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Abstract

Small open reading frames (smORFs) encoding polypeptides of less than 100 amino acids in 

eukaryotes (50 amino acids in prokaryotes) were historically excluded from genome annotation. 

However, recent advances in genomics, ribosome footprinting, and proteomics have revealed 

thousands of translated smORFs in genomes spanning evolutionary space. These smORFs can 

encode functional polypeptides, or act as cis-translational regulators. Herein we review evidence 

that some smORF-encoded polypeptides (SEPs) participate in stress responses in both prokaryotes 

and eukaryotes, and that some upstream ORFs (uORFs) regulate stress-responsive translation of 

downstream cistrons in eukaryotic cells. These studies provide insight into a regulated subclass of 

smORFs and suggest that at least some smORF-encoded microproteins may participate in 

maintenance of cellular homeostasis under stress.

Graphical Abstract

Increasing evidence suggests that some small open reading frame-encoded polypeptides (SEPs) 

function in prokaryotic and eukaryotic cellular stress responses.

Introduction

The FANTOM genome annotation consortium initially relied on a 100 amino acid cutoff to 

distinguish eukaryotic protein coding sequences because a large number of spurious ORFs 
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of shorter lengths occur randomly within long non-coding RNAs1, 2. In prokaryotes, a cutoff 

of 50 amino acids was used3. However, with the advent of proteogenomic4 technologies, 

thousands of previously unannotated small open reading frames (smORFs)3, 5 encoding 

products of fewer than 100 amino acids have been shown to undergo translation in 

organisms spanning all domains of life, including bacteria, yeast, flies, mouse, and 

human6–17. With this increase in coding sequence annotation comes a need to determine the 

functions of smORF-encoded polypeptides (SEPs). Three classes of smORFs have been 

proposed in eukaryotes18, based on RNA “location” and conservation: (1) non-functional 

intergenic smORFs that may represent newly evolving genes19 (2) smORFs that encode 

functional SEPs and (3) translated upstream ORFs (uORFs) encoded in 5’ untranslated 

regions of mRNA that function as cis-translational regulators of downstream coding 

sequences. Classes 1 and 2 may also be relevant to bacteria.

One-by-one characterization has shown that dozens of functional SEPs play roles in 

important biological processes, often by regulating the activity of macromolecular 

complexes20. Increasing evidence suggests that a subset of smORFs participate in cellular 

stress responses21. Cellular stress responses are evolutionarily conserved molecular 

responses to changes in environment that would otherwise disrupt homeostasis by damaging 

cellular molecules22. These stresses can include temperature, reactive oxygen species, 

hypoxia, nutrient limitation, and other conditions to which cells must respond in order to 

survive. In this review, we first consider the functions of bacterial SEPs in stress response 

pathways (Figure 1a), and secondly consider both functional and regulatory roles of 

eukaryotic SEPs.

smORFs and bacterial stress responses

Early evidence for the regulated expression of SEPs during cellular stress came from the 

study of prokaryotes, and a number of stress-response bacterial SEPs have been 

characterized both at the phenotypic and molecular levels3, 21, 32. In this section, we discuss 

SEP expression during various stress responses, then detail the functions and mechanisms of 

selected stress-response SEPs in both Gram-negative and -positive bacteria.

Regulated smORF expression during cellular stress in bacteria—Bacterial 

responses to extracellular stress are governed both transcriptionally and post-

transcriptionally33–36. Transcriptional responses are mediated by dedicated transcription 

factors, such as σS/RpoS in Gram-negative and σB/SigB in Gram-positive bacteria, which 

are required for the general stress response (reviewed in refs. 35 and 36, respectively). Post-

transcriptional regulatory mechanisms include small regulatory RNAs (sRNA)34, RNA 

conformational changes37, and RNA binding proteins; unique among bacterial stress 

responses, the cold shock response is largely mediated by post-transcriptional 

mechanisms38. These transcriptional and post-transcriptional responses govern alterations to 

the transcriptome, proteome, and metabolome that are required to re-establish homeostasis. 

Regulated expression of smORFs after exposure to a cellular stress has therefore led to the 

hypothesis that the encoded SEPs may function in the corresponding stress response.
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The seminal observation by Storz and colleagues that ~40% of a set of 51 newly discovered 

Escherichia coli (E. coli) smORFs exhibited differential expression during stress responses, 

including heat shock, oxidative stress, and low pH, provided the first strong evidence that 

smORFs function during stress21. Interestingly, some of these smORFs are post-

transcriptionally regulated, such as yobF during heat shock. Importantly, subsequent 

phenotypic analysis in E. coli showed that deletion of three of these smORFs, yqcG, ybhT, 

and yobF, renders cells sensitive to envelope stress, and the yobF deletion strain was 

severely sensitive to acid stress32. However, the molecular or biochemical function of YobF 

in response to heat shock, cell envelope stress, and acid stress has not yet been defined.

Proteomic and genomic approaches have subsequently been applied to identify additional 

temperature stress-regulated SEPs in E. coli K-12. Quantitative proteomics of small 

membrane proteins revealed an unannotated peptide mapping to a putative smORF, gndA, 

that is encoded within the gnd gene in an alternative reading frame (and is therefore 

independent at the amino acid level)25. Genomic tagging revealed that GndA expression is 

only detectable during heat shock. In parallel studies, three novel cold-inducible SEPs have 

been reported (Figure 1b). Quantitative proteomics of E. coli K-12 revealed peptides YmcF 

and YnfQ which are specifically induced by cold shock23. These peptides map to two 

unannotated, intergenic sequences downstream of cold shock genes cspG and cspI, 
respectively. YmcF and YnfQ are upregulated by cold shock by up to a factor of 10, and 

exhibit 66% sequence identity, suggesting possible functional overlap. Interestingly, both of 

these cold-inducible smORFs initiate at AUU start codons, consistent with regulated 

expression39. Subsequent work by Hemm and coworkers identified an additional 21 amino 

acid smORF, ynfR, downstream of ynfQ, that is also cold-inducible24.

SEPs are stress-inducible in diverse bacterial species. For example, three smORFs (sbrABC) 

recently discovered in Staphylococcus aureus are expressed in a SigB-dependent manner40. 

sbrA and sbrB encode SEPs that are 26 and 38 amino acids, respectively, while sbrC may 

encode a sRNA. In a second case, transcriptomic analyses of the photosynthetic 

cyanobacterium Synechocystis sp. PCC 6803 revealed three SEPs, NsiR6, HliR1, and Norf1, 

that were induced by stress conditions, including transfer of the cyanobacteria from light to 

darkness41. The nsir6 and hlir1 transcripts (nitrogen stress-induced RNA 6 and high light 

inducible RNA 1) were previously annotated as noncoding RNAs.

Antibiotic stress—Antibiotics activate several bacterial stress pathways and can induce 

the stringent response via (p)ppGpp signaling42. Certain antibiotics and therapeutics such as 

ciprofloxacin and mitomycin C induce the SOS response43. A key antibiotic stress response 

linked to development of resistance is expression of drug efflux pumps26. The 49 amino acid 

membrane-bound AcrZ interacts with the AcrAB-TolC drug efflux pump, which exports 

some classes of antibiotics to confer resistance (Figure 2a)26. For example, strains lacking 

acrZ are sensitive to chloramphenicol and tetracycline, but not to erythromycin or 

rifampicin. While the mechanism of AcrZ is not fully characterized, AcrZ interacts directly 

with AcrB, which is hypothesized to lead to a conformational change in AcrB and export of 

specific antibiotics26.
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Nutrient sensing and utilization—Specific pathways have evolved to maintain 

homeostasis during nutrient stress, which can arise from either nutrient limitation or 

accumulation3. An early report linking smORF expression to nutrient status showed that the 

227 nt sgrS sRNA in E. coli is expressed during glucose 6-phosphate accumulation27. sgrS 
also encodes the 43-amino acid SEP SgrT (Figure 2b)27. The bifunctional sgrS/sgrT gene 

inhibits the glucose permease PtsG at both the RNA and protein level. Under conditions of 

high intracellular glucose 6-phosphate, the sgrS sRNA inhibits translation of the ptsG 
mRNA, while the SgrT SEP binds to PtsG and inhibits glucose uptake. Overexpression of 

SgrT renders cells incapable of growth on glucose44. Interestingly, preliminary studies 

suggest that SEPs may be linked to monosaccharide utilization in other organisms, such as 

Brucella abortus, in which three recently identified, stress-inducible, membrane-localized 

SEPs increase cell growth rate on L-fucose45.

Bacterial SEPs are also inducible and functional during divalent metal ion stress. When 

intracellular Mg2+ is low, PhoPQ upregulates gene expression, including the smORF 

mgrB46. E. coli MgrB (Figure 2c), a 47-amino acid SEP, interacts with PhoQ to inhibit its 

autophosphorylation and activation28. Induction of the SEP MgtS (Figure 2d) is also 

observed in a PhoPQ-dependent manner. MgtS co-purifies with the Mg2+ ATPase MgtA, 

leading to its stabilization and increased Mg2+ import29. This membrane-bound SEP also 

interacts with the PitA cation-phosphate transporter to prevent Mg2+ export47. In contrast, 

accumulation of Mn2+ can be toxic to cells48. The SEP MntS is repressed by the manganese-

dependent transcriptional regulator MntR at high manganese, and overexpression of MntS 

leads to increased manganese sensitivity30. MntS may function to increase intracellular 

Mn2+ at low Mn2+ concentrations49.

Prli42 and the Listeria monocytogenes stressosome—The stressosome is a ~1 

MDa cytosolic complex that regulates the general stress response in Gram-positive 

bacteria50. The stressosome senses extracellular stress and, through a previously undefined 

mechanism, initiates intracellular signaling to activate SigB. Cossart and colleagues recently 

utilized an N-terminalomics approach to identify Prli42, a membrane-associated, 31-amino 

acid SEP that binds to the stressosome subunit RbsR and anchors RbsR to the membrane51. 

Loss of Prli42 or the Prli42-RbsR interaction renders cells sensitive to oxidative stress and 

decreases expression of virulence factors in Listeria, suggesting that Prli42 is required for 

signaling by the stressosome during stress and host infection. Prli42 therefore provides a 

model of a SEP-protein interaction that regulates stress-response signaling in bacteria.

smORFs and eukaryotic stress responses

Upstream smORFs (uORFs) and translational regulation during stress—
Translational regulation of the proteome is an important component of eukaryotic stress 

responses and may occur more rapidly than transcriptional responses; more expression-level 

changes occur at the protein level (several thousand genes) than at the mRNA level 

(hundreds of genes) during stresses such as glucose and oxygen deprivation52. Generally, 

global protein translation is downregulated during cellular stress, while translation of a 

subset of stress-response proteins remains constant or increases53–55. A specific class of 

eukaryotic smORFs - upstream ORFs (uORFs) – play a role in stress-dependent translational 
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regulation of downstream cistrons56–58. Recent global profiling studies in yeast, plants and 

mammals9, 13, 59, 60 have shown that uORF translation is widespread, especially following 

cellular stress61. Ribosome profiling of oxidatively stressed yeast results in rapid 

accumulation of ribosomes on transcripts bearing uORFs following five minutes of 

hydrogen peroxide exposure62. This observation is paralleled in human cells affected by 

oxidative stress63, as well as oxygen and glucose deprivation52.

The prevailing model of uORF-mediated translational regulation holds that translating a 

uORF prevents scanning and/or re-initiation at the downstream coding sequence. Re-

initiation is dependent on the distance between the uORF and downstream cistron64, 65. 

While uORFs were initially reported to act as cis-translational inhibitors of downstream 

coding sequences within the same mRNA56, 66, 67, it has become clear that uORFs can either 

down- or upregulate downstream protein translation depending on the uORF start codon. 

AUG-initiated uORFs typically compete for translation with their downstream ORFs under 

normal growth conditions68, 69. In contrast, uORFs initiating with near-cognate (non-AUG) 

start codons are more likely to exhibit positively correlated translation with downstream 

coding sequences 70. Non-AUG initiated uORFs may also play a role in upregulating 

downstream proteins previously thought to undergo non-canonical initiation under stress 

conditions or global translational arrest, as demonstrated during nutrient starvation and 

meiosis70, 71. However, the presence or sequence of a uORF is not sufficient to predict 

translational regulation during stress.

uORF-mediated regulation of protein translation occurs as a result of changes in the pre-

initiation complex. During the integrated stress response, the trimeric eIF2 complex, which 

is responsible for initiator tRNA delivery to the 40S ribosome, is repressed through 

phosphorylation of the eIF2α subunit72. This repression of eIF2 activity has several effects 

on translation: global protein translation is downregulated 73, AUG-initiated uORFs are 

skipped by the preinitiation complex, relieving their inhibition of downstream protein 

translation74, and the weak eIF2 competitor eIF2A is de-repressed and delivers initiator 

tRNA to selected sites75 including non-AUG codon-initiated uORFs76, driving their 

translation during stress (Figure 3). For example, eIF2A drives translation of two uORFs 

initiating with UUG and CUG start codons and induces expression of the downstream 

cistron encoding binding immunoglobulin protein (BiP), an ER-resident chaperone vital for 

the activation of the integrated stress response76. This mechanism also operates in squamous 

cell carcinoma tumorigenesis, in which eIF2A-dependent translation drives a 1.8-fold 

increase in uORF occupancy by ribosomes77.

uORFs are generally thought to compete for scanning ribosomes, which can then only 

initiate translation of downstream coding sequences via leaky scanning or re-initiation73, 

implying that the regulatory function of uORFs should depend only on their translation and 

therefore be independent of their sequences. In a few cases, however, the specific amino acid 

sequence of a uORF is required for its regulatory activity78–80. An early report of this 

phenomenon described a uORF in the 5’ untranslated region (UTR) of DDIT3, which 

encodes the CHOP protein, a transcription factor that promotes a switch from stress 

response signaling to cell death81. Translation of the uORF alone is insufficient to 

recapitulate translational downregulation of CHOP, as introduction of nonsense and 
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missense mutations within the uORF alleviated translational repression of CHOP, whereas 

silent mutations did not81. Further mutational analysis defined an IPI motif within the uORF 

that promotes ribosome stalling to inhibit CHOP translation in cis82. Fungal uORFs in the 5’ 

UTR of arginine biosynthetic genes ARG2 and CPA1 also regulate downstream protein 

production in cis in a sequence-dependent manner via ribosome stalling83–87.

Taken together, these studies show that uORF translational regulation plays a key role in 

proteomic reprogramming during cellular stress responses. While several uORFs have been 

reported to sequence-specifically induce ribosome stalling, translated products of uORFs 

have generally been assumed to lack function at the polypeptide level (though the uORF-

encoded MIEF1 microprotein, which binds to and regulates the mitochondrial ribosome, 

presents a counterexample74). In contrast, conserved smORFs encoded in dedicated 

transcripts have been proposed to be functional20, and a number of these smORFs are 

involved in mediating stress responses76.

Functional stress-response smORFs in eukaryotes—Characterization of SEPs that 

function in eukaryotic cellular and organismal stress responses is dramatically accelerating. 

Several recent reports have implicated SEPs in response to infection and innate immunity. 

First, ribosome profiling of influenza virus-infected human lung cancer cells identified 19 

novel smORFs in long non-coding RNAs (lncRNAs) and other non-coding RNAs that were 

either up- or downregulated during infection88. Among these, a SEP translated from the host 

gene for miR-22, MIR22HG, was upregulated during infection with both wild-type 

influenza and NS1-mutant influenza that is rapidly cleared from cells due to interferon 

responses, suggesting that the MIR22HG SEP may respond to cellular stress due to viral 

particle exposure. More recently, ribosome profiling was applied to identify differential 

translation of lncRNA-encoded smORFs in lipopolysaccharide (LPS)-treated mouse 

macrophages89. An LPS-upregulated smORF within the lncRNA Aw112010 encodes a 

CUG-initiated SEP that drives interleukin-12 beta expression. Characterization of a 

knockout mouse demonstrated that the Aw112010 SEP is essential for mucosal immunity 

during both Salmonella infection and colitis. While the molecular mechanisms of the 

MIR22HG and Aw112010 SEPs remain uncharacterized, these studies provide a link 

between SEP expression and infection in cells and in vivo.

The SEP humanin has been reported to protect cells from stress-induced apoptosis. Humanin 

was first discovered in 2001 as a neuroprotective factor in Alzheimer’s disease, conferring 

neuronal resistance to apoptosis by a disease variant of the amyloid precursor protein90. 

Humanin has subsequently been reported to play additional intracellular roles in suppressing 

apoptosis via Bax binding and inactivation91. While these functions suggest that humanin is 

protective against apoptosis downstream of cellular stress, it remains unclear how humanin 

is produced in cells, as its coding sequence may map to either mitochondrial or genomic 

DNA91.

Extensive work has identified SEPs that participate in muscle regeneration following injury. 

DWORF92, a 34-amino acid SEP that localizes to the sarcoplasmic reticulum membrane, 

was identified in a lncRNA exhibiting heart- and muscle-specific expression (Figure 4a). 

DWORF is downregulated at the protein and mRNA level during ischemic heart failure92. 
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DWORF normally functions to increase Ca2+ uptake into the sarcoplasmic reticulum via 

interaction with the Ca2+-ATPase SERCA and displacement of three other polypeptide 

inhibitors93–95. Decreased contractility observed during heart failure can be caused by 

reduced Ca2+ levels in the sarcoplasmic reticulum resulting from insufficient activity of the 

SERCA pump96. Activation of SERCA through DWORF overexpression restored calcium 

levels and heart contractility in a mouse model of heart disease97. Another example is 

SPAR98, a SEP encoded by lncRNA LINC00961 which is downregulated upon muscle 

injury (Figure 4b). SPAR normally localizes to the endosome/lysosome membrane to 

promote association between lysosomal v-ATPase, Ragulator, and Rag GTPases, preventing 

mTORC1 activation. Upon muscle injury, SPAR downregulation promotes mTORC1 

activation and muscle regeneration. Conversely, Minion99 or Myomerger100, is a SEP which 

is transcriptionally upregulated in muscle tissue regeneration and development (Figure 4c). 

Skeletal muscle development and regeneration following injury proceeds through temporally 

regulated stem cell activation and differentiation, myoblast fusion and subsequent 

maturation into myofibers101, 102. CRISPR/Cas9 knockdown of Minion results in defects in 

myoblast fusion, while homozygous mutants are unviable, most likely due to the inability to 

form multinucleate myotubes. In summation, differential expression of a suite of SEPs is 

required for response to injury in both cardiac and skeletal muscle.

Conclusion

Mounting evidence supports regulatory (in eukaryotes) and functional (in both prokaryotes 

and eukaryotes) roles for smORF translation in cellular stress responses. A future direction 

will be elucidation of the functional, molecular, and phenotypic roles of dozens of yet-

uncharacterized SEPs that have been identified as differentially regulated during various 

stress conditions in a wide variety of organisms. While dozens of SEPs have been implicated 

as differentially expressed at the RNA or protein level during stress responses, post-

translational regulation of SEPs, especially via post-translational modifications (PTMs), has 

remained largely unaddressed. Given the importance of PTMs in stress signaling73, 103, 

identification of stress-regulated PTMs may be informative in elucidation of SEP functions. 

Finally, it is tempting to speculate that the small size of smORFs allows rapid translation, 

consistent with a need for rapid response to external stressors; measurements of the 

dynamics and abundance of SEP expression relative to the rate of production of known 

stress response proteins could test this hypothesis. Taken as a whole, the growing literature 

demonstrating roles for SEPs in cellular stress provides one testable hypothesis for 

characterization of newly discovered smORFs, and has also improved our understanding of 

the full complement of regulatory factors in stress response pathways.
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Figure 1. Locations of stress-response associated small open reading frames (smORFs) in the E. 
coli str. K-12 substr. MG1655 genome.
(A) Map of the E. coli str. K-12 substr. MG1655 genome. Tracks from the outside to inside 

represent: 1. Annotated coding sequences within the forward strand (dark blue). 2. 

Annotated coding sequences within the complement strand (light blue). 3. Stress-responsive 

smORFs discussed in this review, by color: cold shock (blue)23, 24, heat shock (red)21, 25, 

antibiotic stress-inducible (purple)26, and nutrient sensing (green)27–30. (4) Percent GC plot 

with above average GC content in dark gray and below average GC content in light gray. 

Genome sequence, annotated coding sequences, and stress-responsive smORFs (tracks 1–3) 

were uploaded to DNAPlotter version 1.031 and selected to construct the map using NCBI 

RefSeq assembly accession: GCF_000005845.2. (B) Scale diagrams of the cspG and cspI 
genomic regions; previously annotated genes are depicted as gray arrows and recently 

discovered cold-inducible smORFs are depicted as blue arrows23, 24.
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Figure 2. Putative functions of selected membrane-bound bacterial stress-responsive 
microproteins.
a) AcrZ enhances export of specific antibiotics by the drug efflux pump AcrAB-TolC26; b) 

SgrT expression is induced by high intracellular levels of glucose 6-phosphate to inhibit 

glucose uptake27; c) MgrB regulates PhoPQ (green and orange circles) in low intracellular 

Mg2+, decreasing expression of PhoPQ-dependent genes28; d) MgtS increases Mg2+ uptake 

and prevents Mg2+ export29, 47.
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Figure 3. Regulated translation of upstream open reading frame (uORF)-containing transcripts 
under cellular stress.
Under normal conditions, active eIF2 is abundant and, in the subset of transcripts that 

contain them, AUG-initiated uORFs are translated, downregulating expression of the 

downstream ORF. Stress induces phosphorylation of the eIF2α subunit and results in eIF2 

inactivation. Limiting eIF2 concentrations cause ribosomes to bypass AUG-initiated uORFs 

and drive downstream ORF translation. Simultaneously, weak eIF2 competitor eIF2A can 

activate translation of non-AUG initiated uORFs in the transcripts that contain them.
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Figure 4. Microproteins influence muscle regeneration following injury.
a) In uninjured muscle, DWORF binds the SERCA calcium pump and increases calcium 

flow into the sarcoplasmic reticulum. b) In uninjured muscle, SPAR binds the Ragulator v-

ATPase and prevents mTORC1 activation. C) Following injury, Minion mediates myoblast 

fusion.
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