Table 4.
The first two columns show the pooled estimated coefficients and standard errors (SE) from the logistic regressions on (n = 300) using the full datasets (FD). The remaining columns show the average relative differences (%) as compared to those from FD for the complete case analysis (CC), log-normal imputation (LMlog), predictive mean matching (PMM), and symmetric (QRTs) and asymmetric (QRTa) transformed quantile regression imputation models. The latter were fitted with either (1) known or (2) unknown λp.
FD | CC | LMlog | PMM | QRTs (1) | QRTa (1) | QRTs (2) | QRTa (2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Est. | SE | Est. | SE | Est. | SE | Est. | SE | Est. | SE | Est. | SE | Est. | SE | Est. | SE | |
Model 1 | ||||||||||||||||
θ0 | 3.3 | 0.6 | 1.0 | 24.0 | 2.3 | 22.0 | 0.0 | 21.1 | 0.2 | 21.2 | −5.3 | 21.1 | 2.9 | 21.7 | −3.4 | 21.7 |
θ1 | −1.8 | 0.3 | 1.0 | 16.6 | 0.6 | 14.9 | 0.2 | 14.7 | 0.4 | 14.8 | −4.0 | 14.0 | 2.0 | 15.2 | −2.8 | 14.4 |
θ2 | −1.8 | 0.3 | 1.3 | 14.6 | −3.0 | 12.6 | −0.0 | 13.4 | 0.4 | 13.5 | −4.5 | 12.8 | 1.1 | 13.9 | −4.1 | 13.0 |
θ3 | −0.2 | 0.2 | 0.1 | 14.6 | −2.6 | 13.9 | −1.2 | 14.3 | −1.4 | 13.7 | −5.6 | 12.8 | −0.3 | 14.1 | −5.8 | 13.3 |
Model 2 | ||||||||||||||||
θ0 | 1.1 | 0.4 | −14.1 | 23.6 | −6.5 | 22.7 | 6.4 | 27.4 | −0.5 | 23.1 | −13.8 | 22.8 | 1.1 | 23.5 | −13.6 | 22.7 |
θ1 | −0.6 | 0.2 | −8.7 | 13.9 | −4.3 | 13.5 | 4.9 | 16.4 | 0.4 | 14.7 | −8.0 | 14.7 | 1.5 | 15.0 | −7.8 | 14.4 |
θ2 | −0.8 | 0.2 | −7.6 | 9.5 | −10.5 | 9.8 | −8.0 | 10.0 | −0.4 | 11.5 | −4.9 | 11.0 | −0.1 | 11.1 | −5.0 | 10.9 |
θ3 | −0.1 | 0.1 | −10.2 | 10.3 | −16.1 | 10.4 | −12.2 | 11.5 | −3.8 | 12.5 | −8.9 | 11.5 | −4.8 | 11.7 | −9.7 | 11.9 |
Model 3 | ||||||||||||||||
θ0 | −1.5 | 0.3 | 0.4 | 49.5 | −24.9 | 38.4 | 5.2 | 97.1 | 2.6 | 55.8 | 2.8 | 55.8 | 3.0 | 54.7 | 2.5 | 55.7 |
θ1 | 0.2 | 0.3 | 1.2 | 34.5 | −159.2 | 28.5 | 29.6 | 70.5 | 15.2 | 39.3 | 16.6 | 39.3 | 17.8 | 38.3 | 14.5 | 39.2 |