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Abstract

Purpose of review: This review aims to highlight the current knowledge about inflammatory 

mechanisms of neurodegeneration in glaucoma with emphasis on potential immunomodulation 

strategies.

Recent findings: Glaucomatous retina and optic nerve present multiple evidences of 

inflammatory responses of astroglia, microglia, and blood-born immune cells. Although adaptive/

protective responses of resident or systemic immune cells can support neurons and promote tissue 

repair mechanisms after injurious insults, prolonged inflammatory processes can also produce 

neurotoxic mediators. Treatments targeting these neurodestructive outcomes may restore immune 

homeostasis and protect neurons from inflammatory injury. Due to widespread and chronic nature 

of neuroinflammation in glaucoma, immunomodulation offers a treatment strategy to protect 

different neuronal compartments of RGCs during the chronic and asynchronous course of 

neurodegeneration. Uncovering of distinct molecular responses and interactions of different 

immune cells that determine the neuroinflammatory phenotype and participate in 

neurodegenerative outcomes will be critical to develop effective strategies for immunomodulation 

in glaucoma.

Summary: Neuroinflammation has increasingly been recognized to play an important role in 

glaucomatous neurodegeneration, and its modulation appears to be a promising treatment strategy 

for neuroprotection.
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Introduction

Glaucoma, a leading cause of blindness in the world, is a chronic neurodegenerative disease 

characterized by degeneration of optic nerve axons and loss of retinal ganglion cell (RGC) 

somas and synapses. Although increased intraocular pressure and advanced age are the main 

risk factors for initiation and progression of neurodegeneration in glaucoma, genetic and 

epigenetic predispositions also take part. Advancement of neuron loss despite efficient 

control of increased intraocular pressure in many patients suggests that mechanisms other 

than intraocular pressure-related biomechanical and/or ischemic injury may enhance the 

neurodegenerative process. Among a number of mechanisms that have been linked to 

pathophysiology of neurodegeneration in glaucoma, emerging evidence supports an 

important role of inflammatory processes [1–3].

As reviewed herein, multiple studies focusing on the immunogenic aspects of glaucoma 

have revealed a prominent activation of resident and systemic immune responses at early 

stages of disease, and inhibition of some of these responses has provided protection against 

neuron injury. As summarized later below, findings of these studies have also provided a list 

of immune mediators/regulators that may serve as molecular targets for new treatments to 

restore immune homeostasis. Evidently, neurodestructive consequences of inflammatory 

responses may lead to injury of optic nerve axons, including proximal and distal axon 

degeneration, and loss of RGC somas, dendritic tree, and synapses. Immunomodulatory 

treatments may therefore provide widespread protection against inflammatory injury at 

different neuronal compartments. This review will provide an overview of the present 

evidence for immune system involvement in glaucomatous neurodegeneration and the 

potential of immunomodulation as a therapeutic approach for neuroprotection. Recent trends 

and advances in the field will be briefly highlighted, rather than including a comprehensive 

literature review.

Cell types involved in neuroinflammation in glaucoma

Similar to many other neurodegenerative diseases, chronic glial activation is recognized as a 

sufficient hallmark of neuroinflammation in glaucoma. This is mainly due to the immune 

privileged status of brain tissues, in which inflammatory responses are dampened to an 

intermediate state called parainflammation [4]. This intermediate state characterized by 

sustained low-grade inflammation relying on reactive glia may represent an adaptive 

response to primary stress stimuli and/or neuron injury in glaucoma as the body’s natural 

attempt to minimize injury and help tissue healing. However, prolonged inflammatory 

activation of the glia, along with a failure in the regulation of immune response pathways, 

may shift the initial beneficial state towards a neurodegenerative process and promote 

secondary injury to neurons. It seems quite possible that the danger signals arising from 

stressed and injured tissues over a chronic period (along with the aging-related, genetic, 

epigenetic, and/or other systemic vulnerabilities to develop autoimmunity) may compromise 

the immune homeostasis in glaucoma [1–3]. Thus, chronic tissue stress, neuron injury, glial 

and systemic immune responses, and sustained release of neurotoxic mediators may create a 

vicious cycle that may promote progressing neuron injury.
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Both astroglia (retina and optic nerve astrocytes, and retinal Müller cells) and microglia 

resident in the retina and optic nerve (head) profoundly respond in glaucoma. Owing to the 

intimate relationship of these neurosupport cells with RGCs at different neuronal 

compartments, glial responses are evident through the entire projection of RGCs from the 

retina to upper brain centers. However, despite their widespread nature, inflammatory 

responses in glaucoma may vary between different compartments that present differences in 

populations of glial subtypes that exhibit morphological, molecular, and functional 

characteristics [5,6].

Astroglia normally preserve tissue homeostasis, maintain synapses, recycle 

neurotransmitters, deliver neurotrophic factors and metabolites, control blood flow and 

vascular barriers, and participate neurogenesis. These neurosupport cells quickly recognize 

and respond to stress and injury signals as a neuronal defense and recovery mechanism. 

Astroglial cells become highly reactive both in the retina [7] and optic nerve head [8] in 

glaucomatous human donor eyes, and animal models with glaucoma [9,10]. Even a short 

period of time with ocular hypertension may be sufficient to initiate astrocyte reactivity in 

experimental glaucoma [10]. The early activation response of astroglia to glaucoma-related 

insults is portrayed by morphological alterations [8,9,11–13], and molecular responses 

[5,14–16] that may be detectable even before the damage to RGCs and axons.

Reactive astrogliosis may insulate the injured tissue to protect uninjured neurons from 

damaging effects. However, as evident in the glaucomatous optic nerve head, astroglial 

responses leading to tissue remodeling and glial scarring [10] may also create biomechanical 

stress on optic nerve axons. In addition, reactive astrocytes execute a self-survival program 

that may result in inadequate mechanic, trophic, and bioenergetic support to RGCs [9]. 

Mac-2-expressing phagocytic astrocytes in the myelination transition zone which have tissue 

cleaning function also show reduced capacity in glaucoma [17]. Moreover, astrocytes after 

gaining the inflammatory phenotype that is characterized by increased production of pro-

inflammatory and neurotoxic molecules may generate neurodestructive signals and induce 

the death of neurons and oligodendrocytes [18,19]. Besides driving innate inflammatory 

activity that can promote neuron injury, reactive glia, including astrocytes, may also function 

as antigen-presenting cells to prime T cells for activation [20,21]. Even more, glaucoma-

related alterations may compromise astrocyte functions in controlling the blood-brain barrier 

[22] and may thereby play an additional role in increased access of systemic immune cells 

into retina and optic nerve.

Similar to astroglia, microglial cells demonstrate increased reactivity in the retina and optic 

nerve head in experimental models [5,16,23–25] and human donor eyes with glaucoma 

[7,26,27]. Microglia normally provide neurotrophic support, and their scavenger and 

phagoeytosing functions promote tissue cleaning and healing; however, inflammatory 

responses of microglial cells may also contribute to neuron injury [28–30].

As much as individual contribution of astroglial and microglial cells in neuroinflammation, 

their interplay is also critical for the inflammatory outcomes. There is an intricate inter-

relationship between astroglia and microglia in induction of the inflammatory and 

neurotoxic phenotype. For example, activated microglia induce neurotoxic A1 astrocytes by 
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secreting pro-inflammatory cytokines [19], while astroglial cytokines and chemokines 

chemoattract and activate microglia.

Based on studies of experimental models, widespread responses of glia may even include the 

contralateral eyes with normal intraocular pressure [31,32], and bilateral spread of 

inflammatory responses and activation of astrocytes and microglia in both ocular 

hypertensive and normotensive fellow eyes may be detectable through the RGC projection 

sites, including the superior colliculus [33].

Another group of resident immune regulatory cells includes dendritic cells [34–36]. These 

cells are known to be early responders of neuron injury; however, their roles in 

glaucomatous neurodegeneration are not well-studied.

Myelin-producing oligodendrocytes constitute another important cell type that joins 

astrocytes and microglia behind the optic nerve head. Immune regulatory functions of 

oligodendrocytes are not fully understood; however, they can provide a physical barrier for 

immune cell infiltration into the optic nerve, and their loss may result the breakdown of this 

barrier [37,38].

In addition to resident glia, blood-born immune cells, such as monocytes, that can invade the 

optic nerve tissue may also be related to neuroinflammation in glaucoma. For example, in 

hereditary DBA-2J glaucoma with strong inflammatory component, transendothelial 

monocyte migration has been linked to the inflammatory component of neurodegeneration 

[29].

Thus, the complex process of neuro inflammation involves several cell types, and its 

outcomes may affect neuron survival at different compartments of RGCs, including dendritic 

tree, soma, axon, and synapses. Ongoing studies are expected to improve the molecular and 

mechanistic understanding of inflammatory responses and interactions of different cell types 

at different sites and different stages of neurodegeneration to enable immunomodulation as a 

neuroprotection strategy in glaucoma. The next section summarizes the current knowledge 

on molecular regulation of neuroinflammation in glaucoma, which founds the basis for 

further work and provides new directions for progress.

Molecular pathways of neuroinflanunation

Multiple studies using transcriptional [14–16,39–41] orproteomics profiling [42–45] have 

identified early upregulation of numerous molecules linked to inflammation pathways in the 

retina and optic nerve head of human donor eyes or animal models with glaucoma. Identified 

molecules have included a number of sensors/inducers, transducers, and effectors of neuro 

inflammatory processes leading to the production of neurotoxic mediators.

Glial cells can recognize stress or damage-associated molecular patterns (DAMPs) released 

from stressed or dying cells [46]. Among various DAMPS, heat shock proteins (HSPs) are a 

major group of stress proteins upregulated in the glaucomatous retina and optic nerve head 

[47], and these highly antigenic molecules have been associated with the immune responses 

in glaucoma [48,49]. An important class of pattern recognition receptors (PRRs) that can 
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sense DAMPs is toll-like receptors (TLRs) [50]. Different TLRs display increased 

expression on astroglia and microglia in human glaucoma [43], experimental animals with 

induced ocular hypertension [45], and DBA-2J mice with hereditary glaucoma [16]. Based 

on in vitro experiments, components of the glaucomatous tissue stress, including 

upregulated HSPs and oxidative stress end-products, may function as intrinsic ligands for 

glial TLRs. Recognition of these endogenous stress-associated molecular patterns by TLRs 

initiates MyD88-dependent signaling that leads to nuclear factor-kappaB (NF-κB) 

activation, cytokine production, and stimulation of co-cultured T cells [43]. Tenascin C, 

another intrinsic ligand for TLRs, is also upregulated in the glaucomatous optic nerve head 

[51]. In addition, TLRs can recognize mitochondrial DAMPS, including the mitochondrial 

DNA released from cell debris [52]. The TLR signaling initiated by endogenous danger 

signals has been linked to innate and adaptive immune responses in various diseases with 

autoimmune origin [53].

As a matter of fact, recent observations suggest that not only intrinsic stimuli, but also 

conventional ligands for TLRs, namely pathogen-associated molecular patterns, may signal 

for TLR activation in glaucoma. This is because increased loads in microbiome have been 

linked to immune responses and neurodegeneration in human glaucoma and animal models 

[54,55]. As microbial and human proteins share significant homologies, the cross-reactivity 

between microbial and human antigens may also influence immune responses through TLR 

signaling in glaucoma [56,57], similar to many autoimmune diseases.

Nucleotide-binding oligomerization domain-like (NOD-like) receptors, another class of 

PRRs, are components of the multiprotein complex, named inflammasome. Inflammasome 

formation, an early innate response to cell stress, activates an inflammatory cascade that 

promotes proteolytic activation and secretion of cytokines. Gial NOD-like receptors, and 

inflammasome components are also among the molecules upregulated in the retina of human 

donors [44] and experimental animals with glaucoma [45].

While glial cells are equipped to sense stressed or injured neurons to initiate inflammatory 

signaling through DAMPs/PRRs, these cells may also directly respond to increased 

intraocular pressure and mechanical strain by sensing through mechanosensitive ion 

channels, such as purinergic receptors (P2X7R), transient receptor potential vanilloid 

(TRPV), and pannexin channels (PANX) [58–60]. However, inflammation-promoting 

mechanosensitive receptor signaling may also be activated by the ATP released from 

damaged RGCs. A principal role of nerve injury in stimulation of glial responses is 

supported by the attenuation of retinal glial responses after optic nerve crush when RGC 

death was blocked by deletion of the Bax gene [61].

Thus, as schematized in Figure 1, glial inflammatory responses may be triggered by neuron 

stress/injury (by DAMPs through PRRs, by ATP through mechanosensitive ion channels), as 

well as directly by glaucoma-related insults, such as increased intraocular pressure (through 

mechanosensitive ion channels). Additionally, it is important to note that the neuron damage 

in glaucoma is asynchronous over a prolonged period, and the chronic disease process may 

also generate recurring waves of inflammatory stimulation.
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After sensing the tissue stress and/or neuron injury, cooperative actions of different 

pathways initiate cascades of events that involve NF-κB, the key transcriptional activator of 

inflammatory mediators. This master regulator of the transcriptional program for 

inflammation [62] is activated in human glaucoma and animal models [44,45]. Various 

inflammation pathways that are activated in the glaucomatous glia, including TNFR and 

TLR signaling and inflammasome formation [43–45], are commonly linked to NF-κB.

In addition to stress/damage sensors (such as PRRs, TLRs), and inflammatory transducers 

(such as NF-κB, MyD88), upregulated molecules in glaucoma also include effectors and 

amplifiers of inflammation with neurotoxic outcomes, such as pro-inflammatory cytokines 

and chemokines. In glaucoma, reactive glia usually gain the pro-inflammatory phenotype 

characterized by increased production of pro-inflammatory cytokines, such as TNF-α, IL-1, 

IL-12 [16,44], as opposed to anti-inflammatory cytokines. The glial pro-inflammatory 

cytokine imbalance in glaucomatous tissues is most prominent by increased production of 

TNF-α [63,64], which is also linked to RGC death [18,21,63–65]. Evidently, TNFα/TNFRl 

signaling can induce RGC death through proteolytic caspase cascade, mitochondrial 

dysfunction, oxidative stress [18,44,66], and calcium-permeable AMPA receptor activation 

[67]. Besides direct neurotoxicity of TNF-α produced by reactive glia [18,68], downstream 

NF-κB activation leads to transcriptional activation of more cytokines and other immune 

mediators, further activate glial responses, and thereby amplify the vicious cycle of 

inflammation. Additionally, TNF-α may weaken the blood-brain barrier and directly 

facilitate glia-T cell interactions to stimulate differentiation of T cells into effector cells of 

systemic immune responses [21].

Parallel to increased expression of pro-inflammatory cytokines in the glaucomatous retina 

and optic nerve, analysis of glaucomatous aqueous humor and blood samples has also 

detected increased levels of these cytokines [69–72]. Furthermore, proteins encoded by the 

current collection of glaucoma-related genes include those linked to cytokine signaling [73]. 

It is evident that not only genetic predispositions, but epigenetic susceptibility factors may 

also affect the glia-driven neuroinflammation in glaucoma. For example, individual 

variations detected in the retinal expression pattern of TNF-α-induced protein-3 (TNFAIP3, 

a regulator of the inflammatory outcomes of TNFα/TNFRl signaling) among glaucomatous 

human donors have been found correlated with increased methylation of the TNFAIP3 

promoter [44].

Another important immunostimulatory stimulus in glaucoma includes oxidative stress. As 

well as the age-dependence of glaucoma and key roles of oxidative stress in aging-related 

deterioration, the glaucoma-related amplification of oxidative stress (through mitochondrial 

dysfunction or other pathogenic processes) has been implicated in neurodegeneration [74]. 

Apparently, many consequences of oxidative stress may also be immunostimulatory in 

glaucoma [1,75]. For example, oxidative stress stimulates glial cytokine production [21], 

activates glial TLR signaling [43], and induces complement dysregulation [42]. In addition 

to co-stimulatory role of reactive oxygen species in antigen presentation of glial cells to T 

lymphocytes [21], protein oxidation [76] may modify the antigenic features of retina and 

optic nerve proteins [77]. Moreover, advanced glycation end-products (AGEs) that 

accumulate through oxidative stress-dependent processes in glaucomatous tissues [78] may 
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act as a persistent antigenic stimulus and activate immunostimulatory signaling through 

specific receptors (such as RAGE, another sensor receptor of tissue stress). It is also 

noteworthy that the NF-κB-regulated transcriptional program for inflammation is redox-

sensitive. In support of these immunostimulatory roles of oxidative stress in glaucoma, 

antioxidant treatment has been found immunomodulatory. Parallel to neuroprotective 

outcomes, antioxidant treatment has decreased the production of pro-inflammatory 

cytokines and activation of NF-κB in experimental glaucoma [79].

Complement activation has also been associated to glaucomatous neurodegeneration. 

Various components of the complement activation cascade, including the cytolytic 

membrane attack complex, have been detected in glaucomatous eyes [16,42,80–82]. This 

critical mechanism for immune surveillance and clearance has been linked to synapse 

elimination and dendrite remodeling in glaucoma [82]. In addition, transgenic or 

pharmacologic treatments inhibiting complement components have provided protection 

against RGC loss in animal models [83–85]. Although many evidences support 

neurodestructive consequences of uncontrolled complement activation in mouse glaucoma, 

inflammatory outcomes through complement anaphylatoxins, C3a, C5a, remain poorly 

defined.

Systemic immune responses

Besides innate immune responses, glial cells (together with other resident immune cells) 

also have the ability to stimulate systemic immune responses. The neuroinflammatory 

environment enriched with pro-inflammatory cytokines appears to favor the interaction of 

glia with T lymphocytes to elicit expanded immune responses. Additionally, increased 

expression of highly antigenic and immunostimulatory stress proteins [47,48], increased 

antigenicity due to protein modifications [76,77], and increased exposure of antigens due to 

neuron injury may help create a proper setting for autoimmunity. Growing data from gene or 

protein expression studies of glaucoma also support a marked upregulation of various 

chemotaxis and adhesion molecules needed for the glia-T cell interaction [14–16,39–

41,44,45]. Furthermore, major histocompatibility complex II molecules are increased on 

reactive glia in human glaucoma [20] and animal models [23,86], and stress-associated 

costimulatory molecules in glaucomatous tissues, including reactive oxygen species [21], 

may enhance the ability of glial cells for antigen presentation to T lymphocytes. As 

supported by animal models, activated T cells may be recruited to the eye, infiltrate the site 

of injury [55,87,88], and produce inflammatory outcomes that are neurotoxic to RGCs 

[49,55,88,89].

Indeed, studies of experimental models have provided data supportive of stimulated T cell 

responses with neurodegenerative potential [49,55,88,89]. Likewise, studies of blood 

samples from patient groups with glaucoma have detected a shift in T cell subset distribution 

towards the pro-inflammatory Th1 cytokine phenotype [90,91]. Recent studies have also 

pointed to an imbalance of the regulatory subset of T cells (Treg), indicating the lack of 

efficient T cell suppression in some patients with glaucoma (presented at the Annual 

Meeting of the Association for Research in Vision and Ophthalmology, 2018, Abstract # 
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3733). These observations are consistent with increased titers of pro-inflammatory cytokines 

in the glaucomatous human blood [71].

Numerous studies have also documented a complex repertoire of circulating autoantibodies 

that react to a variety of retina and optic nerve proteins, and the accompanying deposition of 

immunoglobulins in glaucomatous retinas [89,92]. Whether these antibody responses are an 

outcome or a pathogenic mechanism of neurodegeneration is the subject of ongoing debate. 

Based on experimental studies, HSP antibodies, when exogenously applied at concentrations 

similar to that detected in the glaucomatous blood, may be internalized by retinal neurons 

and facilitate their death in the human retina, ex vivo [93]. Although antibody-mediated 

processes may not produce inflammatory outcomes, which is the focus of this review, 

autoantibody production and ocular entrance may be the consequence of glia-driven 

inflammatory responses that prepare the conditions for antigen presentation (leads to 

autoantibody production) and blood-brain barrier permeability (facilitates the access of 

autoantibodies).

While reactive T lymphocytes may be able to invade through the intact blood-brain barrier 

[55,94], glaucoma-related alterations in astrocyte functions may also weaken the 

perivascular barriers [22]. It seems quite possible that a breach in the blood-retina barrier as 

evident in small optic disc hemorrhages [95] or parapapillary chorioretinal atrophy areas 

[96], both of which are commonly detectable in glaucomatous eyes in association with 

disease progression, may also allow increased access of circulating immune cells, or non-

cellular components (like auto antibodies) into the retina and optic nerve. Interestingly, 

activated microglia have been found strategically positioned within the regions of 

parapapillary chorioretinal atrophy in glaucomatous eyes [26,27]. A longitudinal study of 

serum autoantibody reactivity has also showed an increase over time in glaucoma patients 

with optic disc hemorrhages, but no change has been detected in patients without optic disc 

hemorrhages [97]. Consistent with these observations, transfer of the mononuclear cells 

obtained from glaucoma patients with optic disc hemorrhages into immune deficient mice 

has resulted in a marked decrease in RGC density (presented at the Annual Meeting of the 

Association for Research in Vision and Ophthalmology, 2018, Abstract # 3731).

Potential treatments for immunomodulation

With respect to neurodegenerative potential of neuroinflammation, its efficient control can 

protect neurons from inflammatory neurotoxicity and enhance endogenous recovery 

processes. Due to widespread nature of neuroinflammation through different neuronal 

compartments, immunomodulation may offer a treatment strategy to protect RGC somas, 

axons, and synapses during the course of neurodegeneration in glaucoma. As being major 

players of neuroinflammation, glial cells appear to be excellent candidates for targeting to 

restore immune homeostasis and improve the outcome of glaucoma. Chronic nature of the 

astroglial response, as opposed to temporary responses of microglia, during glaucomatous 

neurodegeneration makes them particularly important as treatment target. As also noted 

above, ongoing tissue stress and asynchronicity of neuron injury over the chronic disease 

period may re-amplify glial inflammatory responses in glaucomatous eyes. Therefore, 
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lowering of elevated intraocular pressure, or other neuroprotective treatments, may also have 

anti-inflammatory outcomes.

Recent experimental studies of therapeutic approaches have targeted different molecules to 

modulate neuro inflammation in glaucoma. Genetic or pharmaceutical inhibition of TNF-α, 

a major pro-inflammatory and pro-apoptotic cytokine, has provided protection against RGC 

and axon degeneration in experimental models of glaucoma [68,98]. However, it should be 

clarified that TNF-α signaling may lead to protective or destructive outcomes depending on 

the type of receptor preferentially used, and the cross-talk between multiple signalling 

pathways. In addition, soluble TNF-a more than its membrane-bound form is required to 

generate neuroinflammation, which is the principal ligand for TNFR1, the primary receptor 

for majority of inflammatory responses [65]. Different effects of TNF-α on neuron survival 

or glia-driven inflammatory outcomes may also be time-dependent [99,100], as well as 

depending on interactions between different molecular pathways [44].

As a treatment approach towards sensing and inducing of inflammation, selective inhibition 

of TLR4 signaling with TAK-242 (resatorvid) has also reduced astrocyte activation and 

RGC death after optic nerve crush injury in mice [101].

Regarding the transduction of inflammation signaling, inactivation of astroglial NF-κB, the 

key transcriptional activator of inflammatory mediators downstream of TNF-α/TNFR and 

TLR signaling pathways, has reduced pro-inflammatory genes and promoted RGC survival 

after retinal ischemia [102]. Recent experimental findings from the cre/lox-based deletion of 

IκKβ (the main activating kinase for NF-κB in the canonical pathway with inflammatory 

outcomes) in experimental mouse glaucoma have also supported immunomodulatory and 

neuroprotective outcomes of astroglial NF-κB inhibition in the glaucomatous retina and 

optic nerve head (presented at the Annual Meeting of the Association for Research in Vision 

and Ophthalmology, 2018, Abstract # 6140). Although NF-κB appears to be a promising 

target for immunomodulation, it should be emphasized that besides inflammatory mediators, 

NF-kB also activates critical anti-apoptotic genes and regulates a broad range of processes 

essential for neuron survival [62,103]. These opposing aspects of NF-κB point to the need 

for glia-targeting transgenic strategies, because the lack of cell-specifieity of NF-κB-

inhibiting pharmacological treatments would potentially cause adverse effects on neuron 

survival. This is also supported by NF-κB 1 knockouts that develop optic neuropathy and 

progressive RGC loss [104].

Consistent with various roles of oxidative stress in induction of glia-driven inflammatory 

responses in glaucoma [74], antioxidant treatment has lowered pro-inflammatory cytokine 

production and NF-κB activation in the ocular hypertensive rat retina and optic nerve [79].

Various studies have also targeted different cellular components of neuroinflammation in 

experimental models. Decreasing the astroglial and microglial reactivity with intraocular 

administration of a cAMP phosphodiesterase inhibitor (ibudilast) has resulted in decreased 

production of pro-inflammatory mediators and increased survival of neurons in ocular 

hypertensive rat eyes [105]. Other studies testing different treatments to deactivate retina or 

optic nerve head microglia at early stages of experimental glaucoma have also reported to 
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reduce neurodegeneration [28,106,107]. Additionally, inhibition of monocyte entry into 

optic nerve head by irradiation has provided protection against neuron injury in DBA/2J 

mice [29]. Treatments targeting endothelin-2, a damaging mediator produced by monocytes 

(bosentan) combined with anti-complement treatment (C1qa mutation) have also been found 

protective [84]. Furthermore, findings of a more recent study have indicated that the 

extensive neuroinflammation in DBA/2J glaucoma, but not in induced microbead occlusion 

model of glaucoma that lacks pre-existing inflammation, may contribute to Ranvier node 

pathology and neurophysiological deficits, and immunosuppressive treatment with 

fingolimod can provide some protection [108].

Treatments towards systemic immune responses may also be considered to restore immune 

homeostasis in glaucoma. The neurodegenerative potential of reactive T cells, along with the 

altered T cell profile with inefficient Treg suppression in patients’ blood, may promise for T 

cell-based immunotherapies. Antigenic vaccination has been suggested to boost protective T 

cell responses for neuroprotection in glaucoma models but not been pursued further [109]. 

Similar to many autoimmune neurodegenerative diseases, boosting of the endogenous Treg 

response, or adoptive cell therapy by transferring purified induced Treg [110], may be 

further tested as an immunomodulation strategy for glaucoma.

Moreover, stem cell-based strategies may be useful to modulate inflammatory responses. For 

example, mesenchymal stem cell-derived exosomes have been reported to deliver trophic 

and immunomodulatory factors, suppress the migration of inflammatory cells, attenuate pro-

inflammatory cytokine secretion, and promote RGC survival [111,112].

Despite favorable results of recent experimental studies, development of immunomodulatory 

treatments is highly challenging when respecting the dynamic nature of inflammatory 

responses and the complexity of cellular and molecular components of neuroinflammation. 

Since beneficial and detrimental outcomes of inflammatory processes involve shared 

molecules (as noted above for TNF-α signaling, or NF-κB activation), protective versus 

destructive pathways of glial responses should be carefully outweighed. Various potential 

treatments may also require the development of glia-targeting strategies. Further elucidation 

of the molecular components and time course of specific responses of glial subtypes and 

interactions of different immune cells in governing the final outcome will be crucial to 

develop effective treatment modalities.

Conclusion

Accumulating evidence from studies of human donor eyes and animal models supports 

prolonged roles of resident and systemic immune responses in glaucomatous 

neurodegeneration and points to immunomodulation as a neuroprotective treatment strategy 

for glaucoma. Since neurodestructive outcomes of glia-driven neuroinflammation may affect 

RGC survival at different neuronal compartments, glia-targeting strategies are likely to 

provide widespread protection against inflammatory injury to RGC somas, dendrites, axons, 

and synapses during the chronic and asynchronous course of glaucomatous 

neurodegeneration. Ongoing efforts are expected to further enhance the molecular 

understanding of specific responses and interactions of different immune cells at different 
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sites and different stages of neurodegeneration so that improved strategies can be developed 

for immunomodulation in glaucoma.
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Figure 1. 
Glia-driven neuroinflammation may be initiated by both neuron injury (by DAMPs and ROS 

through PRRs, by ATP through mechanosensitive ion channels) and glaucoma-related 

insults, such as elevated intraocular pressure (through mechanosensitive ion channels). Thus, 

chronic tissue stress, neuron injury, glial and systemic immune responses, and sustained 

release of neurotoxic mediators create a vicious cycle that promotes further injury to retinal 

ganglion cells at different neuronal compartments.
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