD8+IL17A+ or CD4+CD8+IL17A+ cells in 

field of view (250mm2). n = 5 samples per condition (* p < 0.05, *** p < 10−4, t-test, error 

bars: SEM). Also see related Figure S5.
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Figure 5. IAFs and monocytes are associated with anti-TNF drug resistance via OSM signaling.
A,B. Tregs become major sources of TNF expression in UC. A. Fraction of total TNF 
transcripts (mean across samples, y axis) expressed by each cell subset in healthy, non-

inflamed, and inflamed samples (x axis). Top expressing subsets are highlighted (legend). B. 

TNF expression by Tregs during inflammation. Left: representative image of combined 

smFISH and IFA of FOXP3, IL10, and TNFA in inflamed human colon TMA. 

FOXP3+IL10+TNF− (yellow outlines; upper right, from yellow inset) and 

FOXP3+IL10+TNF+ (red outlines; lower right, from red inset) Tregs are highlighted; Inset, 

x5 magnification; Blue dashed lines: crypt position in the tissue; Right: number of 

FOXP3+IL10+TNF+ cells in field of view (250μm2). n = 5 samples per condition (** p < 

0.005, t-test, error bars: SEM). C. OSM and OSMR expression by MHCII+ myeloid cells 

and IAFs, respectively. Representative images of combined smFISH and IFA of TMA from 

healthy (left) and inflamed (right) human colon. Top: MHCII+ myeloid cells (i.e. 
inflammatory monocytes or DC2), yellow arrows; Bottom: IAFs, white arrows; scale bar, 
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50μm; Inset, x5 magnification. D-G. IAF, inflammatory monocyte and DC2 subsets are 

associated with anti-TNF resistance. D. Distribution of signature scores (x axis) for anti-

TNF resistance (left) and sensitivity (right) in select cell subsets (y axis). E. Mean 

expression level (color) and fraction of cells (dot size) expressing genes in the anti-TNF 

resistance signature (columns, ordered by signature rank, bottom bar) in select cell subsets 

(rows). Arrows: genes whose highest expression is in IAFs. F. Distribution of signature 

scores for cell subsets (x axis) in bulk RNA-Seq (Arijs et al., 2009) from human colon 

biopsies (y axis) of drug responders, non-responders, and healthy controls. G. TNF signaling 

(KEGG) signature score (x axis) vs. drug resistance (left, y axis), drug sensitivity (middle, y 
axis), and OSM signaling (right, y-axis) signature scores in each cell subset (dots) labeled by 

lineage (color) and mean proportion across samples (size). Also see related Figure S5.
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Figure 6. Re-wiring of cell-cell interactions explains shifts in cellular proportions during disease.
A-C. Increased decompartmentalization with disease. Cell-cell interaction networks 

estimated in (A) healthy, (B) non-inflamed, and (C) inflamed tissue. Nodes: cell subsets, 

annotated by lineage (color) and mean proportions (size). Edges connect pairs of cell subsets 

with a significant excess of cognate receptor-ligand pairs expressed (light grey, p < 0.05) or 

DE (dark grey, p < 0.05) in a disease state, relative to a null model (STAR Methods, Table 

S5). D. Colitis-associated cell subsets are central nodes in the interaction networks. Mean 

betweenness centrality (x axis) for each cell subset (y axis) across healthy, non-inflamed, 

and inflamed networks, showing the 10 highest ranked cell subsets, and the mean across all 

other subsets (bottom bar). E-G. Receptor-ligand interactions explain changes in cell 

proportions. E. Each panel shows for a pair of cells connected by a receptor-ligand 

interaction, the mean expression level of the ligand in one cell subset (x-axis) and the logit-

transformed proportion of the cell subset expressing the receptor (y-axis) in each sample, 
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labeled by disease state (color). Dashed line: best linear fit. F. Example LASSO model 

explaining the change in CD8+IL-17+ T cell proportions across samples as a function of 

positive (dark arrows) and negative (light arrows) relationships with ligands (edge label) 

expressed by other cell subsets colored by lineage. G. The fraction of variance (y axis) in the 

proportion of each cell subset (x axis) explained by a LASSO model of cell interactions as in 

F (red dot, STAR Methods) and distribution of this statistic in 100 null models (black dots, 

STAR Methods). Only subsets with a significant model (p < 0.05) are shown, ordered from 

left by decreasing fraction of variance explained. See also related Figure S6 and Table S5.
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Figure 7. Modules of co-regulated risk genes help predict genes, pathways, and cell types 
targeted by IBD.
A. Cell type specific expression of putative IBD risk genes. Mean expression of GWAS-

implicated IBD risk genes (columns) across cell subsets (rows), that were identified as cell- 

or lineage-specific in both healthy and UC cells (left), only in healthy cells (center), or only 

in UC cells (right). Asterisks: genes with significantly changed specificity between health 

and UC. B. Induction of putative IBD risk genes in specific subsets in disease. Mean 

expression of GWAS-implicated IBD risk genes across cell subsets (marked by lineage, 

color) in healthy (x axis) and inflamed (y axis) samples. C. Functional annotation of putative 

IBD risk genes by co-expression meta-modules within a cell subset. Number (bottom x axis) 

and percent (top x axis) of GWAS-implicated IBD risk genes captured (solid line) by the 

successive addition of each meta-module seeded by an IBD risk gene (y axis) using healthy 

(blue) or UC (red) cells, relative to a null model (dashed line). Left labels: cell type and seed 

gene. Right label: GWAS-implicated IBD risk genes in meta-module. D,E. Meta-modules 

help nominate causal IBD risk genes from GWAS risk loci. D. Mean number of “correct” 

predictions (left y axis) and mean percent accuracy (right y axis) across 20 risk regions for 

IBD and UC (left) and 22 risk regions unique to CD (right), for several methods based on 

scRNA-Seq relative to the null model (x axis). * p = 0.05, ** p = 0.01, *** p = 0.001, 
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Wilcoxon test. E. Nominated risk genes. Loci containing GWAS-implicated IBD risk genes 

with correct (white) or incorrect (grey) predictions, loci associated with a single gene (gold), 

and all other loci (green). Incorrect predictions are annotated with the predicted (top) and 

“correct” (bottom) gene. See also related Figure S7 and Tables S6 and S7.
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