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Abstract

Purpose of Review: The ‘big data’ revolution affords the opportunity to reuse administrative 

datasets for public health research. While such datasets offer dramatically increased statistical 

power compared with conventional primary data collection, typically at much lower cost, their use 

also raises substantial inferential challenges. In particular, it can be difficult to make population 

inferences because the sampling frames for many administrative datasets are undefined. We 

reviewed options for accounting for sampling in big data epidemiology.

Recent Findings: We identified three common strategies for accounting for sampling when the 

data available were not collected from a deliberately constructed sample: 1) explicitly reconstruct 

the sampling frame, 2) test the potential impacts of sampling using sensitivity analyses, and 3) 

limit inference to sample.

Summary: Inference from big data can be challenging because the impacts of sampling are 

unclear. Attention to sampling frames can minimize risks of bias.
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Introduction

As technological developments have rendered collection, storage, and sharing of vast 

quantities of data trivial, a social and cultural push toward re-using open (i.e. freely shared) 

‘Big Data’ [1–5] for social good, including for epidemiologic studies, has emerged. 

However, many of these big datasets were crowd-sourced (i.e. volunteers donated their own 

data) or compiled for administrative rather than research purposes (e.g. the primary purpose 

of electronic health records is to record what clinical and billing staff need to deliver 

effective patient care, not to perform population-based research). Thus, survey 

methodologies were typically not used to define the population from which the data arose. 

Moreover, crowd-sourced and administrative datasets can be quite large, minimizing random 
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error in parameter estimates. This combination raises concerns greater than those previously 

articulated in reference to secondary analysis alone (e.g. in [6]), because highly precise but 

biased estimates can easily be over-interpreted.

In this paper, we review the potential role of sampling in inference from big data in order to 

provide a framework for deciding whether it is necessary to account for sampling, and if so, 

how. First, we review the principles that underlie the link between sampling and statistical 

inference on populations. Next, we consider how re-using data collected for non-research 

purposes inverts the paradigm under which inferential principles were developed. Third, we 

suggest several options for working with big secondary datasets and illustrate them in 

several case studies. Finally, we make suggestions for future directions for research and 

practice.

The Importance of Sampling for Population Inference

Epidemiologic data analysis is typically performed only after outcomes have occurred in 

some study participants. Therefore, these estimates are typically useful only to the extent 

that we believe they represent the effect we would see in people for whom the outcome has 

not yet occurred, either in the remainder of the present population or another population. 

That is, consequence in research depends on generalizability of results [7], which typically 

must be treated as an assumption in observational data analysis [8] – that is, researchers 

cannot simply take generalizability for granted.

Consider a policymaker interpreting results from the Moving to Opportunity study, a 

randomized trial of residents of a federally subsidized housing project in which some 

families received vouchers to pay for housing in other locations, some families received 

these vouchers and counseling about moving, and some received nothing. Results indicated 

that girls whose parents had received vouchers and counseling had improved mental health 

in adolescence as compared to girls whose parents had not received vouchers and counseling 

[9]. Policymakers considering whether to implement a housing voucher program might 

wonder whether these results would apply in populations other than the precise population 

that was randomized: would other disadvantaged girls benefit from housing vouchers and 

counseling? Would disadvantaged boys benefit? Would effects be different in rural areas? 

What about outside the United States? Answering these questions requires understanding the 

characteristics of the population that the estimate represents. How were families chosen to 

participate in Moving to Opportunity? Were they like other families in ways that make us 

believe the intervention would work in other families as well? The theory of survey 

sampling helps link a study population to the target population it aims to represent.

Sampling Frames

In an idealized survey, researchers interested in estimating the prevalence of some condition 

in a population would first formally define the population of interest, e.g. adults living in 

New York City at the start of 2018. Next, the research team would enumerate that 

population, typically leveraging contact information, e.g. a list of phone numbers for a 

phone survey or a list of home addresses for a door-to-door survey. That population 
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enumeration (ideally a full census of the population of interest, but typically a subset) is 

called the sampling frame because it frames the sample selection process. Next, the study 

team selects subjects (ideally randomly) from the sampling frame. If selection from the 

sampling frame (and willingness to participate after contact) is truly random, then the 

observed prevalence of the condition in the sample estimates the true prevalence of the 

condition in the population of the sampling frame [10].

In real-world surveys, of course, non-random inability to contact subjects and non-random 

subject refusals typically preclude such simple interpretation. Formal enumeration of the 

sampling frame allows the study team to assess differences (according to variables available 

in the sampling frame) between subjects who were included in the sample and subjects who 

could not be contacted or who refused to participate. Under the assumption that differences 

enumerable from the sampling frame account for differences in participation, the study team 

can use weighting or other techniques to estimate the prevalence of a condition or a causal 

effect in the sampling frame [11].

For example, suppose we are studying the cross-sectional association between cycling over 

15 minutes per day and self-reported life satisfaction, and suppose further that this 

association is stronger in adults. The population data might then look as shown in Table 1.

Now suppose researchers were able to contact a random 1% of children and a random 10% 

of adults from this population and were able to assess their life satisfaction accurately. The 

observed data from such a study might look as shown in Table 2

If the researchers proceed without accounting for the sampling frame, then, they would 

estimate the risk difference calculated below Table 2, which is 21% higher than the true 

population risk difference calculated below Table 1.

However, if the researchers have access to the number of children and adults in the 

population (i.e. the sampling frame) and a reason to believe inclusion in the study was 

random conditional on age category, they can invert the probabilities of being included in the 

sample such that each observed child represents 100 children in the population whereas each 

observed adult represents only 10 adults in the population. Multiplying the estimates in the 

cells of Table 2 by these sampling fractions results in reconstructing the data in Table 1, so 

the sample-weighted risk difference the researchers would calculate is an unbiased estimate 

of the population risk difference.

Secondary Data and Sampling Frames

In analysis of big secondary data, however, a study team leverages data that someone else – 

often an algorithm or administrative process such as a hospital billing system – has 

collected. Secondary data use turns the selection process on its head: whether a subject was 

in the dataset was not under researcher control, and therefore, a research team would 

typically need to reconstruct a sampling frame to identify the population from which study 

results were taken [12]. Figure 1 depicts the differences between an idealized study and how 

analysis of secondary administrative data is often performed in practice.
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Note that secondary data analysis does not necessarily imply lack of population-based 

sampling. For example, secondary use of the National Health and Nutrition Examination 

Survey (NHANES) can (and often should!) leverage the sampling frame and sampling 

weights defined by the study team. However, the administrative datasets used in big data 

analyses typically do not include a deliberate sample.

Best Practices for Big Data Epidemiology

Given that understanding the sampling process is a necessary component of population 

inference, what can researchers who endeavor to use big data to make consequential 

epidemiologic inference do? We have three specific recommendations:

Recommendation 1: Reconstruct a Sampling Frame explicitly and correct 

for sampling

In some cases, the process by which the population is selected into the dataset of interest can 

itself be studied quantitatively. This information may be available in existing validation 

studies or may require an internal validation study on the part of the investigators. For 

example, Hargittai investigated social network service use reported by a nationally 

representative sample of United States adults to determine that demographics strongly 

predict participation in various social network services [13]. Using these data, an 

investigator could construct and use Horvitz-Thompson-style sampling weights [11,14] to 

compute results using social-network-service data that would generalize to a general US 

adult population. The key intuition around this process, commonly called inverse-

probability-of-observation weighting (raking in the statistical literature [15]), is that each 

observation is weighted such that the observation accounts not only for itself but also for 

those like it (i.e. with the same demographic values, in this example) in the target population 

who were not selected in to the dataset.

Etiologic analyses using sampling weights to estimate population effects require two key 

assumptions: 1) that demographics fully explained differences between those who 

participated in a given social network and those who did not (i.e. the sampled population is 

exchangeable with its target conditional on these demographics [16]) and 2) after accounting 

for demographics, participating in a social network was not associated with both the 

exposure and the outcome of interest [17]. Because these are strong assumptions, researchers 

will need to consider carefully whether the threats to inference due to correcting for 

sampling using inaccurate sampling weights may be greater than the threats due to sampling 

bias. Indeed, in some cases quantitative analysis using population weights may be more 

appropriate for sensitivity analyses than for main results [18].

Recommendation 2: Reconstruct a Sampling Frame conceptually for 

sensitivity analysis

Unfortunately, in many administrative datasets, it may be impossible to fully reconstruct a 

sampling frame. The sampling assumptions may be too strong, or joint distributions of 

sampling-relevant covariates may be unavailable, or the association between covariates and 
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selection into the dataset may be unknown. Many big data sources, particularly personal-

monitoring data or effluent data sources (Table 3), are made available to researchers only 

after being anonymized or aggregated such that each observation carries limited information 

along with it. In such cases, researchers may still consider what the selection factors might 

be in order to create a conceptual sampling frame, even if one cannot be constructed 

quantitatively. For example, a researcher using Google Search data to assess whether opinion 

polls underestimate the prevalence of racial animus (e.g. [19]) does not have access to the 

demographics of each search user to construct a formal sampling frame, but can use what is 

known about Internet usage to estimate what differences there might be between the 

population using Google Search and the general population. Researchers might use such 

logic in conjunction with targeted bias analyses to determine how extreme selection bias 

would need to be to draw qualitatively incorrect inference to the population [20,21].

Recommendation 3: Acknowledge data limitations for population inference

Finally, some data are generated from processes that preclude identifying a sampling frame, 

even conceptually. While this precludes inference to a specific population, it does not 

preclude results being a component of a broader etiologic inference. There is an ongoing 

debate in epidemiology about the relative merits of a formal focus on conditions necessary 

to estimate valid causal effects as compared with a focus on integration of evidence from 

multiple sources [22–26]. Without wading into that debate, we observe that most 

commentators agree that ultimately, decision-making should draw on multiple sources of 

evidence [23]. In accordance with this view, big data for which a sampling frame cannot be 

reconstructed might most appropriately be used to test and generate hypotheses where no 

specific population-based effect estimate is of interest (e.g. in a ‘causal identification’ 

scenario wherein establishing that any non-null effect of an exposure exists in any 

population is an interesting outcome [25].).

Three Case Studies

Which recommendation a researcher should take depends on the data at hand, but the types 

of datasets considered to be big data vary widely. Table 3 provides a brief taxonomy of types 

of big public health data (adapted from [27]), and we further illustrate how researchers may 

interpret study findings in light of sampling in three case studies below.

Case Study 1: Group Practice Medical Data

First, consider a study using electronic health records (EHR) of children and adolescents to 

determine how built environments affect children’s BMI trajectory as they age [28]. This 

study’s investigators selected records from a large database of physician group practice in 

Eastern Massachusetts, requiring participants to have a) an address in Massachusetts, b) at 

least two BMI measures between January 2008 and August 2012, and c) no known medical 

conditions that would affect BMI.

While this contact in this study was triggered by clinic visits rather than investigators, a 

sometimes vexing problem in EHR studies [29, 30], it may still be possible to make 
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population inferences from this dataset. We can view participants as a non-random sample of 

children aged between 4 and 19 in 2008 in Eastern Massachusetts, and so inferring to that 

population requires reversing the sampling process. Given that American Community 

Survey includes a good estimate of the population of children in Eastern Massachusetts on 

factors that may be available in the study data (e.g. race, ZIP code, potentially parental 

employment), computing population weights should be possible.

Case Study 2: Crowdsourced Data

Next, consider an effort to understand the distribution and determinants of foodborne illness 

using crowdsourced data from restaurant review platforms, such as Yelp® (e.g. available at: 

https://www.yelp.com/dataset/; accessed 9/20/18). Government health departments have 

begun to use crowdsourced data, including Yelp, to identify previously unreported cases of 

foodborne illness [31–33]. As foodborne illness is under-reported [34], using crowdsourced 

information holds promise for improving the coverage of existing surveillance systems. 

However, Henly and colleagues found that higher county-level affluence, such as higher 

median income and fraction of the population with a bachelor’s degree, was associated with 

greater use of the online review platform.[35]

Without considering these socioeconomic correlates, a study relying on Yelp data may 

erroneously find that incidence of foodborne illness is higher in wealthier counties, despite 

evidence that lower-SES communities may have a higher burden of foodborne illness. [36] 

To address this bias, researchers might conduct a validation study in which individuals with 

a foodborne illness are identified and asked whether they reported information about their 

case in an online-review site. The proportion responding yes, analogous to a sampling 

fraction, could be stratified by socioeconomic characteristics and could then be used to 

weight estimates from Yelp accordingly.

Case Study 3: Civic Administration Data

Finally, consider an ‘effluent data’ study that used archived traffic camera imagery in order 

to assess the impact of adding cycling infrastructure to a street in Washington, DC on 

prevalence of cycling on that street [38].

The selection process leading to data collection was, briefly: First, from all locations in 

Washington, DC, the department of transportation selected a subset to add traffic cameras to. 

That selection was likely driven by a number of factors, not all of which may be available to 

the study team, including traffic network delay, alternate route availability, access to a 

location for a camera, and so on. Second, from all traffic cameras available in the world, this 

one was added to the Archive of Many Outdoor Scenes, a dataset with millions of images 

gathered from publicly available outdoor webcams [39]. This was not random in the true 

stochastic sense, but it is unlikely selection was related to exposure or outcome. Third, from 

all streets in Washington, DC, the department of transportation chose this one to add a bike 

lane, a process likely related to available street space, local politics, and several of the same 

factors as resulted in the selection of this intersection to receive a traffic camera. Fourth, 
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from all images recorded by this camera, AMOS chose every 30 minutes to archive. Figure 2 

illustrates these sampling steps schematically.

Unfortunately, though the sampling process can be described, it cannot easily be reversed 

into a sampling frame that treats whether a given intersection was observed as random 

conditional on observed factors – the factors that might lead to selecting a given street for 

improvement are not readily available for the source population of streets. However, by 

defining the target population as subject to the same criteria as the source population, we can 

simplify generalizability. In particular, stakeholder interest will typically focus on other 

roads where transportation departments might improve cycling infrastructure, so accounting 

the selection process by which these roads are selected for improvements or cameras may be 

unnecessary.

However, the temporal selection problem is somewhat more problematic. Because camera 

images were taken at 30 minute intervals, there may be systematic error if what is shown in 

the image every 30 minutes is different from what we would see if we were able to look at 

all images. For example, if the traffic light cycle takes 2 minutes to complete, then every 

image shown will be at the same phase in the light cycle (i.e. if it aligns with a red light for 

bicycles, we may see them queuing, whereas if it aligns with a green light, we may see only 

an empty queue). This potential artifact is a systematic sampling bias and can be 

acknowledged but not repaired. In such a scenario, modifying future data collection (e.g. so 

some the image recording interval is not fixed) could allow researchers to assess the risk of 

systematic bias due to the systematic time sampling.

Further Considerations for Transportability of Effects

A final consideration regarding the role of sampling in big data epidemiology is that 

constructing a causal effect estimate for the study population is only a part of the problem. 

Researcher intent is typically focused on identifying an effect that could inform future 

decisions or interventions targeting different populations [7]. While the formal requirements 

for transporting a causal effect estimate are out of scope here, we observe that estimating 

transported effects requires impacts of covariates that modify the causal effect and the 

prevalence of such variables in the target population [16,40]. In general, then, it will be 

easier to assess transportability using the big datasets that include enough covariates to 

assess potential sampling artifacts (e.g. full Electronic Health Record databases) and more 

challenging with more restricted datasets, including most effluent data or stripped-down 

public use datasets.

Conclusion

Big Data holds substantial potential for epidemiology, including low data acquisition costs 

and ample statistical power to avoid Type II error [29]. Big data also holds many well-

understood and frequently articulated threats, including difficulties identifying and 

accounting for systematic error and challenges properly integrating development of theory 

into analysis [3]. The risk of incorrect inference due to failure to account for sampling 

should be added to the list of potential threats to Big Data epidemiology. When 
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reconstructing a sampling frame is possible, researchers may minimize this threat by 

explicitly selecting a target population and, where feasible, weighting study results 

accordingly. When no sampling frame can be identified, results should be treated with 

appropriate caution.

Acknowledgments:

This work was supported by a grant from the National Library of Medicine (1K99LM012868) and the National 
Heart, Lung, And Blood Institute (F31HL143900). The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest

Stephen J. Mooney reports grants from National Library of Medicine, during the conduct of the study. Michael D. 
Garber reports grants from National Heart, Lung, and Blood Institute and from American College of Sports 
Medicine during the conduct of the study.

References

1. Brown B, Chui M, Manyika J. Are you ready for the era of ‘big data’. McKinsey Quarterly. 
2011;4:24–35.

2. Fallik D For big data, big questions remain. Health affairs (Project Hope). 2014;33:1111–4. 
[PubMed: 25006135] 

3. Khoury MJ, Ioannidis JP. Big data meets public health. Science. 2014;346:1054–5. [PubMed: 
25430753] 

4. Mayer-Schönberger V, Cukier K. Big data: A revolution that will transform how we live, work, and 
think. Houghton Mifflin Harcourt; 2013.

5. Mooney SJ, Westreich DJ, El-Sayed AM. Epidemiology in the era of big data. Epidemiology 
(Cambridge, Mass). 2015;26:390.

6. Davis-Kean PE, Jager J, Maslowsky J. Answering developmental questions using secondary data. 
Child development perspectives. 2015;9:256–261. [PubMed: 26819627] 

7. Keyes K, Galea S. What matters most: quantifying an epidemiology of consequence. Annals of 
epidemiology. 2015;25:305–311. [PubMed: 25749559] 

8 ••. Stuart EA, Ackerman B, Westreich D. Generalizability of Randomized Trial Results to Target 
Populations: Design and Analysis Possibilities. Research on Social Work Practice. 2018;28:532–
537. [PubMed: 30034203] A clearly written introduction to the problems that arise from 
assuming trial populations represent a population at large, and some possible solutions.

9. Leventhal T, Brooks-Gunn J. Moving to opportunity: an experimental study of neighborhood effects 
on mental health. American journal of public health. 2003;93:1576–1582. [PubMed: 12948983] 

10. Scheaffer RL, Mendenhall W III, Ott RL, Gerow KG. Elementary survey sampling. Cengage 
Learning; 2011.

11. Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite 
universe. Journal of the American statistical Association. 1952;47:663–85.

12. Rothman KJ, Greenland S, Lash TL, others. Modern epidemiology. 2008;

13 ••. Hargittai E. Is bigger always better? Potential biases of big data derived from social network 
sites. The ANNALS of the American Academy of Political and Social Science. 2015;659:63–
76.An excellently clear walk-though of conducting a validation study to test potential impacts of 
sampling in effluent data

14. Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Improved Horvitz–Thompson 
estimation of model parameters from two-phase stratified samples: applications in epidemiology. 
Statistics in Biosciences. 2009;1:32–49. [PubMed: 20174455] 

15. Deville J-C, Särndal C-E, Sautory O. Generalized raking procedures in survey sampling. Journal of 
the American statistical Association. 1993;88:1013–1020.

Mooney and Garber Page 8

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16 ••. Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing 
Study Results. Epidemiology. 2017;28:553–561. [PubMed: 28346267] A clear explanation (with 
a worked example) of generalizability, targeted at an epidemiologist readership.

17. Winship C, Radbill L. Sampling weights and regression analysis. Sociological Methods & 
Research. 1994;23:230–257.

18. Greenland S For and against methodologies: some perspectives on recent causal and statistical 
inference debates. European journal of epidemiology. 2017;32:3–20. [PubMed: 28220361] 

19. Stephens-Davidowitz S The cost of racial animus on a black candidate: Evidence using Google 
search data. Journal of Public Economics. 2014;118:26–40.

20. Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. Springer 
Science & Business Media; 2011.

21. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. 
Annals of internal medicine. 2017;167:268–274. [PubMed: 28693043] 

22. Hernán MA. Does water kill? A call for less casual causal inferences. Annals of epidemiology. 
2016;26:674–680. [PubMed: 27641316] 

23 •. Kaufman JS. There is no virtue in vagueness: comment on: causal identification: a charge of 
epidemiology in danger of marginalization by Sharon Schwartz, Nicolle M. Gatto, and Ulka B. 
Campbell. Annals of epidemiology. 2016;26:683–684. [PubMed: 27641315] A concise 
commentary (with a hilarious example) laying out the issues in the present controversy over 
epidemiology’s focus.

24. Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference 
and explanation for epidemiology. International journal of epidemiology. 2016;45:1787–808. 
[PubMed: 27694566] 

25. Schwartz S, Gatto NM, Campbell UB. Causal identification: a charge of epidemiology in danger of 
marginalization. Annals of epidemiology. 2016;26:669–673. [PubMed: 27237595] 

26. Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in epidemiology: the 
need for a pluralistic approach. International journal of epidemiology. 2016;45:1776–86. 
[PubMed: 26800751] 

27 •. Mooney SJ, Pejaver V. Big Data in Public Health: Terminology, Machine Learning, and Privacy. 
Annual review of public health. 2018;95–112.An overview of selected current issues regarding 
the use of big data for public health purposes.

28 •. Duncan DT, Sharifi M, Melly SJ, Marshall R, Sequist TD, Rifas-Shiman SL, et al. Characteristics 
of walkable built environments and BMI z-scores in children: evidence from a large electronic 
health record database. Environmental health perspectives. 2014;122:1359. [PubMed: 25248212] 
A well-conducted analysis making use of electronic health record data.

29. Hernán MA, McAdams M, McGrath N, Lanoy E, Costagliola D. Observation plans in longitudinal 
studies with time-varying treatments. Statistical methods in medical research. 2009;18:27–52. 
[PubMed: 19036915] 

30. Mooney SJ. Invited commentary: the tao of clinical cohort analysis—when the transitions that can 
be spoken of are not the true transitions. American journal of epidemiology. 2017;185:636–8. 
[PubMed: 28338912] 

31. Harris JK, Mansour R, Choucair B, et al. Health department use of social media to identify 
foodborne illness - Chicago, Illinois, 2013–2014. MMWR Morb Mortal Wkly Rep. 2014;63(32):
681–685. http://www.ncbi.nlm.nih.gov/pubmed/25121710. Accessed September 20, 2018. 
[PubMed: 25121710] 

32. Harrison C, Jorder M, Stern H, et al. Using online reviews by restaurant patrons to identify 
unreported cases of foodborne illness - New York City, 2012–2013. MMWR Morb Mortal Wkly 
Rep. 2014;63(20):441–445. http://www.ncbi.nlm.nih.gov/pubmed/24848215. Accessed September 
20, 2018. [PubMed: 24848215] 

33. Oldroyd RA, Morris MA, Birkin M. Identifying Methods for Monitoring Foodborne Illness: 
Review of Existing Public Health Surveillance Techniques. JMIR Public Heal Surveill. 
2018;4(2):e57. doi:10.2196/publichealth.8218

34. Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg 
Infect Dis. 1999;5(5):607–625. doi:10.3201/eid0505.990502 [PubMed: 10511517] 

Mooney and Garber Page 9

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/pubmed/25121710
http://www.ncbi.nlm.nih.gov/pubmed/24848215


35. Henly S, Tuli G, Kluberg SA, et al. Disparities in digital reporting of illness: A demographic and 
socioeconomic assessment. Prev Med (Baltim). 2017;101:18–22. doi:10.1016/J.YPMED.
2017.05.009

36. Adams NL, Rose TC, Hawker J, et al. Relationship between socioeconomic status and 
gastrointestinal infections in developed countries: A systematic review and meta-analysis. PLoS 
One. 2018;13(1):e0191633. doi:10.1371/journal.pone.0191633 [PubMed: 29360884] 

37. Hipp JA, Adlakha D, Eyler AA, Chang B, Pless R. Emerging Technologies: Webcams and Crowd-
Sourcing to Identify Active Transportation. American journal of preventive medicine. 2013;44:96. 
[PubMed: 23253658] 

38. Jacobs N, Roman N, Pless R. Consistent temporal variations in many outdoor scenes. IEEE; 2007 
p. 1–6.

39 •. Westreich D, Edwards JK, Lesko CR, Stuart E, Cole SR. Transportability of trial results using 
inverse odds of sampling weights. American journal of epidemiology. 2017;186:1010–1014. 
[PubMed: 28535275] A clearly written piece that can assist intuition on how weighting accounts 
for sampling artifacts.

Mooney and Garber Page 10

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mooney and Garber Page 11

Curr Epidemiol Rep. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Panel A shows the process of inference, including sampling, in an idealized study design. 

Shaded rectangles indicate the processes under researcher control. If the study participants 

are a simple random sample of the source population, treatment is assigned randomly, and 

the target population is the source population, the effect observed in the study participants 

estimates the effect that would have been observed had treatment been assigned to the target 

population.

Panel B shows the de facto process of inference in a typical ‘Big Data’ study. In such a 

study, researchers are only involved after treatment and outcome have both occurred and 

been observed. As a result, even if treatment were plausibly considered quasi-random and all 

treatments and outcomes were measured without error, it can be unclear which populations 

the estimated effect may be relevant for.
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Figure 2. 
Spatial and temporal sampling issues that can arise in administrative data (as in Case Study 

#3). Panel A is a Venn Diagram displaying conceptually how intersections were selected to 

be included in data collection. As discussed in the main text, treating the target population as 

only intersections where bike lanes were added is both conceptually appropriate and 

minimizes the need to account for a sampling process that cannot easily be reverse 

engineered. Panels B and C illustrates the potential impacts of temporal sampling in one 

location with a periodic change in cyclist counts. In Panel B, time sampling is systematic 

and synchronized with the period change in cyclist count resulting in an overestimate of the 

count of cyclists over time. In Panel C, sampling is random, avoiding the systematic over-

count.
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Table 1.

Underlying cross-tabulation of cycling, age, and life satisfaction in a hypothetical population

Population Satisfied Not Satisfied Total

 Children who cycle 5,000 5,000 10,000

 Adults who cycle 7,500 2,500 10,000

Total for cyclists 12,500 7,500 20,000

 Children who don’t cycle 2,500 7,500 10,000

 Adults who don’t cycle 2,500 7,500 10,000

Total for non-cyclists 5,000 15,000 20,000

Population Total 17,500 22,500 40,000

Risk Difference = 12,500/20,000–5,000/20,000 = 0.375
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Table 2.

Data regarding cycling, age, and life satisfaction observed in a sample of a random 1% of children and random 

10% of adults from the population shown in Table 1.

Population Satisfied Not Satisfied Total

 Children who cycle 50 50 100

 Adults who cycle 750 250 1000

Total for cyclists 800 300 1100

 Children who don’t cycle 25 75 100

 Adults who don’t cycle 250 750 1000

Total for non-cyclists 300 800 1100

Total 1100 1100 2200

Risk Difference = 800/1100 – 300/1100 = 0.454
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Table 3.

Taxonomy of big public health data, with reference to how sampling challenges might affect inference from 

these datasets

Form Example Sampling Challenges

-omic/biological Whole exome sequencing What populations do biological samples represent?

Geospatial Neighborhood profile What places do sampled places represent?

Electronic Health Records Records of all patients visits with 
trauma billing codes

Are people within the health system systematically different from the 
target population?

Personal monitoring Fitbit readings What populations do the people contributing personal data represent? 
Do times for which minute-by-minute data are available represent times 
when data are unavailable?

Effluent data Google search results Which real-world populations actions are represented by actions logged 
on web servers?
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