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Identification of the Catechin 
Uptake Transporter Responsible 
for Intestinal Absorption of 
Epigallocatechin Gallate in Mice
Shunsuke Ishii1, Hidefumi Kitazawa1, Takuya Mori1, Aya Kirino2, Shun Nakamura2, 
Noriko Osaki1, Akira Shimotoyodome1 & Ikumi Tamai3

Many studies have shown that epigallocatechin gallate (EGCg) contribute to the health benefits of 
green tea, although its bioavailability is usually low. However, the mechanism underlying its intestinal 
absorption remains unclear. In human subjects, it has been reported that the bioavailability of EGCg 
increases after repeated oral catechin intake. We hypothesized that a certain uptake transporter was 
involved in this increase, and investigated a novel EGCg transporter. We first confirmed the increase 
in EGCg bioavailability in mice fed the catechin diet for two weeks. Then, in situ intestinal catechin 
infusion exhibited that the absorption of EGCg in the ileum was selectively increased in mice fed the 
catechin diet. A comprehensive analysis of plasma membrane proteins revealed 10 candidates for EGCg 
transporter, which were selectively increased in the ileum. EGCg uptake by a Xenopus laevis oocyte 
expressed with respective transporter revealed that oocytes microinjected with DTDST cRNA exhibited 
significantly higher EGCg uptake. Furthermore, uptake of EGCg by CHO-K1 cells stably expressing 
DTDST was significantly higher than that by mock cells, which was nullified by treating with a DTDST 
inhibitor. In conclusion, this study identified DTDST as a novel intestinal EGCg transporter that is 
upregulated after repeated oral catechin intake.

Green tea is a popular beverage worldwide and has many beneficial health effects, including anti-cancer, cardi-
oprotective, anti-inflammatory, anti-diabetic, and anti-obesity effects1–4. Catechins are a family of polyphenols 
found at high concentrations in green tea, and many studies have shown that several catechins, particularly epi-
gallocatechin gallate (EGCg), contribute to the health benefits of green tea5–11. It is thought that the physiological 
activity of EGCg depends on its bioavailability, which is usually poor12–14; therefore, increasing the bioavailability 
of EGCg may improve its health benefits and consequently those of green tea.

Since catechins are small, water-soluble molecules, it has been suggested that catechins are absorbed via the 
paracellular pathway in the small intestine15. However, it is also known that efflux transporters such as multid-
rug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2 (MRP2) transport many kinds 
of polyphenols from inside of enterocytes to the intestinal lumen16,17, and some studies have demonstrated that 
EGCg and other catechins are excreted via MRP218–21. Thus, it is likely that both the paracellular and transcellular 
pathways are involved in the absorption of EGCg.

It was recently reported that several transporters are capable of transporting polyphenols into cells rather than 
pumping them out. For example, quercetin has been shown to be absorbed by organic anion transporting poly-
peptides (OATPs) and organic cation transporter 122,23. OATP1A2 and OATP1B3 are also potential EGCg trans-
porters24, while they are not expressed in the intestine. Thus, the mechanism responsible for intestinal absorption 
of EGCg and other catechins is yet to be fully clarified.

In human subjects, plasma levels of EGCg, but not those of other catechins such as epigallocatechin (EGC) 
and epicatechin (EC), are significantly increased after 4 weeks of repeated oral catechin intake25. Since this obser-
vation suggests that there might be a unique metabolic pathway or a specific absorption mechanism for EGCg, we 
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hypothesized that a certain uptake transporter in the gastrointestinal tract is responsible for the reported increase 
in EGCg bioavailability. Here, we identified an EGCg transporter by examining changes in EGCg bioavailability 
after repeated catechin intake in mice.

Materials and Methods
Materials.  Polyphenon 70 S containing 39.9% EGCg, 24.7% EGC, 10.9% epicatechin gallate (ECg), 9.8% EC, 
7.5% gallocatechin (GC), 4.0% gallocatechin gallate (GCg), 2.2% catechin (C), and 1.0% catechin gallate (Cg) was 
purchased from Mitsui Norin (Tokyo). Purified EGCg was from Nagara Science (Gifu, Japan). Sulfatase (from 
abalone entrails, Type VIII) and β-glucuronidase (from Escherichia coli, Type IX-A) were from Sigma Aldrich 
Japan (Tokyo). All other chemicals were commercially available materials at the highest grade.

Animals.  Seven-week-old male C57BL/6 J mice were purchased from CLEA Japan (Tokyo) and group housed 
(four mice per cage). Room temperature was maintained at 23 ± 2 °C with a humidity of 45–65%. Mice were 
exposed to a 12-h light/dark cycle and water was freely accessible throughout the study. All animal experiments 
were conducted in the experimental animal facility of the Kao Tochigi Institute. Animal studies have been carried 
out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the 
U.S. National Institutes of Health. The Animal Care Committee of Kao Corporation approved the protocols used 
in the present study (protocol number N2014-0016A).

Mice were fed normal chow (CE-2; CLEA Japan) for one week and then randomly divided into two groups: a 
normal diet group (control group) and a catechin diet group (catechin group) (Table 1). Mice were fed each test 
diet ad libitum for two weeks and then subjected to oral administration testing (n = 5/group), in situ catechin 
intestinal infusion testing (n = 3 to 6/group), or proteomics analysis (n = 3/group).

Oral administration study in mice.  After two weeks of feeding with the normal or catechin diet, mice 
were fasted for 16 h and orally administered catechin solution (100 mg/kg body weight [bw] of polyphenon 70 S). 
Under anesthesia with isoflurane (Forane; AbbVie GK, Tokyo), blood samples were collected from the abdominal 
aorta at 0, 20, 50, 90, 180, 300, and 720 min after catechin administration and immediately centrifuged (11,000 
× g for 10 min at 4 °C) to obtain plasma samples. One-tenth volume of stabilization buffer (0.4 M NaH2PO4, 20% 
ascorbic acid, 0.1% ethylenediaminetetraacetic acid; pH 3.6) was added to the plasma samples to suppress cate-
chin degradation, and the samples were then kept at −80 °C until use.

In situ intestinal infusion study in mice.  On the final day of the two-week feeding period with the nor-
mal or catechin diet, mice were fasted for 16 h and then anesthetized with isoflurane. Under anesthesia, the mice 
were maintained at body temperature with a heating pad. The small intestine was exposed by abdominal incision 
and catechin solution (100 mg/kg-bw of polyphenon 70 S) was infused via a syringe with a 27 G needle (Terumo, 
Tokyo) into four different parts of the gastrointestinal tract: pylorus, jejunum (5 cm inferior to the pylorus), ileum 
(10 cm superior to the cecum), or cecum (1 cm superior to the cecum). Before infusing the catechin solution, a 
ligature was applied close to the infusion point to prevent backflow of the catechin solution. Blood samples were 
collected from the orbital venous plexus at 0, 15, and 30 min after infusion. Plasma samples were obtained and 
stored in the same manner as in the oral administration study.

Preparation of plasma membrane proteins in intestinal epithelial cells of mice.  After the 
two-week feeding period with the normal or catechin diet, mice were fasted for 16 h and the jejunum (0–3.5 cm 
inferior to the pylorus) and ileum (5–10 cm superior to the cecum) were resected under anesthesia with iso-
flurane. Intestinal epithelial cells were obtained by scraping the cut-open intestinal tracts on ice. Plasma mem-
brane protein was purified without detergent using a Minute Plasma Membrane Protein Isolation Kit (Invent 
Biotechnologies, Plymouth, MN) in accordance with the manufacturer’s instructions. Purified membrane pro-
tein was dissolved in 200 μL of phase transfer surfactant buffer (12 mM sodium deoxycholate, 12 mM sodium 
N-dodecanoylsarcosinate, 100 mM Tris–HCl; pH 9.0) and heated at 95 °C for 5 min followed by sonication for 
20 min. Protein concentration was quantified by a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 
Tokyo). The test solution was mixed with one-hundredth volume of 50 mM NH4HCO3 buffer including 1 M 
dithiothreitol and incubated for 30 min at room temperature. Subsequently, one-twentieth volume of 50 mM 
NH4HCO3 buffer containing 1 M iodoacetamide was added and the samples were incubated for 30 min at room 
temperature in the dark. Then, the samples were diluted five-fold with 50 mM NH4HCO3 buffer and digested 

Normal diet 
(Control group)

Catechin diet 
(Catechin group)

Corn oil 10 10

Casein 20 20

Cellulose 4 4

Mineral mixture 3.5 3.5

Vitamin mixture 1 1

Potato starch 61.5 61.0

Polyphenon 70 S 0 0.5

Total 100 100

Table 1.  Test diet composition (%).
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with Lys-C (1 μg/100 μg-protein) for 3 h at 37 °C and then with trypsin (1 μg/100 μg-protein) overnight at 
37 °C. Equal volumes of ethyl acetate and trifluoroacetic acid (0.5% of final concentration) were added to the 
samples and the solution was mixed well. After centrifugation at 15,700 × g for 2 min at 20 °C, the supernatant 
was removed and dried under reduced pressure at 50 °C. The obtained peptide digest was passed through a 
GL-Tip SDB column (GL Sciences, Tokyo) and then diluted with water containing 0.1% formic acid and 2% 
acetonitrile (1 μg/μL).

Shotgun proteomics analysis using liquid chromatography tandem-mass spectrometry.  
Preprocessed samples were injected into a high-performance liquid chromatography (HPLC) system (Ultimate 
3000 RSLC nano System; Thermo Fisher Scientific), concentrated using an Acclaim PepMap 100 C18 Nano-Trap 
Column (3 µm beads, 75 µm i.d., 20 mm long; Thermo Fisher Scientific), and then separated by a Mono Cap High 
Resolution 2000 column (100 µm i.d., 2 m long; GL Sciences). The elution buffer was composed of buffer A (0.1% 
formic acid) and buffer B (80% acetonitrile containing 0.1% formic acid), and the gradient profile of the first step 
was a 480-min linear gradient from 5% to 40% buffer B followed by a 10-min linear gradient to 100% buffer B, 
with 10 min at 100% buffer B, at a flow rate of 500 nL/min. Auto-calibration was performed between each anal-
ysis. The outlet was connected to a Triple TOF 5600 + tandem-mass spectrometry system (AB SCIEX, Tokyo) 
connected to a PicoTip NanoSpray Emitter FS360-50-15-N (New Objective, Woburn, MA). A survey scan for 
positive ions from m/z 400 to 1000 was initially performed, followed by a tandem-mass spectrometry scan from 
m/z 100 to 1500 after collision-induced dissociation with data-dependent acquisition. Proteins were identified by 
cross-referencing the obtained spectrum and the Swiss-Prot protein sequence database, and identified proteins 
were then categorized using the Ingenuity Pathway Analysis software (Ingenuity Systems, Redwood City, CA). For 
proteins categorized as plasma membrane transporters, an additional liquid chromatography tandem-mass spec-
trometry analysis was performed for the same m/z range with data-independent acquisition, and the expression 
level of each molecule was quantified by its peak area (Peak View; Thermo Fisher Scientific).

Uptake study by Xenopus laevis oocytes.  Total RNA was extracted from ileal epithelial cells by 
an RNeasy mini kit (QIAGEN, Tokyo) and cDNA was synthesized by SuperScript III Reverse Transcriptase 
(Life Technologies Japan, Tokyo). Open reading frames of candidate genes (Table 2) were amplified by pol-
ymerase chain reaction and cloned into pSP64 poly (A) vector (Promega, Tokyo) or modified vectors with 
another restriction site inserted (Supplemental Table 1). A Kozak sequence at the 5′-terminal and FLAG tag 
at the 3′-terminal were added to each open reading frame. Constructs were cut into single strands at the 
designated restriction site and purified by electrophoresis and gel extraction by a MagExtractor PCR & Gel 
Clean-up kit (Toyobo, Osaka). cRNAs were obtained by in vitro transcription by an mMESSAGE mMACHINE 
SP6 transcription kit (Thermo Fisher Scientific) and purified by a QIAprep Spin Miniprep Kit (QIAGEN). 
Defolliculated Xenopus laevis oocytes were microinjected with 25 ng of each cRNA and incubated at 25 °C 
in modified Barth solution (88 mM NaCl, 1 mM KCl, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 
2.4 mM NaHCO3, 10 mM HEPES; pH 7.4) containing 50 mg/L gentamycin. After 3 days, oocytes were trans-
ferred to modified Barth solution containing 100 or 500 μM EGCg and 1 mM ascorbic acid and then incubated 
at 23 °C. After 0, 0.5, 1, and 2 h, oocytes were removed and washed with ice-cold modified Barth solution. 
Samples were kept at −80 °C until catechin quantification.

Uptake study by CHO-K1 cells expressing diastrophic dysplasia sulfate transporter.  The open 
reading frame of diastrophic dysplasia sulfate transporter (DTDST) with C-terminal FLAG tag was resected 
from the pSP64 poly(A) vector and recombined into the pcDNA3.1(+) vector (Thermo Fisher Scientific) by the 
HindIII and XbaI sites. The construct was purified by an EndoFree Plasmid Maxi Kit (QIAGEN) and transfected 
using Xfect Transfection Reagent (Clontech Laboratories, Mountain View, CA) into CHO-K1 cells cultured in 
F-12 medium containing 10% fetal bovine serum. After 48 h, the transfected cells were seeded into 96-well plates 
in a limiting dilution and cultured in F-12 medium containing 10% fetal bovine serum and 1 mg/mL G418. After 
selection with neomycin, the cell line with high DTDST gene expression level was used in the following EGCg 
uptake assay. The cells were preincubated in F-12 medium containing 10% fetal bovine serum overnight. After 
equilibrating for 1 h in Hanks’ balanced salt solution (pH 6.0), 100 μM EGCg was added to the medium and the 

Protein name Gene symbol Entrez gene name NCBI ref seq

ZIP14 Slc39a14 solute carrier family 39 (zinc transporter), member 14 NM_001135151

ASBT Slc10a2 solute carrier family 10 (sodium/bile acid cotransporter), member 2 NM_011388

CTL4 Slc44a4 solute carrier family 44, member 4 NM_023557

DRA Slc26a3 solute carrier family 26 (anion exchanger), member 3 NM_021353

DTDST Slc26a2 solute carrier family 26 (anion exchanger), member 2 NM_007885.2

LAT2 Slc7a8 solute carrier family 7 (amino acid transporter light chain, L system), member 8 NM_016972

NBC1 Slc4a4 solute carrier family 4 (sodium bicarbonate cotransporter), member 4 NM_018760

MNK Atp7a ATPase, Cu ++ transporting, alpha polypeptide NM_001109757

KCC3 Slc12a6 solute carrier family 12 (potassium/chloride transporter), member 6 NM_133648

MCT1 Slc16a1 solute carrier family 16 (monocarboxylate transporter), member 1 NM_009196

Table 2.  EGCg transporter candidates identified by means of a shotgun proteomics analysis.
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cells were incubated at 37 °C for up to 4 h. A DTDST inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid 
(DIDS, 100 μM), or vehicle (dimethyl sulfoxide) was added to the cells 1 h before EGCg exposure. In the kinetic 
analysis, cells were incubated with EGCg or gallic acid at concentrations ranging from 1 to 1000 μM at 37 °C 
for 30 min. After incubation, the cells were washed twice with ice-cold phosphate-buffered saline and lysed in 
CelLytic lysis buffer (Sigma-Aldrich Japan). Samples were kept at −80 °C until catechin quantification.

Catechin quantification.  In the oral administration test, catechin in plasma was extracted using ethyl 
acetate and quantified by liquid chromatography–electrochemical detection. β-Glucuronidase (125 U), sulfa-
tase (0.5 U), and 10 μL of 0.4 M Na2PO4 buffer (pH 7.4) were added to 100 μL of plasma sample and the mixture 
was incubated for 45 min at 37 °C. Then, 1 mL of ethyl acetate was added to the sample and the mixture was 
mixed rigorously for 4 min. After centrifugation (2,400 × g for 10 min at 4 °C), the supernatant was removed. 
Extraction with ethyl acetate was repeated and the supernatants were merged. The supernatants were dried 
by nitrogen purging and the residues were dissolved in 15% acetonitrile in water. The obtained samples were 
injected into an HPLC system (2695 Separations Module; Waters, Tokyo) equipped with a Coulochem III 
electrochemical detector (ESA, Chelmsford, MA) and an Inertsil ODS-2 column (4.6 × 250 nm; GL Sciences). 
Separation was performed with buffer A (100 mM NaH2PO4 containing 1.75% acetonitrile and 0.12% tetrahy-
drofuran, pH 3.35) and buffer B (15 mM NaH2PO4 buffer containing 58.5% acetonitrile and 12.5% tetrahy-
drofuran, pH 3.45). The gradient was changed linearly from 96% buffer A and 4% buffer B to 83% buffer A 
and 17% buffer B (7–25 min), 72% A and 28% B (25–31 min), 67% A and 33% B (31–37 min), 2% A and 98% 
B (37–38 min), maintained at 2% A and 98% B (38–43 min), and changed to 96% A and 4% B (43–44 min) at a 
flow rate of 1 mL/min.

In the intestinal infusion test, catechin in plasma was purified by solid phase extraction and meas-
ured by HPLC–tandem-mass spectrometry. β-Glucuronidase (62.5 U), sulfatase (0.25 U), 16 μL of 0.4 M 
phosphate-buffered saline (pH 3.6), and 16 μL of 0.4 M phosphate-buffered saline (pH 7.4) were added to 50 μL 
of serum samples and incubated for 45 min at 37 °C. Then, 600 μL of 0.2 M acetic acid and 10 ng of ethylgallate 
(internal standard) was added to the samples and they were loaded onto a 1-cc Oasis HLB cartridge (Waters) pre-
conditioned with water and dimethyl sulfoxide. After washing with water and 30% methanol, catechin was eluted 
with dimethyl sulfoxide containing 0.1% ascorbic acid. Samples were freeze-dried and dissolved in 50 μL of 10% 
acetonitrile containing 0.5% ascorbic acid. Samples were injected into an HPLC system (Infinity 1260; Agilent 
Technologies Japan, Tokyo) equipped with a 3200 QTRAP liquid chromatography tandem mass spectrometry 
system (AB SCIEX, MA, USA) and an L-column2 ODS column (Chemicals Evaluation and Research Institute, 
Tokyo). Separation was performed using buffer A (0.1% formic acid solution) and buffer B (acetonitrile). The 
gradient was linearly changed from 97% buffer A and 3% buffer B to 85% buffer A and 15% buffer B (0–2 min), 
81% A and 19% B (2–6 min), 50% A and 50% B (6–6.1 min), maintained at 50% A and 50% B (6.1–9 min), and 
changed to 97% A and 3% B (9–12 min) at a flow rate of 0.7 mL/min.

In the transport assay using Xenopus laevis oocytes and CHO-K1 cells, catechins taken up by cells was 
extracted by ethyl acetate and measured by liquid chromatography–tandem-mass spectrometry. Two oocytes 
were placed in modified Barth solution and lysed by sonication (Branson Sonifier 150, intensity 4; Emerson Japan, 
Kanagawa) on ice and then centrifuged (21,000 × g) for 10 min at 4 °C. The supernatant was removed and extrac-
tion with ethyl acetate was performed in the same manner as described in the paragraph above. Merged samples 
were dried under low pressure and dissolved in 10% acetonitrile containing 0.5% ascorbic acid. HPLC–mass 
spectrometry analysis was performed by the same conditions used in the intestinal infusion test.

Statistical analysis.  Data are expressed as mean ± SD. Time-course data were compared by two-factor 
repeated-measures ANOVA to evaluate the group-by-time interaction. In cases where a significant diet-by-time 
interaction was observed, an intergroup comparison at each time point was subsequently performed by an 
unpaired Student’s t-test. All other statistical comparisons were made using a Student’s t-test. A P-value of less 
than 0.05 was considered significant. Statistical analyses were performed using SPSS version 18 (IBM, Armonk, 
NY). The kinetic parameters of DTDST-mediated EGCg uptake were obtained by fitting of the data to Michaelis–
Menten equation in the enzyme kinetics module of GraphPad Prism software Version 6.0 (GraphPad software, 
La Jolla, CA).

Results
Effect of repeated intake of catechins on their in vivo absorption in mice.  We first examined 
whether the bioavailability of EGCg was increased by repeated catechin intake in mice. Plasma levels of four 
catechin species (EGCg, ECg, EGC, EC) were elevated immediately after oral administration of catechin solu-
tion, reaching a peak concentration at 20 min for EGC and EC, and at 90 min for EGCg and ECg (Fig. 1). Mice 
fed the catechin diet for two weeks exhibited a significantly higher plasma EGCg level from 0 to 300 min after 
oral administration of catechin solution compared with mice fed the control diet (Fig. 1a); however, there 
were no significant differences in the plasma concentration of other catechin species between the two groups 
(Fig. 1b–d).

Intestinal regional specificity of absorption by in situ intestinal catechin infusion in mice.  Next, 
an in situ intestinal catechin infusion study was performed to determine the site in the small intestine where the 
increase in plasma EGCg occurred in the mice fed the catechin diet. The plasma EGCg level in the control group 
was highest in the mice administered catechin in the pylorus and gradually decreased as the site of catechin 
administration was moved toward the distal part of the intestine (Fig. 2). In mice administered catechin in the 
ileum, the plasma EGCg level was significantly higher in the catechin group than in the control group at 30 min 
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after administration (Fig. 2c), whereas it remained comparable between the two groups in mice administered cat-
echin in the pylorus, jejunum, or cecum (Fig. 2a,b,d). A significant increase in the area under the curve of plasma 
EGCg was observed only in mice in which catechin solution was injected into the ileum (Fig. 2e–h).

Screening of responsible transporter molecules for increased EGCg absorption after an intake 
of catechins.  To elucidate the transporter molecules involved in the plasma EGCg increase in mice fed the 
catechin diet, a comprehensive shotgun proteomics analysis of plasma membrane proteins expressed in the jeju-
num and ileum of mice fed the control diet or the catechin diet was performed. A total of 371 membrane proteins 
including 82 transporters were identified in the analysis (Supplemental Table 2). The expression levels of each 
protein were compared between the two groups and the 10 molecules shown in Table 3 were selected as EGCg 
transporter candidates based on two inclusion criteria: 1) ileal expression of the protein in the catechin group was 
more than 2-fold of the expression in the control group, and 2) the difference in jejunal expression of the protein 
was less than 1.5-fold between the catechin group and the control group.

Uptake study by Xenopus oocytes expressing selected transporters.  EGCg uptake by 10 
selected proteins was examined using an oocyte expression system, and oocytes microinjected with either 
DTDST cRNA or ZIP14 cRNA exhibited significantly higher EGCg uptake (Supplemental Fig. 1). Next, a 
time-dependent uptake of EGCg was confirmed in oocytes microinjected with DTDST cRNA (Fig. 3). However, 
ZIP14 was not studied further, since the group-by-time interaction was not significant between oocytes micro-
injected with ZIP14 cRNA and mock cells (Fig. 3). The uptake rate of EGCg by DTDST-expressing oocytes 
obtained from the slope of the time course (0.718 pmol/hour/oocyte, Fig. 3) was 4.8-times higher than that for 
the control oocytes (0.150 pmol/hour/oocyte). The gene encoding DTDST was subsequently transfected into 
CHO-K1 cells and a stable cell line was cloned for the following analysis of the DTDST-mediated transport 
of EGCg. Although time-dependent EGCg uptake was observed both in mock and DTDST-expressing cell 
lines, it was significantly higher in DTDST-expressing cells at all time points examined (Fig. 4a). The uptake 
rate obtained from the slope of the time course for the DTDST-expressing clone (208 pmol/hour/mg protein) 
was 1.8-fold of that for mock cells (117 pmol/hour/mg protein). In addition, the significantly higher uptake by 
the DTDST-expressing clone compared with mock cells was nullified in the presence of the DTDST inhibitor 
DIDS (Fig. 4b). A kinetic analysis based on dose response provided an estimated Km of 576 ± 244 μM and Vmax 
of 42.3 ± 8.4 pmol/min/mg-protein for DTDST-mediated EGCg transport (Fig. 4c). Although the transport 
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Figure 1.  Plasma concentration of (a) epigallocatechin gallate (EGCg), (b) epicatechin gallate (ECg), (c) 
epigallocatechin (EGC), and (d) epicatechin (EC) after oral catechin administration (catechin group, ●; 
control group, □; n = 5/group). Two-factor repeated measures ANOVA was used to evaluate the group-by-
time interaction and the P value for this test is shown in the upper-right of each panel. Data are presented 
as mean ± SD. Significant differences as determined by Student’s t-test are indicated by *(P < 0.05) and 
**(P < 0.01).
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activity for gallic acid was also evaluated, no differences were observed between CHO-K1 cells stably express-
ing DTDST and mock cells (Supplemental Fig. 2).

Discussion
In the present study, we investigated the mechanism for the intestinal absorption of catechins based on the 
reported pharmacokinetic characteristics that exhibited increased bioavailability of EGCg after repeated intake 
of catechins in humans25.

First, we studied in vivo effect of repeated intake of catechin diet on the absorption of several catechins in 
mice. As clearly shown in Fig. 1, plasma concentration of only EGCg was increased after oral administration 
in repeated catechin diet-treated mice. Accordingly, the pharmacokinetic changes observed in humans upon 
catechin ingestion were reproduced in mice, so this model was used for the following study. Regarding the mech-
anism for this increased bioavailability of EGCg, we hypothesized that a certain intestinal uptake transporter 

Figure 2.  Plasma concentrations of epigallocatechin gallate (EGCg) after in situ catechin infusion into (a) the 
pylorus, (b) jejunum, (c) ileum, or (d) cecum (catechin group, ●; control group, □; n = 3–6/group). Two-factor 
repeated measures ANOVA was used to evaluate the group-by-time interaction and the P value for this test is 
shown in the upper-right of each panel. The area under the curve is shown for (e) the pylorus, (f) jejunum, (g) 
ileum, and (h) cecum. Data are presented as mean ± SD. Significant differences as determined by Student’s t-test 
are indicated by *(P < 0.05).

Protein name UniProtKB ID

Fold Change*

Jejunum Ileum

ZIP14 S39AE_MOUSE 1.1 13.4

ASBT NTCP2_MOUSE 0.8 7.1

CTL4 CTL4_MOUSE 0.5 4.9

DRA S26A3_MOUSE 1.4 3.0

DTDST S26A2_MOUSE 1.3 3.0

LAT2 LAT2_MOUSE 1.2 2.8

NBC1 S4A4_MOUSE 1.5 2.8

MNK ATP7A_MOUSE 1.5 2.1

KCC3 S12A6_MOUSE 1.4 2.0

MCT1 MOT1_MOUSE 1.1 2.0

Table 3.  Fold change of intestinal expression levels of EGCg transporter candidates. *Fold Change of the 
average expression levels in the catechin group to the control group (n = 3/group).
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could be upregulated by a catechin-containing diet. Based on this hypothesis, such upregulated proteins were 
searched by a comprehensive shotgun proteomics analysis of intestinal tissues. To roughly screen such pro-
teins, intestinal absorption of EGCg was first evaluated after dividing mouse whole intestines to four sections 
independently with and without a 2-week catechin diet. To evaluate EGCg absorption in different parts of the 
intestine, we initially attempted a traditional ex vivo analysis approach, but it was difficult to detect changes in 
EGCg absorption. To address this issue, we developed a technique called in situ intestinal catechin infusion that 
allowed us to evaluate EGCg absorption in specific parts of the intestine. By our novel approach, it was found 
that EGCg was absorbed in the upper intestine (Fig. 2), consistent with the results of the oral administration test 
that showed an early elevation of plasma EGCg level after oral administration of catechin. Increased absorption 
of EGCg by the catechin-containing diet was observed only in the ileum, therefore this part of intestine was 
further used for a comprehensive shotgun proteomics analysis. Among transporter-like proteins that showed 
selectively increased expression in the ileum, 10 proteins were obtained (Table 3) and only DTDST exhibited a 
significant time-dependent increase of EGCg uptake in heterologous expression in Xenopus oocytes and CHO-K1 
cells (Figs 3 and 4).

DTDST has been known as a sulfate transporter encoded by the Slc26a2 gene, which transports inorganic 
ions such as sulfate, chloride, and hydroxide26,27. Recently, it was also reported that an organic substrate, oxa-
late, was transported by DTDST, implicating the broader selectivity of this transporter28. In the present study, 
we determined that the Km for EGCg was approximately 0.6 mM, which was at the same level as that for oxa-
late, reported as 0.65 ± 0.08 mM28. However, the Vmax for EGCg was two digits smaller than that of oxalate. 
Furthermore, although sulfate, chloride, hydroxide, and oxalate are transported optimally under alkaline and 
neutral pH conditions28, it was found that EGCg was transported equally under alkaline, neutral, and acidic 
pH conditions, as assessed by determining EGCg uptake in Xenopus oocytes (data not shown). Taken together, 
these data suggest that there are differences in the mechanisms through which DTDST transports EGCg and 
other substrates. We also revealed that DTDST did not transport gallic acid, which is the partial structure of 
EGCg. The substrate specificity suggested that DTDST did not recognize the gallate moiety itself but the entire 
structure of EGCg.

Previously, Roth et al. reported that EGCg was transported by OATP1A2 and OATP1B324. However, these 
transporters were found not to be expressed in the small intestine29,30. In contrast, DTDST is expressed ubiqui-
tously, including in the intestine31,32. After short-term catechin-feeding in mice, the upregulation of DTDST in the 
ileum may therefore account for the observed increase in the bioavailability of EGCg. We speculate that DTDST 
is also involved in the intestinal absorption of EGCg in humans because a similar increase in the bioavailability 
of EGCg after repeated catechin intake in humans has been reported25. The present kinetic analysis revealed that 
DTDST transported EGCg with an approximate Km of 0.6 mM, which is sufficient for the intestinal absorption of 
EGCg from green tea, which usually contains 0.5–1.5 mM EGCg. Therefore, it is possible that EGCg is absorbed 
from green tea via intestinal DTDST in humans.

ASBT, one of the EGCg transporter candidate molecules selected in the present study that showed no trans-
port activity for EGCg, has been reported to be inhibited by EGCg33. We assume that ASBT was upregulated 
under EGCg-rich condition in order to fulfill its primary role, which is to reabsorb bile acid adequately. Because 

Figure 3.  Time-course data of epigallocatechin gallate (EGCg) uptake by Xenopus laevis oocytes microinjected 
with diastrophic dysplasia sulfate transporter (DTDST) cRNA (●), zinc transporter 14 (ZIP14) cRNA (▲) or 
water (□) (n = 6–8/group) incubated with 500 μM EGCg. Linear approximation was performed and the line 
is shown. Two-factor repeated measures ANOVA was used to evaluate the group-by-time interaction and the 
P values are shown in the upper-left of the panel. Data are presented as mean ± SD. Significant differences as 
determined by Student’s t-test are indicated by **(P < 0.01).
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EGCg affects the activity of a variety of proteins including digestive enzymes and plasma membrane transporters 
in the small intestine33–36, it is possible that they were also upregulated under EGCg-rich conditions in a compen-
satory manner to the inhibition by EGCg, as well as ASBT. In the case of DTDST, it might have been inhibited 
by EGCg in a competitive manner, and the compensatory upregulation might have resulted in enhanced EGCg 
absorption demonstrated in the present study. Further investigations are needed to clarify the mechanism under-
lying the induced expression of ileal DTDST by catechin feeding.

There are some limitations to our study. First, other potential EGCg transporters may have been overlooked 
by each process of the shotgun proteomics analysis and the oocyte expression system. In the shotgun proteomics 
analysis, the protein selection was based only on proteins that were categorized as plasma membrane transporters 
by the Ingenuity Pathway Analysis software. As for the oocyte expression system, we could not demonstrate the 
transport activity using each substrate as a positive control, although we confirmed their expression in plasma 
membrane fraction. Second, we analyzed the EGCg transport activity of DTDST derived from a murine gene, not 
a human gene. Third, we did not confirm the EGCg transport activity of DTDST in vivo. Further investigations 
are needed to confirm the contribution of DTDST to determine the bioavailability of EGCg before and after 
short-term catechin feeding.

In conclusion, we identified DTDST as a novel intestinal EGCg transporter by examining the change in bio-
availability of EGCg after short-term catechin feeding in mice. Kinetic analyses indicated that the affinity of 
DTDST to EGCg was reasonable for the absorption of EGCg from green tea. The identification of this intestinal 
EGCg transporter should be useful for further examining the regulation of the bioavailability of EGCg, which 
could be utilized to improve the beneficial effects of green tea. Our results will also be useful for future studies 
elucidating the absorption mechanisms of other widely consumed polyphenols.

Figure 4.  (a) Time-course data of epigallocatechin gallate (EGCg) uptake by CHO-K1 cells stably expressing 
diastrophic dysplasia sulfate transporter (DTDST; ●) or mock cells (□) (n = 4/group) incubated with 500 μM 
EGCg. Linear approximation was performed and the line is shown. Two-factor repeated measures ANOVA 
was used to evaluate the group-by-time interaction and the P value is shown in the upper-left of the panel. Data 
are presented as mean ± SD. Significant differences as determined by means of Student’s t-test are indicated by 
*(P < 0.05) and **(P < 0.01). (b) EGCg uptake by CHO-K1 cells stably expressing DTDST or mock cells after 
treatment with the DTDST inhibitor 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) or vehicle (n = 3/
group) incubated with 500 μM EGCg for 30 min. Data are presented as mean ± SD. Significant differences as 
determined by Student’s t-test are indicated by *(P < 0.05). (c) Kinetics of EGCg uptake mediated by DTDST 
after subtracting the values obtained with mock cells (n = 4). CHO-K1 cells stably expressing DTDST or mock 
cells were incubated with EGCg at concentrations ranging from 1 to 1000 μM for 30 min. Data are presented as 
mean ± SD. The kinetic parameters were obtained by fitting the data to the Michaelis–Menten equation in the 
enzyme kinetics module of GraphPad Prism software Version 6.0.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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