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Neutron crystallography offers enormous potential to complement structures

from X-ray crystallography by clarifying the positions of low-Z elements, namely

hydrogen. Macromolecular neutron crystallography, however, remains limited,

in part owing to the challenge of integrating peak shapes from pulsed-source

experiments. To advance existing software, this article demonstrates the use of

machine learning to refine peak locations, predict peak shapes and yield more

accurate integrated intensities when applied to whole data sets from a protein

crystal. The artificial neural network, based on the U-Net architecture

commonly used for image segmentation, is trained using about 100 000

simulated training peaks derived from strong peaks. After 100 training epochs

(a round of training over the whole data set broken into smaller batches),

training converges and achieves a Dice coefficient of around 65%, in contrast to

just 15% for negative control data sets. Integrating whole peak sets using the

neural network yields improved intensity statistics compared with other

integration methods, including k-nearest neighbours. These results demonstrate,

for the first time, that neural networks can learn peak shapes and be used to

integrate Bragg peaks. It is expected that integration using neural networks can

be further developed to increase the quality of neutron, electron and X-ray

crystallography data.

1. Introduction

Crystallography has served as a workhorse for atomic and

molecular structural studies (Groom et al., 2016; Berman et al.,

2000). The primary data resulting from these experiments are

integrated Bragg peak intensities from which structure factors

can be calculated and used to refine structural models.

Accordingly, conclusions drawn from crystallographic

experiments rely critically on accurately integrated intensities.

For X-ray crystallography studies, which comprise the vast

majority of reported macromolecular structures, peaks are

typically integrated using one of a few common software

packages (Kabsch, 2010; Leslie, 2006; Pflugrath, 1999; Winter

et al., 2018; Minor et al., 2006). Since its introduction in 1979

(Rossmann, 1979), profile fitting has been embraced to the

extent that all of these packages rely on profile fitting to some

degree, be it through fitting intensities to analytical forms or

applying profiles from strong peaks. These packages have

been developed over many decades into robust programs that

have, in no small way, been essential to the recent growth in
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macromolecular X-ray crystallography. While some neutron

crystallography beamlines have been able to adapt these

packages for their use (Langan & Greene, 2004; Blakeley et al.,

2010; Meilleur et al., 2013), the most recent generation of time-

of-flight (TOF) neutron diffractometers (Coates et al., 2015;

Chapon et al., 2011; Tanaka et al., 2010; Langan et al., 2008)

rely on in-house packages. Namely, SXD2001 (Gutmann,

2005), Mantid (Arnold et al., 2014) and STARGazer (Yano et

al., 2018) are used. While these packages have enabled routine

analysis for these beamlines, they have not achieved the level

of maturity of their X-ray counterparts. As a first step towards

addressing this, we recently developed and implemented a

profile fitting algorithm for TOF data that more accurately

integrates peaks than previously used peak-minus-back-

ground integration techniques (Sullivan et al., 2018). Aside

from reducing sensitivity to noise, profile fitting naturally

accommodates varying peak sizes, inaccurate peak location

prediction and nearby overlapping peaks, all of which cause

simple peak-minus-background integration schemes to fail. In

essence, profile fitting’s ability to precisely separate the peak

from the background is critical to its success.

Computationally, identifying a peak in the presence of

background and nearby peaks can be posed as an image

segmentation problem. The simplest segmentation approaches

rely on intensity-based thresholding in which bright pixels (or

voxels in three dimensions) are separated from dark pixels on

the basis of intensity (Pal & Pal, 1993). While these approa-

ches have proven useful in automating data analysis across

many fields of science, they are fundamentally unable to

identify features which are barely distinguishable from back-

ground. As a result, threshold-based segmentation is not

suitable for peak detection. Recently, the computer vision

community has made significant progress in solving the image

segmentation problem using machine learning techniques.

Machine learning techniques rely on training and using

models that map inputs to outputs. The model is ‘trained’ by

setting the model’s parameters based on generating outputs

which best match known answers. Deep learning (machine

learning using models with multiple connected computational

layers) was first applied to image segmentation in 2014 by

using fully convolutional neural networks (Long et al., 2015).

Artificial neural networks are deep learning constructs which

use neurons – simple input/output units – as the base

computational unit. A neuron outputs some activation func-

tion ( fA, typically valued between 0 and 1) based on a

weighted sum of all of its inputs plus some bias and can be

used as input to the next layer in the network. In other words,

the output value of the jth neuron in a layer, pj, with n inputs

from the previous layer is given by

pj ¼ fA

PN
i¼1

wijxi þ bj

� �
; ð1Þ

where xi represents the inputs, wij represent the weights and bj

is the layer’s bias. The act of training a neural network updates

these weights and biases to minimize a loss function describing

the differences between the model’s predictions and known

test functions. A convolutional neural network is such a

network that includes convolution operators from the input

image. Since then, a number of improvements have been

demonstrated, including encoder–decoder architectures

(U-Nets) (Ronneberger et al., 2015), dilation (Yu & Koltun,

2015) and advanced pooling (down-sampling) schemes (Zhao

et al., 2017).

Given that peak integration can be posed as an image

segmentation problem to identify the peak followed by

quantitation, it is sensible to expect that integration algorithms

can benefit from these advances in computer vision. In posing

integration as a machine learning problem, the scaled number

of detected events around each peak serves as the input to a

model which returns the set of voxels that compose a peak.

For the model to effectively integrate whole data sets, it needs

to be trained against a set of peaks which reflect all the

potential peak shapes the model will be expected to predict.

Macromolecular data sets are ideal for developing machine

learning techniques as they have many peaks; some of these

peaks are strong and can be used to generate a training data

set that can identify weaker peaks, allowing them to be

accurately integrated.

Here, we present a complete data set integrated using

locations and shapes predicted from a neural network. The

intensities and resulting structure factors are compared with

common peak-minus-background integration, profile fitted

integration and a k-NN integration model (defined below),

representing the simplest possible machine learning model for

integration. By analysing the resulting intensity statistics, it is

shown that using even a simple neural network results in

improved integration when compared with other commonly

used integration schemes. These results are the first time it has

been demonstrated that a neural network can indeed learn

peak shapes. Given the simplicity of this proof-of-concept

model, it is easy to envision that machine learning techniques

could enhance X-ray, electron and neutron integration

schemes.

2. Materials and methods

2.1. Sample preparation and neutron data collection

A crystal of perdeuterated Ser70Ala/Arg274Asn/

Arg276Asn Toho-1 �-lactamase was grown as previously

described (Tomanicek et al., 2010, 2013; Langan et al., 2018).

Data were collected at the MaNDi beamline (Coates et al.,

2010, 2015, 2018) at the Spallation Neutron Source at Oak

Ridge National Laboratory (Oak Ridge, TN, USA). Five

orientations separated by �’ = 20� were collected for 14 h per

orientation. The crystal size was 1 mm3.

2.2. X-ray data collection and processing

X-ray data from the Toho-1 �-lactamase crystal were

recorded to 1.57 Å resolution at 296 K (Table S3). Diffraction

data were collected using a Rigaku FR-E SuperBright Cu K�
rotating-anode generator at 45 kV and 45 mA equipped with

an R-AXIS IV++ detector. The crystal formed in the space
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group P3221 with unit-cell dimensions of a = b = 73.40, c =

99.43 Å. Reflections were processed using HKL-3000 for

indexing, integration and scaling (Minor et al., 2006).

2.3. Neutron data pre-processing

Initial analysis was done using the Mantid framework

(Arnold et al., 2014), which allows for rapid manipulation of

data and conversion to reciprocal space. Each run was

converted to reciprocal space and indexed, and the location of

each peak was predicted from the resulting orientation (UB)

matrix. The crystal was determined to have unit-cell dimen-

sions of a = b = 73.30, c = 99.0 Å using the neutron data set.

Each peak was integrated using spherical integration to allow

comparison of the machine learning models with peak-minus-

background integration. A peak radius of 0.017 Å�1 was used

for peaks, while the background shell was taken to be between

0.018 and 0.019 Å�1. To allow comparison of machine learning

models with profile fitting, peaks were fitted using the Inte-

gratePeaksProfileFitting algorithm within the Mantid package

(Sullivan et al., 2018).

2.4. Generating training data sets for machine learning

The success of machine learning lies in the generation of an

appropriate training data set. The data sets must be robust

enough to expose the model to any effects it may encounter.

The training data set for this work is composed of 11 720 peaks

simulated from profile fitted peaks: 10 499 peaks for training

and 1221 peaks for testing. Testing peaks are a randomly

selected subset of the generated peaks that are never exposed

to the model during training and serve as an unbiased test that

the network can predict beyond training data. Training peaks

are generated from strong peaks, defined as peaks with an

intensity greater than 200 counts according to spherical inte-

gration. First, each peak is fitted in Mantid using the recently

developed 3D profile fitting algorithm (IntegratePeaks-

ProfileFitting). Voxels with a fitted intensity greater than 2.5%

of the maximum of the fitted intensity were considered to be in

the peak (see Fig. 1, left, for an example). With a 50% prob-

ability, the peaks are rotated by a random angle from �180 to

180� around the qx, qy and qz axes (a different random angle

was chosen for each axis). This rotation allows different peak

orientations to be learned. Simulated Poisson noise with an

expected intensity of �, randomly selected between 0 and half

the maximum number of events in the peak, is then added.

Adding noise simulates weak peaks from strong peaks. Finally,

each peak is translated along qx, qy and qz by a maximum of 6

voxels in either direction (again, a different value is chosen for

each direction). This allows the machine to learn when a peak

location is slightly mis-predicted, which can be due to imper-

fect orientation (UB) matrix determination or instrument

calibration. Finally, for peak hkl, data outside the range (h �

1/4, k � 1/4, l � 1/4) through (h + 1/4, k + 1/4, l + 1/4) were set

to zero. This cropping ensures that only one peak is present in

each training image; in principle, this is not necessary but

simplifies the learning process. This process is shown for an

example peak in Fig. 1. For learning and predicting, data are

scaled to have zero mean and unit standard deviation.

2.5. Machine learning models

Here we implement and compare two different machine

learning models. The first is a k-nearest neighbour (k-NN)

algorithm. k-NN algorithms make predictions for a given input

by finding the most similar training input for each peak and

assuming the most similar training peak’s profile is appro-

priate for the input. Here, the term ‘nearest neighbour’ will be

used to refer to the most similar input for a k-NN model,

which is not to be confused with neighbouring peaks in
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Figure 1
Example of a generated training peak. Raw event data are histogrammed,
rotated and cropped slightly off centre. Poisson noise is added before
cropping to a box of length 0.5 in h, k, l space so that exactly one peak is
present in the box. These data are then normalized to have zero mean and
unit variance before being used for training. The top row shows the event
data while the bottom row shows the peak mask. The plane shown is a
slice in the qxqy plane centred at the predicted peak location along qz.

Figure 2
(a) Schematic of the network used to learn peak shapes. Green layers
represent input and output, blue layers represent down-sampling layers,
and red boxes represent up-sampling layers. A complete description of
the network is shown in Fig. S1. (b) A summary of operations for the
neural network for 2D images. MaxPool layers allow down-sampling by
taking the highest-valued pixel in the given regions. Convolutions
compute local averages and allow projection into higher dimensions. Up-
sampling is done by transposed convolution in which the original image is
padded with zeros (shown in pink) and convoluted.



reciprocale space (‘nearest peaks’). The k-NN algorithm here

was implemented using Euclidian distance to determine the

nearest neighbour, with the input being scaled to have zero

mean and unit variance and being cropped in (h, k, l) like

training data.

The second machine learning model, a convolutional neural

network, was implemented in Keras using a TensorFlow

backend (Chollet, 2015; Abadi et al., 2016). A schematic of the

network, based on the commonly used U-Net (Ronneberger et

al., 2015), is shown in Figs. 2(a) and S1. The network is based

on convolution, deconvolution (transposed convolution) and

maximum pooling layers; each of these operations is illu-

strated in Fig. 2(b). Additionally, the network incorporates

dropout layers with a dropout rate of 0.5 to avoid overfitting;

these layers randomly ‘disconnect’ half of the neurons by

setting the connectivity weights to zero (Srivastava et al.,

2014). Batch normalization layers are also used to expedite

training (Ioffe & Szegedy, 2015). In total, the model has

103 873 trainable variables and 320 non-trainable variables.

The trainable parameters are the weights and biases between

layers that are updated during the training process (see

Introduction), while the non-trainable variables are temporary

means and variances used for batch normalization. Training

was done for 100 epochs using an ADAM optimizer with a

learning rate of 0.0005, �1 = 0.9 and �2 = 0.999 (Kingma & Ba,

2014). Of the generated training peaks, 80% were used for

training, 10% for validation and 10% for testing. Testing and

validation peaks do not influence the learning process but

instead are used to ensure that the model is learning to predict

peak shapes generally rather than just for the training set.

Testing and validation peaks fill a role in machine learning

comparable to the peaks set aside to calculate Rfree in struc-

tural refinement.

2.6. Metrics for machine learning

While accuracy is a common, intuitive metric for assessing

machine learning models, the Dice coefficient (Dice, 1945;

Sørensen, 1948) and intersection over union (IoU) are

commonly used for image segmentation because they

emphasize correctly identifying features rather than identi-

fying that most of the image is background. As an example,

with these data, if the peak is 63 voxels and we are evaluating a

volume of 323 voxels, trivially predicting false for all voxels

gives an accuracy of 1 � (6/32)3 = 99.3%. For binary predic-

tions, if prediction X is being compared with a known answer

(known as the ground truth) Y, the Dice coefficient, D, is

defined as

D ¼
2jX \ Yj

jXj þ jYj
; ð2Þ

while the IoU is defined as

IoU ¼
jX \ Yj

jX [ Yj
: ð3Þ

Both the Dice coefficient and IoU range from 0 to 1 in the

cases of no overlap and perfect overlap, respectively. For the

work here, the loss function being minimized is the Dice loss

function LD:

LD ¼ 1�D ¼ 1�
2jX \ Yj

jXj þ jYj
: ð4Þ

These were implemented as losses or metrics in Tensorflow

for evaluation by the training function. Table 1 shows these

training results for 12 different models. Each of these 12

models had the same layers present as described in Section 2.5

and illustrated Fig. S1 and was trained against the same data

sets. The models differed only in the values used to initialize

each model’s weights and biases before starting training. As a

result, these data sets can be used to assess the dependence of

the training procedure on initial conditions.

2.7. Peak integration using predicted peak shapes

For each predicted peak location, a 32 � 32 � 32 voxel

intensity profile was constructed and scaled to have zero mean

and unit variance. To scale data, the mean intensity is first

subtracted from the voxel and then the intensities are divided

by the standard deviation of intensities. Scaling each peak in

this way means that the model can learn peak shapes inde-

pendently of the actual number of counts in the peak. These

scaled intensities are used as input to the trained network. The

output of the neural network is a score related to the prob-

ability that each voxel is a part of the peak; for most peaks, this

results in most voxels being nearly 0 or 1 (Fig. 3). For this

work, voxels with a score above 0.15 are placed into

8-connected groups. The largest blob is assumed to be the one

that represents the peak. In practice, this step eliminates

isolated voxels that may be misclassified as belonging to a

peak. Examples of these probability maps are shown in Fig. 3.

If each voxel contains Ni counts and the peak volume is n

voxels large, then the peak intensity, I, is determined by
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Table 1
Summary of learning and intensity statistics from 12 identical network
architectures trained against the same data sets.

Intensity statistics for I and F are for acentric data. Means are presented as
mean � standard deviation. Values in bold are theoretical values for ideal
crystals.

Dice coefficient Mean IoU hI 2
i/hI i2 hF i2/hF 2

i hLi hL2
i

Model Train Test Train Test 2.0 0.785 0.518 0.333

1 0.633 0.627 0.462 0.456 1.859 0.83 0.431 0.254
2 0.641 0.638 0.471 0.469 1.954 0.808 0.464 0.29
3 0.640 0.635 0.470 0.465 1.943 0.812 0.462 0.287
4 0.653 0.647 0.484 0.479 1.892 0.826 0.435 0.258
5 0.661 0.654 0.494 0.486 2.006 0.799 0.475 0.302
6 0.650 0.646 0.481 0.478 1.929 0.817 0.447 0.271
7 0.641 0.636 0.470 0.465 2.007 0.798 0.48 0.307
8 0.661 0.662 0.499 0.494 1.96 0.809 0.46 0.284
9 0.665 0.659 0.498 0.491 1.898 0.818 0.452 0.277
10 0.661 0.656 0.494 0.497 2.031 0.794 0.476 0.305
11 0.653 0.648 0.484 0.479 1.933 0.817 0.45 0.274
12 0.656 0.650 0.488 0.481 1.942 0.813 0.46 0.285
Mean 0.652�

0.011
0.647�
0.010

0.483�
0.012

0.477�
0.011

1.946�
0.050

0.812�
0.011

0.457�
0.015

0.282�
0.017



I ¼
P

Ni � n�BG; ð5Þ

where �BG is the average background around the peak. Here

we take �BG to be constant throughout the volume of the

peak. The variance of the intensity, �2(I), is the sum of the

total counts in the peak plus the total counts in the back-

ground:

�2ðIÞ ¼
P

Ni þ n�BG: ð6Þ

After integration, wavelength normalization was carried out

using LAUENORM from the Lauegen package (Campbell,

1995; Helliwell et al., 1989).

2.8. Calculation of statistics

All statistics were calculated from wavelength-normalized

intensities or structure factors using PHENIX (Adams et al.,

2010). Expectation values of intensity ratios and cumulative

distribution functions (CDFs) were originally presented by

Wilson (1949) and are also reviewed in International Tables

for Crystallography, Vol. B (Hahn et al., 1993) and in the

supporting information of this paper. The L test was intro-

duced by Padilla & Yeates (2003). CDFs are presented in

terms of resolution-normalized intensity, Z. These statistical

tests are commonly used to diagnose irregularities in crystal-

lographic data, including twinning and non-crystallographic

symmetries. Given the robustness of X-ray crystallography

instrumentation and integration packages, these metrics are

usually used to infer crystal symmetry and irregularities in the

crystal itself (e.g. twinning) (Evans, 2011; Rees, 1980; Lebedev

et al., 2006). However, applied to a near-ideal crystal they can

be used to assess the accuracy of an analysis routine, as this

work does.

2.9. Model refinement against integrated intensities

Refinement was carried out in PHENIX using phenix.refine

(Adams et al., 2010; Afonine et al., 2012). Refinement was

done using peaks for which I/� > 1 for integration by neural

network, k-NN and profile fitting (i.e. the peaks in Table 1,

solid lines in Fig. 4). The same peaks were selected for

calculating Rwork and Rfree. PDB entry 6c78 (Langan et al.,

2018) was used as a starting point, with the initial model for

refinement being made using phaser and phenix.readyset

(McCoy et al., 2007). Refinement was done for nine cycles,

refining atomic coordinates, occupancies and atomic B factors.

The results of refinement are given in Table 3 and map

comparisons are shown in Fig. 5 (see Section 3).

3. Results

The first issue to address was if machine learning algorithms

are capable of learning peak shapes. Here the Dice coefficient

and mean IoU (see Section 2.6) are used to assess machine

performance. The generated training data set consisted of

around 10 000 peaks. Twelve of the same networks were

trained on these data and their metrics are shown in Table 1.

Overall, the networks yielded consistent performance, with

Dice coefficients of around 65% and mean IoUs of around

48%. The networks also yield consistent intensity statistics

(Table 1), which are near the predicted values for an ideal

crystal. As a negative control, a model was trained with inputs

matched to random peak shapes from the training set. In this

control experiment, the network achieved a Dice coefficient of

15% and a mean IoU of 8%. For brevity, the results from

model 1 in Table 1 are presented throughout the rest of the

manuscript.

It is prudent to compare the resulting intensity statistics

with those from other integration methods. First, consider the

X-ray statistics from the same crystal. X-ray data collection,

which induces radiation damage into the sample (Garman &

Schneider, 1997), was performed after neutron data collection,

which is a non-ionizing probe. Comparing the resulting

intensity statistics (Table 2) and CDFs (Fig. 4) recorded with
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Figure 4
Cumulative distribution functions N(z) and N(|L|). The theory curve is
for an ideal crystal (see supporting information). X-ray includes peaks
with I/� > 1 to 1.8 Å (solid) or 1.65 Å (dashed). Neutron integration peak
sets include peaks for which all integration methods determined I/� > 1 to
1.8 Å (solid) or all peaks for which the individual integration method
determined I/� > 1 to 1.65 Å (dashed). Neutron data are from model 1 in
Table 1.

Figure 3
Example of peak predictions for strong (a), medium (b) and weak (c)
peaks using a neural network. The column on the left shows a 2D slice of
the peak centred around the predicted peak location from the UB matrix.
Slices are shown with display ranges from 0 to X. The middle column
shows the output of the neural network – a score given to each pixel for
being classified as a peak – for the same slice. The right column shows the
final binarized peak shape used for integration. The planes shown are
slices in the qxqy plane centred at the predicted peak locations along qz.



predicted profiles for ideal crystals demonstrates that the

Toho-1 �-lactamase crystal being analysed is nearly ideal.

Having established the crystal quality, we can attribute any

deviations in neutron intensity statistics to either the experi-

ment or the data analysis (in particular, the integration

method). Table 2 also shows a summary of intensity statistics

for neutron data, which vary only by the integration method:

either the neural network, profile fitting or the k-NN algo-

rithm. These data are composed of the same peak sets for

peaks in the range 13.97–1.80 Å with I/� > 1 for all three

integration methods. This resolution was chosen as it has

greater than 75% completeness in the high-resolution shell.

Table 2 shows that the neural network yields intensities that

better reproduce the intensity statistics from X-ray measure-

ments and ideal crystal predictions. Table 3 shows merging

statistics for the same peak set. These statistics show that the

overall R factors are lower and the correlation coefficient

CC1/2 (Karplus & Diederichs, 2012) is higher for peaks inte-

grated using the neural network, demonstrating a more

consistent integration across the data set. Note, however, that

in the outer shell the profile fitting has slightly lower R values

and higher CC1/2. By all metrics, integration by

the k-NN model produces statistics that are

worse than neural network integration and

comparable to profile fitting. Finally, spherical

integration results in statistics comparable to

the k-NN model, with the exception that CC1/2

is nearly zero at 1.8 Å. Taken with the resulting

intensity statistics, it is likely that spherical

integration yields relatively consistent, though

inaccurate, intensities.

A convenient way to visualize the effect of

integration on intensity statistics is to look at

the CDFs of resolution-normalized intensities,

N(z). Fig. 4 shows the CDFs for the peak set in

Tables 2 and 3. Spherical integration is also shown for

comparison. Consistent with the ratios of moments in Table 2,

the X-ray CDFs agree almost perfectly with the ideal crystal

prediction. For the acentric N(z), integration using the neural

network shows better agreement with the X-ray and ideal

crystal prediction distributions. Similarly, the centric CDF

shows that the neural network yields the best statistics, though

no integration technique reproduces the distribution exactly.

Finally, the CDF for |L| is best matched again by the neural

network. We note that, of the presented integration methods,

the neural network is the only approach to yield a linear CDF

as expected [N(|L|) = |L|; see supporting information].

Imposing I/� > 1 for the three integration methods (not

spherical) is convenient to directly compare integration

methods using the exact same peaks. It may, however, dampen

the improvements neural network integration can provide by

removing peaks that the neural network can successfully

integrate and other techniques cannot. The same statistics are

presented in Fig. 4 (dashed lines) and Tables S1 and S2 for

peak sets for which I/� > 1 for a single integration method.

These data are presented to 1.65 Å since the completeness for

each integration method is above 75%. Overall, the acentric

CDF for the neural network and k-NN integration do not

change with the inclusion of more peaks, while profile fitting

and spherical integration agree less with the expected distri-

butions. Furthermore, the centric CDF for the neural network

improves with the inclusion of all peaks with I/� > 1 to 1.65 Å.

Finally, the CDF for |L| is unchanged for the machine learning

methods, while it shows worse agreement for spherical inte-

gration and profile fitting. Intensity moment ratios and L

statistics are not affected much by the peak selection scheme

(Table S2). The notable exception is the CDF for centric peaks

using neural network integration, which shows much better

agreement with the X-ray and predicted CDFs. Note also that

there are more peaks with I/� > 1 using neural network

integration than for the profile fitted data sets or k-NN inte-

gration (Table S1), demonstrating the potential for machine

learning to increase the completeness of neutron data sets.

Spherical integration results in the highest data completeness,

but those peaks demonstrate poor intensity and merging

statistics, suggesting that they are not accurately integrated.

To determine the effect of the integration technique on the

resulting nuclear density maps, we refined a structural model
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Table 2
Summary of intensity statistics from using different integration methods.

X-ray data include all peaks recorded during X-ray collection with I/� > 1 to a resolution of
1.80 Å. Neutron data sets are taken from peaks with I/� > 1.0 for the neural network (NN),
profile fitting (PF) and the k-NN integration schemes to 1.80 Å. These statistics are from model 1
in Table 1.

Acentric reflections Centric reflections

hI 2
i/hI i2 hF i2/hF 2

i h|E2
� 1|i hI 2

i/hI i2 hF i2/hF 2
i h|E2

� 1|i hLi hL2
i Z score

Theory 2.000 0.785 0.736 3.0 0.637 0.968 0.500 0.333 n/a
X-ray 2.000 0.785 0.736 2.996 0.645 0.942 0.487 0.317 1.490
NN 1.859 0.830 0.672 2.336 0.759 0.848 0.431 0.254 4.484
k-NN 1.772 0.850 0.627 2.244 0.783 0.795 0.402 0.226 8.035
PF 1.773 0.850 0.633 2.249 0.775 0.825 0.400 0.225 8.267
Spherical 1.452 0.903 0.48 1.755 0.852 0.605 0.328 0.161 22.654

Table 3
Merging and refinement statistics for each integration method.

Numbers in parentheses represent the value in the highest-resolution shell.
Peaks included are integrated using model 1 in Table 1 considering only peaks
with I/� > 1 for the neural network, profile fitting and k-NN to 1.80 Å.

Neutron unit-cell parameters (Å, �) a = b = 73.3, c = 99.0,
� = � = 90, � = 120

Space group P3221
No. of orientations 5
No. of unique reflections 25 910 (2169)
Resolution range (Å) 13.97–1.80 (1.86–1.80)
Multiplicity 3.42 (2.29)
Completeness (%) 88.65 (75.31)

Neural network Profile fitting k-NN Spherical

Mean I/� 11.5 (4.0) 13.3 (3.7) 9.2 (3.1) 8.4 (3.0)
Rmerge (%) 12.9 (26.5) 13.7 (22.2) 21.7 (31.2) 25.4 (52.2)
Rpim (%) 7.1 (17.0) 7.5 (14.3) 12.0 (20.4) 14.0 (34.6)
CC1/2 0.976 (0.745) 0.974 (0.754) 0.923 (0.505) 0.928 (0.089)

Refinement statistics
Rwork 0.1666 0.1654 0.1801 0.2013
Rfree 0.2008 0.2029 0.2230 0.2605



against the structure factors derived from integrated inten-

sities. Neural-network-based integration and profile fitting

refine to very similar R values. Neural-network-based inte-

gration ultimately yielded the lowest Rfree values when

comparing the same peaks and the same free peak sets. While

the differences are small, some residues on the protein surface

show appreciable differences between NN integration and

profile fitting integration (Fig. 5). On Ser100, profile fitting

fails to recover density for the hydroxyl group, while for

Tyr105 profile fitting does not provide a continuous density for

the amino acid side chain.

4. Discussion

In this work, a relatively simple neural network based on a

U-Net was tasked with a 3D image segmentation problem to

identify Bragg peaks in reciprocal space. The training set was

composed of �10 000 examples generated from strong peaks

to replicate weak peaks. Remarkably, the network can deter-

mine peak locations and shapes. One straightforward way to

assess the performance of the network is to visually inspect

peaks. Fig. 3 shows three peaks of varying intensity and the

corresponding prediction which visually matches the peak.

Quantifiable metrics also demonstrate that the network can

correctly segment peaks. Over the �10 000 training peaks,

networks consistently train to an average Dice coefficient of

around 65% and an average IoU of around 48% (Table 1). As

a negative control, training peaks were matched with random

solutions, which achieved a Dice coefficient of 15% and a

mean IoU of 8%. Since each training example is centred

around a peak location predicted from the UB matrix, this

important control demonstrates that the network is learning

peaks rather than just summing around the predicted peak

location (which is effectively what spherical integration does).

In terms of magnitude, the Dice coefficient and IoU are

relatively low for machine learning experiments. It is impor-

tant to remember, however, that the ‘ground truth’ comes

from peak fitting, which may not be a perfect model of the

peaks. Also, while both of these metrics are intuitive in two

dimensions, segmenting small features in three dimensions

causes both metrics to quickly fall to zero, even when visually

the feature has been segmented well.

Machine learning techniques have been used previously for

crystal screening (Liu et al., 2008; Bruno et al., 2018), to inform

experiment design in protein–drug interaction (Zhang et al.,

2017; Ding et al., 2014) and to detect the presence of crystals in

single X-ray free-electron laser (XFEL) pulses (Ke et al.,

2018), but rarely to actually analyse crystallographic data. One

notable exception is the work of Pokrić et al. (2000), who first

demonstrated that networks could learn peak shapes. These

authors used radial basis function (RBF) networks to predict

peak shapes by training against profiles of strong peaks. RBF

networks are a subset of neural networks that use activation

functions that depend only on the distance from their centre.

One major difference between the two studies is the use of

training sets augmented by simulated peaks. Pokrić et al.

(2000) demonstrated the feasibility of using networks to

predict peak shape but only reported integration for a handful

of strong peaks (I/� > 50). The present work uses strong peaks

to simulate weak peaks, allowing machine learning models to

identify even weak peaks [e.g. Fig. 3(c)] and ultimately enable

improvements in density maps (Fig. 5).

Given the ability to determine peak location and shape, we

sought to determine if the neural network can be used to

increase the accuracy of peak integration. Previously, we have

used trial refinements starting from the same initial model to

compare integration schemes quantitatively (Sullivan et al.,

2018). This worked well to compare profile fitting with sphe-

rical integration because the differences sharply contrasted.

The improvements between profile fitting and the presented

machine learning integration schemes, however, are not as

drastic and so any differences could be an artefact of structural

modelling. Intensity statistics allow integration schemes to be

compared without having to involve structural modelling,

which is somewhat dependent on the person performing the

modelling. The intensity statistics from the X-ray data, which

were collected after the non-ionizing neutron data collection,

show distributions in agreement with ideal distributions (Fig. 4

and Table 2). These results confirm that data are measured

from a high-quality crystal with no detectable twinning or

pseudo-centring. It must be the case, then, that any deviation

in intensity statistics from the neutron data set is a result of

either experiment quality or the peak integration scheme.

A summary of intensity statistics for the same peak set for

neutron data varying only by integration scheme is presented

in Table 2, while the CDFs of resolution-normalized inten-

sities, N(z), are shown in Fig. 4 (solid lines). Looking at

acentric peaks, spherical integration deviates considerably
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Figure 5
2mFo–Fc maps for neural network (NN) and profile fitting (PF)
integration for two amino acid side chains located on the surface of the
protein. The 2mFo–Fc maps are contoured at 1.1� for Tyr105 and 0.8� for
Ser100.



from the ideal distribution, particularly at low Z where the

slope of N(z) is nearly zero. Such a discrepancy in the CDFs

demonstrates that spherical integration fails to provide accu-

rate intensities and variances for low-intensity peaks.

Furthermore, this deviation from accuracy persists when

considering only peaks with I/� > 1 for spherical integration

(dashed line) and explains why spherical integration results in

higher data completeness despite poor accuracy (Table S1).

Profile fitting, which has been shown to more accurately

integrate high-resolution low-intensity peaks (Sullivan et al.,

2018), yields a CDF with much better agreement with the

predicted and X-ray CDFs, especially at low z. The k-NN

algorithm, which applies the profile of the most similar peak in

the training set, yields nearly the same intensity statistics as

profile fitting. This is an important control experiment result as

it demonstrates that the training set used to train the neural

network provides enough coverage for the peaks the neural

network is expected to predict. Finally, the neural network

results in intensity statistics that most resemble the expected

and X-ray distributions. This result demonstrates unequi-

vocally that neural networks can be used to integrate Bragg

peaks. Profile fitting, k-NN and the neural network yield

similar merging statistics (Table 3), with the neural network

showing slightly decreased overall R factors and an increased

CC1/2 in the outermost shell (Karplus & Diederichs, 2012).

Similar distributions are seen for centric peaks. Analysis of the

L statistics, which do not rely on shell normalization, confirm

the performance of each integration method. Furthermore, to

explore the full potential of each integration method, results

are presented for which I/� > 1 for each integration method

(Tables S1 and S2, and Fig. 4, dashed lines.)

Another interesting feature to consider is the variation of

peak shapes across the detector sphere. Through profile

fitting, the principal dimensions of the peak shapes were found

to be effectively constant with the azimuthal angle but

decreased gradually with increasing scattering angle (Sullivan

et al., 2018). Profile fitting exploited this when integrating

weak peaks by assuming they had the same functional form as

nearby strong peaks. Similarly, neural-network-based inte-

gration can learn different peak sizes provided that the

training set includes peaks of varying size. In this work, the

peaks used to generate training data were the same as those

used as a template for weak peaks. Given that both techniques

are based on the same strong peaks, there is no reason to

suspect that the training process cannot encode peak-shape

variation. Indeed, the observed accuracy confirms that varia-

tions in peak shape are being correctly incorporated into the

learned model at least as well as for profile fitting.

It should be explicitly noted that we are not claiming inte-

gration by machine learning is unambiguously more accurate

than every other integration scheme. The current work is

limited to integration schemes currently available to the

MaNDi user community plus the two machine learning models

presented. In particular, this work does not make comparisons

with the minimum �(I)/I method (Wilkinson et al., 1988;

Wilkinson & Schultz, 1989) or the 1D profile fitting integration

technique (Schultz et al., 2014), both of which have been

successful in improving data quality but are not currently

optimized for MaNDi data. Rather, the intention here is to

demonstrate that neural networks are capable of learning

peak shapes and can yield accurate intensities.

Given the vast parameter space that needs to be sampled in

optimizing a neural network, even one as small as the

�100 000 parameter network used here, it is reasonable to

question the reproducibility of such a model. To determine the

robustness of neural networks’ ability to predict peak shapes,

we have trained the same model against the same data set 12

different times, varying only the initial weights used for

training. A summary of the learning and intensity statistics is

given in Table 1. These results show that, while training over

100 epochs does not necessarily reach a global minimum,

neural networks can consistently outperform profile fitting in

yielding correct intensity statistics.

The final product of a successful crystallography experiment

is a structural model. So that integration methods may be

compared directly with respect to map quality, we refined the

same model against the same set of peaks, varying only the

integration method. Profile fitting and NN integration resulted

in the lowest refinement R values, followed by k-NN and

spherical integration (Table 3). Consistent with the similar

Rwork and Rfree values, the maps for profile fitting and NN

integration are remarkably similar, with modest improve-

ments for NN integration (Table 3 ). These data sets diffract to

beyond 1.8 Å; however, we limit our refinement to this reso-

lution as it has sufficient completeness when comparing all

integration techniques. Moving forward, it will be interesting

to see how these two techniques compare for more challenging

data sets such as samples that are not perdeuterated and thus

have higher backgrounds.

A major contributor to the recent success of deep learning

techniques is that they are readily parallelized using graphical

processing units (GPUs), which permits timely processing of

the massive data sets required to train networks and rapid

evaluation on an already trained network. Similarly, peak

integration using networks can be performed remarkably

faster than other methods. As detailed by Sullivan et al. (2018),

profile fitting tries every possible background level and

determines which yields a TOF profile most consistent with

the known moderator emission. This process is computation-

ally intensive and �700 ms are required to fit each peak in the

data set reported here. By contrast, evaluating the neural

network on a standard, commercially available video card

(NVidia Quadro P4000) takes �7 ms per peak. While a single

peak can be integrated around 100� faster using a neural

network, directly comparing the start-to-finish analysis time of

each integration technique is challenging as network training

times depend critically on the hardware used and a number of

hyperparameters that define the training procedure. One

important extension of this work will be determining how to

train a model that can integrate peaks from an arbitrary

sample. Such a model would allow the training process, and

therefore any profile fitting, to be skipped. Conventional

wisdom in machine learning notes that if we can generate a

sufficiently diverse data set then this should be possible. Given
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that strong peaks from a variety of samples can be modelled

(Sullivan et al., 2018), generating such a data set should be

possible. Once such a model is available, we expect that such

increases in performance will be critical in designing data

reduction streams for future instruments which will have

higher flux and thus higher data rates.

5. Conclusions

Here we demonstrated that a simple neural network can

identify even weak peaks in TOF neutron crystallography data

and, by using the predicted peaks, result in more accurate

integration. Furthermore, the use of the neural network

increased the completeness of the data sets. Low completeness

in high-resolution shells is a common artefact in neutron

crystallography data. More sophisticated and better-optimized

neural networks could further extend the capabilities of

neutron macromolecular crystallography. It will also be

interesting to see if X-ray crystallography can benefit from

machine-learning-based integration. While software for

synchrotron and table top sources is already well established,

software for serial crystallography remains under develop-

ment. Such software is especially motivated by data recorded

at XFELs (Winter et al., 2018; Kabsch, 2014; White et al., 2016;

Barty et al., 2014). Given the increased repetition rate of new

and planned XFELs (e.g. Emma et al., 2014; Altarelli, 2011;

Milne et al., 2007) and the demand for larger higher-resolution

detectors, data rates of 100 GB s�1 are anticipated. The

remarkable parallelization of neural networks running on

graphical processing units (GPUs) suggests that using a neural

network to integrate data may be appropriate to provide users

with near-real-time feedback when faced with such an

incredible amount of data.
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