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Abstract

Missing data are a common issue in statistical analyses. Multiple imputation is a technique that 

has been applied in countless research studies and has a strong theoretical basis. Most of the 

statistical literature on multiple imputation has focused on unbounded continuous variables, with 

mostly ad hoc remedies for variables with bounded support. These approaches can be 

unsatisfactory when applied to bounded variables as they can produce misleading inferences. In 

this paper, we propose a flexible quantile-based imputation model suitable for distributions defined 

over singly or doubly bounded intervals. Proper support of the imputed values is ensured by 

applying a family of transformations with singly or doubly bounded range. Simulation studies 

demonstrate that our method is able to deal with skewness, bimodality, and heteroscedasticity and 

has superior properties as compared to competing approaches, such as log-normal imputation and 

predictive mean matching. We demonstrate the application of the proposed imputation procedure 

by analysing data on mathematical development scores in children from the Millennium Cohort 

Study, UK. We also show a specific advantage of our methods using a small psychiatric dataset. 

Our methods are relevant in a number of fields, including education and psychology.
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1. Introduction

Data on educational attainment of 5-year-old children in the UK were collected as part of the 

Millennium Cohort Study (MCS), a longitudinal study of British children born at the 

beginning of the twenty-first century (Smith and Joshi, 2002). Children’s achievement was 

assessed by means of questionnaires administered to their school teachers (Johnson, 2008). 

For cohort members attending schools in Wales, Scotland, and Northern Ireland, the Celtic 

Country Teacher Survey (CCTS) questionnaire was specifically developed to replicate the 

information collected by the Foundation Stage Profile in England, which sets the standards 

put forward by the Department for Education for the development, learning and care of 

children from birth to five. Here, we focus on the CCTS sample which consists of 

observations from the third sweep of the MCS for about seven thousand children residing in 
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Wales, Scotland or Northern Ireland. The variable of interest is mathematical development 

(MD) total score measured over different assessment scales; it takes values on the bounded 

range (0, 27). The histogram of MD scores (Fig.1) shows a strong left skewness, 

characterised by a steep slope after the mid range of the support. Unfortunately, data on 

educational attainment was received for less than half of the cohort members.

It is well known that including in the analysis only complete cases, i.e. cases that have been 

observed for all variables in the model, may have undesirable consequences depending on 

the missing data mechanism, the amount of missing information, and the variables affected 

by the missingness (Rubin, 1987; Little and Rubin, 2002). First, the results of complete-case 

analyses can be biased. Second, the cumulative effect of missing data in several variables 

often leads to the exclusion of a substantial proportion of the original sample, resulting in a 

serious loss of precision of the estimates and of power in detecting associations between 

variables. This clearly could have an impact on the validity of the conclusions drawn from a 

study.

Multiple imputation (MI) (Rubin, 1987) is a statistical technique for handling missing data 

and has received much attention by researchers because it is easy to understand and apply. 

Software implementations of MI are relatively recent (e.g. Royston and White, 2011, van 

Buuren and Groothuis-Oudshoorn, 2011). The application of MI is appropriate when the 

data are missing completely at random (MCAR) or missing at random (MAR). Under the 

MAR assumptions, the probability that the values are missing may depend on observed 

information, but not on the missing values themselves (Little and Rubin, 2002). In other 

words, the actual values of a missing variable do not have systematic differences between 

those who did and did not provided information, given the observed data. The imputation 

model plays an important role in the overall procedure as it provides the values that fill the 

blanks. Common modelling choices for the imputation of discrete variables are the binomial, 

multinomial, and Poisson distributions. For continuous variables as well as discrete variables 

that are treated as continuous for practical purposes, the predictive distribution is often 

assumed to be normal. The normal model, without further qualification, requires that:

i. the missing values can be arbitrarily small or arbitrarily large;

ii. the conditional distribution of the variable with missing values is bell-shaped; 

and

iii. the predictors of the missing values have a linear association with the missing 

values.

The normal distribution is by far the most commonly used even though a large number of 

variables do not conform to it. This is particularly true when a variable can take on only 

strictly positive values (singly bounded) or values constrained between lower and upper 

bounds (doubly bounded). Examples of singly bounded variables include measurements of 

length, weight and volume; examples of doubly bounded variables include psychometric 

scales, clinical scores, survey questionnaire items, and school grades. Other examples of 

doubly bounded variables in psychology and related areas are given by Smithson and Shou 

(2017). The probability of observing values near the bounds is often substantial (‘boundary 

modes’), which makes the application of standard normal imputation inappropriate because:
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i. this may result in imputed values outside the admissible range (e.g. negative 

school grades);

ii. the distribution is far from being bell-shaped (e.g. skewed, bimodal or J-shaped); 

and

iii. so-called floor and ceiling effects, typical of bounded variables, may induce 

nonlinear relationships between variables.

There are particular analyses where having imputed values outside the admissible range of 

data will not bias results (e.g. estimating the mean or in some regression models). However, 

for many statistics this is not the case. For example, if the variance, scale, shape or 

conditional quantiles (Geraci, 2016a) were the parameter(s) of interest, their values could be 

biased by data not conforming to the range of admissible values.

The aim of this paper is to develop a novel MI strategy using transformation-based quantile 

models (Geraci and Jones, 2015). These models provide a natural and flexible solution to the 

problem of imputing continuous bounded variables. In Sect. 2, we review existing methods 

for imputing continuous non-normal missing data. In Sect. 3, we introduce our proposed 

methods, with additional details on computation and software in Online Resource 1. In Sect. 

4, we evaluate the proposed methods as compared to common approaches that are used for 

imputing bounded variables via a simulation study (additional results are given in Online 

Resource 2). In Sect. 5, we demonstrate the advantages of our MI approach using real data 

examples. We conclude with final remarks in Sect. 6.

2. Methods for Imputation of Continuous Non-normal Variables

Several authors proposed solutions to the imputation of bounded variables. For example, van 

Buuren and Groothuis-Oudshoorn (2011) suggest replacing out-of-range imputations with 

the closest bound (which they call squeezing), that is, censoring. As we will show in a 

simulation study (Sect. 4), this approach can potentially bias subsequent inferences as it is 

unable to address the issue at its root (see also Rodwell et al., 2014). Another approach often 

followed is to first transform the variable being imputed (e.g. taking the log), then generate 

imputations on the transformed scale using a normal model, and finally apply the inverse 

transformation to these values (White et al., 2011). This approach too may fail to address the 

issues discussed above and may even perform worse than a complete-case analysis (Geraci, 

2016a).

Predictive mean matching (PMM) (Little, 1988) is an attractive method that performs well in 

several non-standard situations (Morris et al., 2014; Lee and Carlin, 2017). It shares some of 

the properties of nonparametric imputation and other robust methods such as local residual 

draws, though it relies on parametric predictions. In PMM, the distribution of the resulting 

imputed values will often match that of the observed values since imputations are randomly 

chosen from complete observations (‘donors’) that are similar to the unit with the missing 

value. This can be of practical utility when in the presence of bounded support, non-

normality, and nonlinearity (White et al., 2011). These are all features that characterise, for 

example, the distribution of MD scores and its relationship with important predictors in the 

MCS data (Mensah and Kiernan, 2010; Geraci and Jones, 2015). However, there are some 
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potential drawbacks that may limit the suitability of PMM in some situations. To perform 

satisfactorily, PMM usually requires an adequate pool of donors. Moreover, if the 

unobserved values, conditional on the covariates, are believed to lie outside the observed 

range, then PMM will not be able to provide appropriate imputations (de Jong et al., 2016). 

Some of these approaches are discussed and compared by von Hippel (2013) and Rodwell et 

al. (2014) who considered censoring, truncating and transforming imputations under the 

assumption that the censored or truncated or transformed distribution is approximately 

normal (see also Lee and Carlin, 2017, for a simulation study using transformations). These 

studies showed that these methods work in a limited number of cases and for specific targets 

of the analysis; otherwise, they perform poorly. Further, confidence intervals from PMM 

have been shown to produce under-coverage of the mean of the complete data (Rodwell et 

al., 2014).

Some authors developed parametric MI methods for continuous non-normal data, with either 

singly or doubly bounded supports, including Tukey’s gh distribution (He and Raghunathan, 

2006, 2012), beta and Weibull densities (Demirtas and Hedeker, 2008a), the generalised 

lambda distribution (Demirtas, 2009), and Fleishman’s power polynomials (Demirtas and 

Hedeker, 2008b). While these proposals can be used with non-normal data, none of them 

possesses simultaneously all the features we require in our study. For example, most of these 

alternatives are parametric (He and Raghunathan, 2006, 2012; Demirtas and Hedeker, 

2008a, 2008b) and, while flexible, they lack the robustness enjoyed by quantile regression. 

Further, some of these methods (Demirtas and Hedeker, 2008a, 2008b) have been applied to 

univariate missing data only, under the assumption of MCAR. It is not known how these 

would perform under MAR assumptions. We surmise that an extension to a regression 

approach would be technically difficult since these methods rely on the estimation of several 

parameters which control the location, scale, and shape of the distribution. Such parameters 

would have to be modelled as functions of the covariates in order for MI to benefit from any 

related flexibility (usually only location is modelled through covariates). An exception is 

given by He and Raghunathan’s (2012) approach which extends previous work (He and 

Raghunathan, 2006) to multivariate continuous data. Although this approach can be applied 

to MAR data, it is clearly not appropriate when information about the missing values comes 

from discrete covariates as well. Finally, the evaluation of all these methods is hindered by 

the lack of software.

3. Methods

3.1. Multiple Imputation

Let Y = (Y1, …, Yq) be a vector of q random variables and let Y−j denote the collection of q 
variables in Y except Yj, j = 1, …, q. The goal is to make inference about an unknown 

quantity, say θ, using Y. In real applications, it is common that some of the components of Y 

may be incompletely observed. Let Yobs = Y1
obs, …, Yq

obs  and Ymis = Y1
mis, …, Yq

mis  denote 

the observed and missing parts of Y, respectively. Throughout the paper, we assume that the 

mechanism is either MCAR or MAR, that is, Pr(Y is missing|Ymis, Yobs) = Pr(Y is missing|

Yobs).
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The basic idea in multiple imputation is to replace the missing values by multiple plausible 

predictions (van Buuren and Groothuis-Oudshoorn, 2011) drawn from the predictive 

distribution of each Y j
mis. There are basically two strategies for drawing imputations, one 

based on the joint distribution of Y and one based on a sequence (chain) of conditional 

distributions for Yj|Y−j, commonly referred to as multivariate imputation by chained 

equations (MICE). The latter strategy is apposite when it is not possible, or very difficult, to 

specify a joint distribution for Y (for example, when Y contains both discrete and 

continuous variables). This is the situation we will consider throughout the paper. However, 

for the sake of simplicity and without loss of generality, we will illustrate the proposed 

methods for only one such conditional distribution, say, Yq|Y−q.

We then redefine Yq ≡ Z and Y−q ≡ X, where Z is a random variable with continuous 

cumulative distribution function (CDF) and X is a vector of q − 1 covariates that are 

informative about the conditional distribution FZ|X. Also, suppose that only X is observed 

completely (we explain further below how the procedure works if this is not the case), while 

Z is observed for s subjects and missing for n − s subjects. Without loss of generality, we 

assume that the first s subjects are observed completely. That is, in a sample (zi, xi), i = 1, 

…, n, both X and Z are completely observed for i = 1, …, s, while X is completely observed 

and Z is missing for i = s + 1, …, n.

The basic idea of MI is to recover the missing information from the conditional distribution 

FZ|X. The latter is estimated from the complete observations and a sample of imputations is 

drawn from FZ | X. Under MAR assumptions, FZ|X can be consistently estimated. MI works 

in three successive stages as schematically described below:

1. Randomly draw a sample of imputations using the predictive distributions FZ | X
for units i = s + 1, …, n. Repeat M times and create M copies of the dataset. Note 

that, for a MI procedure to be proper (Rubin, 1987; Nielsen, 2003), the 

uncertainty related to the estimate FZ | X must be taken into account. In Bayesian 

normal imputation, this corresponds to sampling first from the posterior 

distributions of the parameters of FZ|X, given their priors. Alternatively, one can 

use approximate Bayesian bootstrap (ABB) imputation (Rubin and Schenker, 

1986) which consists in estimating FZ | X using a bootstrap sample of the 

observed data.

2. Analyse each of the M datasets and obtain M estimates of θ, the quantity of 

interest.

3. Take the average of such M estimates to produce one final estimate, for which 

the variance is estimated as a function of the within- and between-imputation 

variance.

If the variables in X too have missing values, then all missing values are first filled in by 

simple random sampling with replacement from the observed values (White et al., 2011), 

and the imputation step (1) above is applied to each incomplete variable by iterating over a 

sequence of conditional imputation models. The chain of conditional distributions is then 
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run for a predefined number of Gibbs sampler’s iterations. Satisfactory performance is 

typically achieved with just 5 or 10 iterations (Van Buuren et al., 2006; van Buuren and 

Groothuis-Oudshoorn, 2011). For a detailed illustration of MICE and guidance on its 

application, see for example van Buuren and Groothuis-Oudshoorn (2011) and White et al. 

(2011).

Parametric approaches to the estimation of FZ|X introduce assumptions about the shape of F. 

For continuous Z, it is common to assume normality. In this case, the imputer needs only to 

specify the functional form of the predictor. This can be, for example, the linear 

specification Z = α + x⊤β + ϵ, where ϵ 𝒩 0, σ2 . The imputations are then drawn from the 

conditional normal distribution Φ {(z − α* − x⊤β*)/σ*}, where Φ denotes the standard 

normal distribution function. The parameters α*, β* and σ* represent sampled values from 

the posterior distributions of, respectively, α, β and σ (Bayesian imputation) or bootstrap 

estimates from the observed data (ABB imputation). Generating the imputations then 

reduces to drawing a sample from a uniformly distributed variate U and then applying the 

inverse transform sampling method to predict Z* given x, that is

Z* = α* + x⊤β* + σ*Φ−1(U), (1)

where Φ−1 is the quantile function of the standard normal.

3.2. Bounded Variables and Quantile-Based Imputation

The focus of this paper is on continuous variables with bounded support. Let Z be a random 

variable with either a singly bounded support (a, ∞) or a doubly bounded support (a, b), 

where a and b are known real scalars. Without loss of generality, we consider the linearly 

transformed variable Z ≡ Z − a or Z ≡ (Z − a)/(b − a) with support (0, ∞) or (0, 1), 

respectively. We first motivate and sketch the basic idea and then describe each step of the 

MI procedure.

As mentioned previously, the use of the normal distribution to impute missing values for 

bounded variables is difficult in practice. We want to avoid introducing assumptions that 

may aggravate (rather than solve) the missing data problem. Therefore, we propose a semi-

parametric approach where the estimate of FZ|X, which is needed for imputing missing 

values in Z, is obtained via the estimation of its inverse, i.e. FZ | X
−1 .

Let us start by considering the pth quantile linear model

QZ X(p) = αp + x⊤βp,  0 < p < 1, (2)

where QZ | X ≡ FZ | X
−1  is the quantile function of Z conditional on X and αp, βp

⊤  are q 

regression coefficients indexed by p. In a distribution-free framework (Koenker and Bassett, 

1978), the estimation of αp and βp does not require assumptions about the shape of the error 

Geraci and McLain Page 6

Psychometrika. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution. If model (2) is correctly specified, then αp + x⊤βp is the pth quantile of Z 
conditional on X. For imputation purposes, one can use the inverse transform sampling

Z* = QZ X(U), (3)

where U is standard uniform. In quantile-based imputation, the predictive distribution is not 

restricted to any particular parametric form (Muñoz and Rueda, 2009; Bottai and Zhen, 

2013; Geraci, 2016a). This approach provides flexibility when normal assumptions are 

violated and no other parametric alternative is readily available. However, imputations 

obtained using Eq. (3) may still fall outside the admissible range. To address this problem, 

we propose using

Q
h Z; λp X

(p) = αp + x⊤βp, (4)

where

h Z; λp =
1

2λp
g(Z)

λp − 1
g(Z)

λp
 if λp ≠ 0

log g(Z)  if λp = 0,
(5)

and g(Z) is defined in Table 1. Transformation (5), referred to it as ‘Proposal I’ by Geraci 

and Jones (2015), is monotone and depends on the transformation parameter λp, which is 

specific to the quantile p. Transformation (5) applies to both singly and doubly bounded 

variables, i.e. h: (0, ∞) ℝ or h: (0, 1) ℝ, and comes into four forms depending on the 

domain of Z and on its symmetric or asymmetric shape (Table 1). Not only does this 

transformation have range ℝ and an explicit inverse for values in its range, but it also shares 

the flexibility and parsimony of other well-known transformations (discussed further in Sect. 

3.3).

The value of λp selects one of the curves that belong to the Proposal I family. If Z is singly 

bounded, then h−1 is convex for λp ≤ 1 and it approaches the exponential function for λp → 
0; it is concave for λp > 1. If Z is doubly bounded, then h−1 is S-shaped for any value of λp 

≤ 1 and it approaches the logistic function for λp → 0. The asymmetric inverse h−1 is also 

S-shaped, although asymmetrically, and it approaches the complementary log-log function 

for λp → 0. If λp is unknown, its value is estimated from the data by optimising the 

quantile regression objective function (see Online Resource 1). If prior knowledge about the 

shape of the transformation is available, then the value of λp can be fixed and the estimates 

of the parameters (αp, βp) will adjust accordingly to such constraint so that the predictions 

will still be optimal.

Since h is monotone, the equivariance property of quantiles applies, i.e.
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QZ X(p) = h−1 Q
h Z; λp X

(p); λp . (6)

That is, we can apply the inverse transformation to recover the quantiles on the original 

scale. If the domain of Z is (a, ∞) or (a, b), then the imputation Z* = QZ|X (U) can be 

linearly mapped to its original domain, i.e. Z* ≡ Z* + a or Z* ≡ a + (b − a) Z*. Therefore, 

the back-transformation in (6) ensures, without any post hoc adjustment, that the 

imputations lie within the appropriate range. Note that the latter can be the theoretical range. 

This represents a valuable advantage of quantile-based imputation over PMM (of which we 

give a practical demonstration in Sect. 5.2). Finally, model (6) does not depend on the shape 

of the error distribution (either before or after transformation) and therefore applies to non-

normal data. A special case of the imputation model (6) using a logistic transform has been 

previously suggested by Geraci (2016a). Note that a transformation-based approach would 

be invalid with standard mean regression since, in general, E(Z) ≠ h−1 {E(h(Z))}. Yet, a 

common practice is, for example, to back-transform imputations obtained from a mean 

regression with log(Z) in the presence of skewness or boundary issues (a thorough 

simulation to investigate related issues is given by Rodwell et al., 2014).

Given these premises, we propose the following MI procedure:

1. Take a bootstrap sample zi
B, xi

B , i = 1, …, s, with replacement from those with 

complete data {(zi, xi) : i = 1, …, s}.

2. Take a sample uk for k = s + 1, …, n from a standard uniform distribution and 

estimate the parameters αuk
, βuk

 and λuk
 from

Q
h Z; λuk

X
uk = αuk

+ x⊤βuk

using the bootstrap sample zi
B, xi

B , i = 1, …, s. This task requires obtaining n − s 

sets of estimates αuk
* , βuk

*  and λuk
* , one for each uniformly sampled quantile uk.

3. Finally, obtain the back-transformed quantile-based imputations as

zk* = h−1 αuk
* + xk

⊤βuk
* ; λuk

* ,

k = s + 1, …, n. Linearly map Zk* to its original domain as appropriate.

4. Repeat steps (1–3) for M times to obtain M imputations for each unit k = s + 1, 

…, n.

Geraci and McLain Page 8

Psychometrika. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We would like to stress that the bootstrapping in step 1 above introduces the uncertainty 

associated with the parameters estimates in the imputation procedure (Rubin and Schenker, 

1986). Our approach requires estimating as many sets of quantile-specific parameters as the 

number of missing values. Although this may seem an inconvenience from a computational 

point of view, this procedure is in fact very fast when the transformation parameter λp is 

given since it is sufficient to fit a linear quantile model as in Eq. (4) using standard linear 

programming algorithms (Koenker, 2005). Knowledge of the transformation parameter λp is 

unrealistic in most situations. If λp needs to be estimated along with αp and βp, computing 

time will, in general, increase. We therefore examined alternative computational strategies 

which are discussed in detail in Online Resource 1. The proposed methods are implemented 

in the R (R Core Team, 2016) package Qtools (Geraci, 2016b, 2017) for which sample code 

is offered in Online Resource 1. In particular, the sample code shows how the proposed 

imputation model can be embedded in a chain of imputation models with the R package 

mice (van Buuren and Groothuis-Oudshoorn, 2011) when several variables are incompletely 

observed. An approach based on chained equations is used also in Sect. 5.

3.3. Other Transformations for Bounded Variables

In principle, one can consider many transformations. Here, we give a brief overview of only 

those that have been already proposed in the quantile regression literature and that are 

appropriate for our purpose. Following our earlier remarks, the transformations should: (i) 

have appropriate range; (ii) be flexible enough to cover a wide spectrum of situations; (iii) 

be parsimonious to not excessively burden the estimation.

The Box–Cox transformation (Box and Cox, 1964) applies to singly bounded (strictly 

positive) variables and has been traditionally used to address the violation of the normal 

assumptions. This family of transformations has proved to be useful in the empirical 

determination of functional relationships in QR modelling (Powell, 1991; Buchinsky, 1995; 

Chamberlain, 1994; Mu and He, 2007). However, the range is still a singly bounded interval 

(except for λp = 0, i.e. the log transformation). This can be an issue when back transforming 

imputations, since quantiles based on the inverse of the Box–Cox transformation, namely

QZ X(p) = λp αp + x⊤βp + 1
1

λp , (7)

are not defined for λp(αp + x⊤ βp) + 1 ≤ 0 when λp ≠ 0. If the Box–Cox transformation was 

used in the imputation procedure as described in the previous section, there would be a risk 

of having to censor all imputations such that αuk
* + xk

⊤βuk
* ≤ − 1/λuk

* , which may occur with 

probability greater than zero for some data points. An illustration is given in Fig. 2, where 

the inverse transformations (6) and (7) are plotted for λ = 0.5. As shown in the plot, the 

Box–Cox transformation is not defined for values less than −2. This problem cannot be 

prevented using standard linear programming estimation ((Powell, 1991; Buchinsky, 1995; 

Chamberlain, 1994). However, it can be avoided using residual cusum process estimation 

Geraci and McLain Page 9

Psychometrika. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Mu and He, 2007), which computationally has been found to be considerably slow (Geraci 

and Jones, 2015).

The Aranda-Ordaz (AO) symmetric and asymmetric transformations were originally 

proposed to generalise, respectively, the logit and complementary log–log link functions in 

binomial regression (Aranda-Ordaz, 1981). These have been recently applied to model 

conditional quantiles of doubly bounded outcomes (Dehbi et al., 2016). The symmetric AO 

family too suffers from boundary issues since the range of the transformation is still doubly 

bounded (except for λp = 0, i.e. the logit transformation). An illustration of the range 

problem of the symmetric AO is given in Fig. 2. The asymmetric AO transformation does 

have range ℝ, but we do not include it in our study as it is concave for all λp, thus reducing 

flexibility (Geraci and Jones, 2015).

Lack of appropriate range can cause considerable difficulties for the transformation-based 

quantile approach, see for example Fitzenberger et al. (2010). To improve over the Box–Cox 

and the symmetric Aranda-models, Geraci and Jones (2015) proposed the transformation in 

(5). The ‘Proposal II’ transformation of Geraci and Jones (2015) generalises (5) by including 

an additional parameter to model asymmetry. As the estimation of a two-parameter 

transformation would increase the computational burden in our imputation procedure, we do 

not consider it any further. See Geraci and Jones (2015) for a discussion on alternative, but 

less flexible transformations.

4. Simulation Study

We carried out a simulation study to assess the performance of the transformation-based QR 

imputation against commonly used approaches. The ultimate goal of this simulation is to 

study the impact an imputation model has on the location, scale and shape of the distribution 

of the imputed variable. This bias may, in turn, propagate to a particular analysis model and 

cause bias and lower efficiency in the estimators of the parameters of interest. Hence, we 

first assess the imputation methods in relation to their impact on the distribution of the 

imputed variable (Sect. 4.1), and then in relation to particular analysis models (i.e. logistic 

and linear regression models, Sect. 4.2).

Let Y = (Y1, Y2, Y3, Y4, Y5) be the matrix of variables in our simulation, with Y1 ~ U(1, 4), 

Y2 ~ N(0, 1), (Y3|Y1 = y1, Y2 = y2) ~ N(y1 + y2, 1), and Y4 ~ U(0, 2). The variable Y5 was 

generated according to the following models:

• (Model 1) Y5 = V/(1+V), where V is generated as log(V) = 

−4+Y1+Y2+0.1Y3+e1,

• (Model 2) Y5 = V/(1+V), where V is generated as log(V) = 

−4+Y1+Y2+0.1Y3+Y1e1,

• (Model 3) Y5 = e2,

where e1 ~ N(0, 1) and e2|Y4 ~ Beta(0.5, (Y4 + 4)/10). Therefore, the variable Y5 is doubly 

bounded on the unit interval.
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We replicated R = 1000 datasets with sample size n ∈ {100, 300, 1000} for each of the three 

models above. At each replication, observations in the variable Y5 were randomly deleted 

with probability

p = e1 − αV

0.2 + e1 − αV ,

where V = Y1 and α = 2 for Models 1 and 2, and V = Y4 and α = 6 for Model 3.

We consider two different scenarios, one in which λp is given, and one in which λp is 

estimated from the data, and the following six imputation methods: normal imputation (LM), 

log-normal imputation (LMlog), predictive mean matching (PMM), linear quantile 

regression imputation (QR), and quantile regression imputation based on the symmetric 

(QRTs) and asymmetric (QRTa) transformation models. QRTs and QRTa were assessed 

either with λp = 0 or with unknown λp. The number of imputations M and the number of the 

Gibbs sampler’s iterations were both set to 5. We used the R packages mice (van Buuren and 

Groothuis-Oudshoorn, 2011) and Qtools (Geraci, 2016b, 2017). The latter makes use of 

linear programming algorithms from the quantreg package (Koenker, 2016). For the sake of 

brevity, we report the results for n = 300 only. Tables and figures for other sample sizes are 

given in Online Resource 2.

4.1. Assessing Imputation Methods in Relation to the Distribution of the Imputed Variable

The performance of the imputation methods was first assessed in terms of the bias associated 

with the estimation of the CDF of Y5 evaluated at six quantiles with expected probabilities 

𝒯 = {0.01, 0.05, 0.25, 0.5, 0.75, 0.95}. Note that the variable Y5 in Models 1 and 2 has quantiles 

that are linear on some transformed scale (Model 2 is heteroscedastic). The distribution of 

Y5 in Model 3 is strongly bimodal and cannot be transformed to linearity. Figure 3 shows 

the histograms depicting the distribution of Y5 for selected realisations from the different 

models. Instances of the distribution of missing values according to these MAR mechanisms 

are depicted by the rug plots in Fig. 3.

For each imputation method, we estimated F(mr) qτ , where F(mr) is the empirical CDF 

(ECDF) of the mth imputed dataset for Y5 within replication r and

qτ = 1
R ∑

r = 1

R
qτ

(r),  for τ ∈ 𝒯,

is the τth ‘true’ quantile computed empirically as the average across replications of the 

sample quantiles qτ
(r) from the full dataset. Subsequently, we calculated the relative 

percentage bias as

1
R ∑

r = 1

R F(r) qτ − F qτ
F qτ

⋅ 100,

Geraci and McLain Page 11

Psychometrika. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where F(r) qτ = 1/M∑m = 1
M F(mr) qτ  is the Rubin’s estimate of F and F is the ‘true’ CDF 

computed as the average across replications of the ECDFs for Y5 from the full datasets.

Table 2 shows that, as expected, LM, LMlog and QR failed to produce imputations with 

appropriate range, as opposed to PMM and transformation-based quantile regression models 

which always generated imputations within the unit interval. In particular, the log-normal 

model prevents imputations from being negative but it cannot avoid yielding imputations 

above one. Notably, log-transforming the bimodal data generated from Model 3 even 

increased the number of invalid imputations as compared to LM.

Figure 4 depicts the average estimated density obtained from the full datasets and from the 

datasets completed with LM and QRTs imputations. The values of out-of-range LM 

imputations were replaced with closest bounds as suggested by van Buuren and Groothuis-

Oudshoorn (2011). While the empirical distribution resulting from the transformation-based 

QR model naturally mimics the target distribution, to the point that the two overlap, a post 
hoc constraint on imputations is obviously unable to remedy the misspecification of the 

distribution.

Table 3 shows that LM and QR were heavily biased near the boundaries of the support of Y5 

and performed even worse than the complete-case analysis (CC). The log transformation 

(LMlog) seemed to improve over the linear models but it was still biased. PMM and 

transformation-based imputation showed an advantage as compared to CC, LM and LMlog, 

though their performance was dependent on the data generating model. The bias for QRTs 

was, in general, smaller than or similar to that of the other approaches when data were 

generated from Models 1 and 2 and λp was fixed. This is not surprising since the symmetric 

transformation model is correctly specified for λp = 0. In contrast, the asymmetric model 

was overall more competitive under Model 3, and so was PMM. Similar results were 

obtained for transformation-based quantile imputation models under the assumption of 

unknown λp, except for a larger bias at the quantile 0.01 under Model 1.

The simulations results for n = 100 and n = 1000 are reported in Online Resource 2 (Tables 

1 and 6, respectively). For n = 100, there was a general worsening of the bias for all 

imputation methods, although to different extents. The bias for QRTs and QRTa on the lower 

5% of the distribution of Y5 was substantially higher than that for PMM, and indeed higher 

than that for CC and LMlog. This is not surprising since a relatively small sample with 

around 20% of missing can hardly provide enough information for accurately estimating tail 

quantiles of a linear model, let alone those of a nonlinear model. For n = 1000, the results 

were similar to those for n = 300.

4.2. Assessing Imputation Methods in Relation to the Analysis Model

In this Section, we study the differences in performance between the imputation methods for 

a particular analysis model. We therefore assessed the performance of LMlog, PMM, QRTs, 

and QRTa when θ is the regression parameter from either a logistic or a linear model. The 

reason for considering a logistic model follows from the common practice in psychology, 
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education, epidemiology and related areas to apply cutoffs to continuous scores to classify 

individuals in separate groups.

In the first analysis, we considered a logistic regression on V ~ Bin(1, π), where 

V = IY5 < 0.1, with the logit of the probability π = Pr(V = 1) defined as

log π
1 − π = θ0 + θ1Y1 + θ2Y2 + θ3Y3

under Models 1 and 2 or as

log π
1 − π = θ0 + θ1Y4

under Model 3.

In the second analysis, we considered a linear regression on V ~ N(μ, ω2), with V = Y2 and 

μ = θ0 + θ1Y1 + θ2Y3 + θ3Y5 under Models 1 and 2, or V = Y4 and μ = θ0 + θ1Y5 under 

Model 3.

The estimates θ l
(mr), l = 0, 1, 2, 3, at each replication r were pooled across imputations

θl
(r) = 1

M ∑
m = 1

M
θl

(mr),

while standard errors were obtained from

σl
(r) = ϕl

(r) + 1 + 1
M ψl

(r),

where ϕl
(r) = 1/M∑m = 1

M ϕl
(mr) is the average within-imputation variance, ϕl

(mr) is the model’s 

estimated variance for θ l
(mr), and ψ l

(r) = 1/(M − 1)∑m = 1
M θ l

(mr) − θ l
(r) 2

 is the between-

imputation variance. For each replication, we calculated the relative differences of the 

estimates θ l
(r) and σl

(r) as compared to those from the logistic regressions on the full datasets. 

The relative differences were averaged across replications. Finally, the ‘empirical’ coverage 

at the nominal level of 95% was calculated as the mean proportion of 95% confidence 

intervals that included the full dataset estimates.

In Table 4, CC, LMlog, PMM and QRT imputation are compared in relation to the estimates 

and standard errors from logistic regression. There is sign that PMM struggles with larger 

biases under more complex data generating scenarios (Models 2 and 3). Moreover, the 

variability associated with PMM, which is higher than the full-data variability as a natural 

consequence of the MI procedure, seems perhaps too high under the strongly nonlinear 

Model 3. This behaviour of PMM represents an interesting finding which we observed also 
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in the real data analysis (Sect. 5.1). Coverage was not far from the nominal 95% in most 

cases (Table 5). The imputation based on a log-linear model performed poorly, with a rate of 

83%. PMM showed signs of under-coverage at 91% in the third scenario, which seems to be 

a consequence of the larger bias. The simulations results for n = 100 and n = 1000 are 

reported in Online Resource 2 (Tables 2–3 and Tables 7–8, respectively). At n = 100 and n = 

1000, the relative merits and demerits of each method were not much dissimilar from those 

at n = 300 except that, for the largest sample size, PMM showed a better coverage in the 

third scenario as a result of a substantially larger variability.

In Table 6, the imputation methods are compared in relation to the estimates and standard 

errors from linear regression, while coverage is reported in Table 7. Of the three scenarios, 

the third seemed to be most challenging for all methods. In particular, CC and LMlog 

performed worst in terms of bias and coverage, followed by PMM which, as in the logistic 

regression analysis, showed some under-coverage. Analogous results were observed for n = 

100 and n = 1000 (Tables 4–5 and Tables 9–10, respectively, in Online Resource 2).

In conclusion, the proposed methods seem to have an advantage when the sample size is 

moderate to large, and the true generating model is strongly nonlinear.

5. Examples

5.1. Celtic Country Teacher Survey Data

In this section, we examine the CCTS data introduced previously. For imputation purposes, 

we considered the following variables: child’s MD score as calculated from the teacher’s 

questionnaire, child’s sex (binary; baseline: boy), maternal age at child’s birth (age.mother, 

binary; baseline: 30 years or less), mother’s ethnicity (ethnicity.mother, binary; baseline: 

white), number of children previously born alive to the mother (parity, binary; baseline: 

nulliparous), gestational age (gestational.age, binary; baseline: preterm, i.e. ≤ 37 weeks), 

relationship status of parents/carers (marital.status, binary; baseline: married or cohabiting), 

educational level of each parent (edu.mother and edu.father, binary; baseline: General 

Certificate of Secondary Education – GCSE – or higher), and household income category 

(four groups; baseline: less than 10,400 British pounds per annum). Data were abstracted for 

7019 singletons. MD score had the highest proportion of missing values (54.3%), followed 

by father’s education (31.8%), income (9.3%), gestational age (2.3%), mother’s education 

(1.9%), ethnicity (1.7%), mother’s age at birth (1.5%), parity and sex (1.4%). Marital status 

was completely observed. A QR analysis of these data is given in Geraci and Jones (2015), 

while data for children living in England have been analysed by Mensah and Kiernan (2010) 

using Tobit regression. In both studies, incomplete observations were removed.

We imputed missing values (M = 5) using the package mice (van Buuren and Groothuis-

Oudshoorn, 2011). Missing categorical values were imputed by means of dichotomous and 

polytomous logistic regression. Missing MD scores were imputed using either normal 

imputation (LM), or log-normal imputation (LMlog), or predictive mean matching (PMM), 

or quantile regression based on the symmetric transformation model (QRT). For the latter, 

the unknown transformation parameter was estimated as discussed in Online Resource 1. 

The columns of the matrix feeding the MICE algorithm were sorted in increasing amount of 
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missingness (i.e. monotone visiting sequence) and the number of the Gibbs sampler’s 

iterations was set to 5.

The results were in line with our simulation study. LM and LMlog were not able to capture 

the shape of the observed distribution and produced imputations outside the admissible 

range (see Fig. 1 in Online Resource 2). This obviously represents a potential source of bias 

for an analysis based on the completed datasets obtained from these methods. In contrast, 

PMM and QRT performed remarkably well in terms of both preserving the shape of the 

distribution of MD scores and giving imputations within bounds.

Once the imputation procedure has been carried out, one can perform an analysis on each of 

the completed datasets and then pool the results using Rubin’s rules. By way of example, we 

considered a logistic model for the probability π = Pr (IMD.score>22), i.e. the probability of 

achieving more than 80% of the total MD score. (Of course, a similar analysis could be 

performed on the probability of a low achievement.) The covariates were entered in the 

model as follows:

log π
1 − π = θ0 + θ1sex + θ2age.mother + θ3ethnicity.mother

+θ4parity + θ5gestational.age + θ7marital.status

+θ8edu.mother + θ9edu.father + θ10income(10400 − 20800]
+θ11income(20800 − 31200] + θ12income(31200 + ] .

We are interested in comparing the results of the logistic regression analysis based on the 

LMlog, PMM, and QRT imputations. In Table 8, we report, for each method, the estimated 

regression coefficients and standard errors.

According to the complete-case (CC) analysis, the probability of high (> 22) MD scores was 

larger for females, for children born to older mothers, and for those born to nulliparous 

mothers. Children in families with married or cohabiting parents, and parents with more 

advanced education and higher income, were also more likely to score higher in 

mathematical development. The large p values for ethnicity and gestational age provided 

evidence against a meaningful role of these two covariates. As compared to CC, the pooled 

coefficients based on LMlog imputations gave similar directions of the associations. 

However, the magnitudes of θ0 (intercept), θ2 (maternal age at child’s birth), and θ6 (marital 

status) were notably smaller and, in general, p values were larger.

PMM and QRT seemed to be consistent in terms of the magnitude and direction of most 

estimates except for θ2 (maternal age), θ3 (mother’s ethnicity), and θ4 (parity) which were 

larger in magnitude for QRT. Also, there was a disagreement between PMM and QRT in 

relation to the statistical significance of the estimates, with occasionally larger standard 

errors and, consequently, larger p values for PMM. Previous studies (Machin and McNally, 

2005; Kiernan and Mensah, 2009; Mensah and Kiernan, 2010) showed that maternal age, 

maternal education, and household income are important predictors of educational 

attainment. The results based on QRT agree with those findings. However, PMM leads to 
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estimates whose practical and/or statistical significance suggests the opposite. Further 

investigation revealed that PMM had similar within-imputation variance as compared to 

QRT but relatively larger between-imputation variance for these variables (Fig. 5). Such 

results mirror our findings in Sect. 4.

We conclude this section with a brief report on diagnostics. We ran the MICE algorithm with 

5 imputations and 20 Gibbs sampler’s iterations to assess convergence over a longer stretch 

of iterations as suggested by van Buuren and Groothuis-Oudshoorn (2011). All the chains 

showed convergence already at the fifth iteration for all the imputation methods considered 

above. The results for MD scores are shown in Online Resource 2 (Figures 2 and 3).

5.2. Reisby’s Data on Depression Scores

In this section, we briefly give a demonstration of a specific advantage of our approach as 

compared to PMM when predictions are to be made on a theoretical (rather than observed) 

range. We considered data that were obtained in a psychiatric study described in Reisby et 

al. (1977). The aim of the study was to evaluate the longitudinal (over several weeks) 

relationship between imipramine and desipramine plasma levels and clinical response in 66 

depressed inpatients. Subjects were rated with the Hamilton Depression Rating Scale 

(HDRS) whose theoretical range is 0 to 52 (Bech and Rafaelsen, 1980).

We had information on HDRS scores at baseline (week 0) and for 5 weekly follow-ups. 

There was a small number of missing values (5 at week 0, 3 at week 1, 1 at week 2, 1 at 

week 3, 3 at week 4, and 8 at week 5). The only complete covariate at our disposal was the 

sex of the patients.

For imputation, we considered the model

Qh
HDRSt; λp HDRSt − 1, sex

(p) = β0, p + β1, pHDRSt − 1 + β2, psex

where h is the symmetric Proposal I transformation for doubly bounded variables, and 

HDRSt, t = 1, …, 5, is the HDRS score at week t. This model implies that HDRSt depends 

only on the previous measurement HDRSt−1, a simplification which can be easily relaxed.

We report the results for one patient (ID 322) who had missing HDRS score at week 5. The 

observed values for this patient up to week 4 are shown in Fig. 6. Five imputed values at 

week 5 from our quantile-based approach and from PMM are marked with crosses and 

triangles, respectively. It is clear that this patient experienced an upward trend between 

baseline and the last observed follow-up. Our approach yielded imputations that, on average, 

were consistent with this trend. In contrast, the PMM imputations seemed to be excessively 

low given the temporal trajectory of this patient’s scores. This is not surprising since, at 

week 5, the upper bound of the observed scores for all 58 subjects was 33, with only 5 

observations between 24 and 33. In other words, transformed quantile regression imputation 

allows for extrapolation outside the observed range, but within the theoretical range. The 

inability of PMM to deal with extrapolation as well as interpolation has been discussed by 

others (see for example de Jong et al., 2016).
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6. Conclusion

We investigated the problem of missing values in bounded variables which seems to be 

underestimated in the statistical literature. In our simulation study, predictive mean matching 

proved to be competitive and represents a useful tool at the imputer’s disposal. However, our 

newly developed approach based on transformed quantile regression had some advantages 

over the other methods in selected scenarios. In particular, our method showed lower bias 

and smaller between-imputation variance. As compared to predictive mean matching, 

transformation-based quantile imputation is computationally more demanding, especially 

when the transformation parameter is estimated from the data. However, we introduced a 

novel gradient search algorithm for nonlinear estimation which showed good numerical 

stability and computing speed. Moreover, it is not guaranteed that the proposed imputation is 

proper (Nielsen, 2003), although simulation results suggest that our method has 

randomisation validity (Rubin, 1987, pp. 117–118). Finally, when the sample size is small, 

quantile-based imputation does not seem to bring appreciable benefits (or losses) as 

compared to other imputation methods, although it is still preferable to a complete-case 

analysis when the bounded variable is affected by MAR and is used as predictor.

Of course, since it is not possible to establish a ‘one-size-fits-all’ imputation approach, best 

practice suggests conducting sensitivity analyses. Having said that, we believe that multiple 

imputation approaches based on linear models with support over the real line, transformed 

mean regression and post hoc adjustments like censoring should be avoided altogether. The 

proposed methods can accommodate different distributions and boundary types and can be 

readily applied using the Qtools package in R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histogram of mathematical development (MD) scores in the Millennium Cohort Study.
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Figure 2. 
Left plot: Inverse of the Proposal I transformation for a singly bounded variable (solid line) 

and Box–Cox transformation (dashed line). Right plot: Inverse of the Proposal I 

transformation for a doubly bounded variable (solid line) and Aranda-Ordaz transformation 

(dashed line). The range boundaries of the Box-Cox and Aranda-Ordaz transformations are 

marked by vertical grey lines.
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Figure 3. 
Instances of the doubly bounded variable Y5 generated under different models. Missing 

values are marked in the rug plot.
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Figure 4. 
Density of ‘true’ missing values in Y5 (solid grey), density of censored imputations from a 

linear model (dashed black), and density of imputations from a symmetric transformation 

model (solid black). The solid lines are nearly indistinguishable as they overlap almost 

everywhere.
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Figure 5. 
Barplots of the average within-imputation variance (top) and the between-imputation 

variance for predictive mean matching (dark grey) and transformation-based quantile 

regression (light grey) for the Celtic Country Teacher Survey data.
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Figure 6. 
Hamilton Depression Rating Scale (HDRS) scores for subject with ID 322 in the Reisby’s 

dataset. Circles represent observed values, while imputations from transformation-based 

quantile regression and predictive mean matching are marked with, respectively, crosses and 

triangles. The horizontal dashed line marks the upper bound of the scores for all subjects 

observed at week 5.
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Table 1.

Choices of g(Z) for generic transformation (5) depending on the domain of Z and on its symmetric or 

asymmetric shape.

Domain Symmetric Asymmetric

(0, ∞) g(Z) = Z g(Z) = log(1 + Z)

(0, 1) g(Z) = Z/(1 − Z) g(Z) = −log(1 − Z)
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Table 2.

Average number of imputations outside the unit interval for the linear model (LM), linear model with log 

transformation (LMlog) and linear quantile regression model (QR), along with average proportions of missing 

values for each simulated model. Averages are computed over 1000 replications.

Sample size Imputation method Proportion (%) of missing values

LM LMlog QR

Model 1

100 22.9 1.6 18.5 16.9

300 68.1 4.9 55.4 17.2

1000 228.1 15.6 182.4 17.4

Model 2

100 26.3 9.6 10.7 17.3

300 75.9 27.1 24.8 17.5

1000 247.5 88.0 74.7 17.3

Model 3

100 20.8 28.0 10.9 22.4

300 55.8 82.0 17.5 22.3

1000 178.4 271.2 35.1 22.3
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Table 3.

Average relative bias (%) at different probabilities of the empirical cumulative distribution of Y5 (n = 300) for 

the complete case analysis (CC), normal imputation (LM), log-normal imputation (LMlog), predictive mean 

matching (PMM), linear quantile regression imputation (QR), and imputation based on the symmetric (QRTs) 

and asymmetric (QRTa) transformed quantile regression models. The latter were fitted with either (1) known 

or (2) unknown λp.

CC LM LMlog PMM QR QRTs (1) QRTa (1) QRTs (2) QRTa (2)

Model 1

0.01 −30.1 437.0 −34.5 −10.2 354.9 2.2 −11.6 23.0 18.8

0.05 −25.2 59.4 −18.9 −3.3 46.0 0.4 −7.3 11.4 2.2

0.25 −15.9 −4.6 0.5 −0.2 −4.6 0.1 −1.3 1.3 −0.3

0.5 −9.4 −4.4 2.1 0.0 −3.2 0.1 0.4 0.0 0.4

0.75 −4.5 −0.3 0.5 −0.0 −0.1 0.0 0.3 −0.3 0.1

0.95 −0.9 0.1 −0.3 −0.0 0.1 0.0 −0.0 −0.2 −0.1

Model 2

0.01 13.9 459.7 1.2 15.7 151.2 5.1 4.5 5.8 5.2

0.05 5.1 83.6 3.9 10.9 27.2 2.6 1.7 3.4 2.1

0.25 −5.5 −0.1 1.5 3.3 −1.2 0.0 −1.6 0.2 −1.5

0.5 −6.7 −6.6 −0.2 0.1 −3.1 −0.2 −1.1 −0.1 −1.1

0.75 −4.4 −0.5 −1.3 −0.7 −0.4 −0.1 0.0 −0.2 −0.0

0.95 −1.0 −0.1 −1.8 −0.2 0.0 −0.0 0.0 −0.0 −0.0

Model 3

0.01 1.6 109.7 −20.4 −0.6 15.2 4.5 3.5 −0.2 2.8

0.05 2.0 9.8 −10.9 −0.4 3.2 0.7 0.7 1.9 2.3

0.25 2.6 −7.9 11.8 0.5 0.7 0.1 −0.0 0.1 0.1

0.5 2.2 0.1 7.3 0.4 0.2 0.1 −0.1 −0.3 −0.0

0.75 1.7 3.2 0.7 0.5 0.0 0.3 0.1 0.3 0.1

0.95 0.7 −0.6 −4.0 0.3 −0.2 0.3 0.1 0.2 0.0
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Table 5.

Joint coverage at the nominal 95% level for the parameters of the logistic regressions on Pr IY5 < 0.1  (n = 300) 

for the complete-case analysis (CC), log-normal imputation (LMlog), predictive mean matching (PMM), and 

symmetric (QRTs) and asymmetric (QRTa) transformed quantile regression imputation models. The latter 

were fitted with either (1) known or (2) unknown λp.

CC LMlog PMM QRTs (1) QRTa (1) QRTs (2) QRTa (2)

Model 1 94.7 97.2 95.5 97.5 96.1 97.5 97.0

Model 2 95.0 96.4 95.7 96.0 95.9 96.2 95.4

Model 3 94.8 83.4 91.3 93.2 93.4 92.9 92.8
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Table 7.

Joint coverage at the nominal 95% level for the parameters of the linear regressions on Y6 (n = 300) for the 

complete-case analysis (CC), log-normal imputation (LMlog), predictive mean matching (PMM), and 

symmetric (QRTs) and asymmetric (QRTa) transformed quantile regression imputation models. The latter 

were fitted with either (1) known or (2) unknown λp.

CC LMlog PMM QRTs (1) QRTa (1) QRTs (2) QRTa (2)

Model 1 94.0 95.1 94.0 94.4 94.8 94.7 94.7

Model 2 94.8 83.3 95.2 95.0 95.1 94.9 95.0

Model 3 51.9 78.0 90.0 93.6 92.2 93.5 92.7
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