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Summary:

Copy number variation (CNV) of DNA plays an important role in the development of many 

diseases. However, due to the irregularity and sparsity of the CNVs, studying the association 

between CNVs and a disease outcome or a trait can be challenging. Up to now, not many methods 

have been proposed in the literature for this problem. Most of the current researchers reply on an 

ad hoc two-stage procedure by first identifying CNVs in each individual genome and then 

performing an association test using these identified CNVs. This potentially leads to information 

loss and as a result a lower power to identify disease associated CNVs. In this paper, we describe a 

new method that combines the two steps into a single coherent model to identify the common 

CNV across patients that are associated with certain diseases. We use a double penalty model to 

capture CNVs’ association with both the intensities and the disease trait. We validate its 

performance in simulated datasets and a data example on platinum resistance and CNV in ovarian 

cancer genome.
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1. Introduction

Segments of DNA have copy number variation (CNV) if there are more (gains) or fewer 

(losses) than two copies of DNA at a particular location in the genome. It is an important 

aspect of genomic structural changes that has been shown to be associated with many 

complex diseases. Based on the type of DNA that harbors CNVs, they can be categorized 

into germline CNV and tumor (or somatic) CNV. For germline CNVs, their locations are 

typically well defined and the boundaries of a CNV are consistent across individuals 

(McCarroll et al., 2008), while the occurrences and locations for somatic CNVs are much 

more variable. CNVs carry much information with regards to the human’s health status, for 

example germline CNVs have been reported to be associated with several diseases (Elia et 

al., 2011, Dajani et al., 2015). Somatic CNVs are a main characteristic of tumor growth, 
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associated with various aspects of cancer, including progression and treatment response 

(Shlien and Malkin, 2009, Walker, Wiggins, and Pearson, 2015).

Methods for analysis of genome-wide arrays and sequencing data with respect to CNVs can 

be summarized into two categories. One group of methods focus on applying association 

tests to identify the relationship between a phenotype (disease trait) and known CNVs (such 

as well-defined germline CNVs). In such case, the focus is on developing association tests 

using these known CNVs. As a result, many known CNVs have been reported to be 

associated with diseases such as neuroblastoma, prostate cancer, breast cancer, and other 

cancer types (Kuiper et al., 2010, Krepischi et al., 2012, Park et al., 2015).

Another group of methods focus on identification of CNVs that are associated with the 

disease. In many cases, the CNVs are not known beforehand and need to be identified from 

intensity data (from a SNP array or sequencing data). For example, many somatic CNVs fall 

into this category. The identification of somatic CNVs is an active research topic. The main 

complication of the identification of somatic CNVs is tumor heterogeneity (Cheng et al., 

2017). Because of this heterogeneity, the actual number of copies of the DNA can be 

between 0 and 6 (or even more). As a result, many times an arbitrary small value (for 

example, 0.2) is used as the cut off value to identify a CNV. Any segment with a copy 

number greater than the predefined cut off value is classified as a CNV. Another 

complication that makes the identification of CNV association more difficult is that CNVs 

happen irregularly: they do not happen at the exact same location across individuals. So 

summarization of the CNV pattern among all individuals can be challenging. Inefficient use 

of such information might lead to loss of power, especially when the percentage of subjects 

with a particular CNV is small.

Because of the difficulties mentioned above, many researchers employ an ad hoc, twostage 

procedure to identify recurrent CNVs among samples: At the first stage, a CNV calling 

algorithm is used to identify CNV segments in each individual genome, using CNV calling 

algorithms such as PennCNV (Wang et al., 2007), PSCBS (Olshen et al., 2011), Control-

FREEC (Boeva et al., 2012). At the second stage, the inferred CNVs are considered for 

downstream analyses, often ignoring the uncertainty in the CNV identification. The follow-

up statistical tests are performed based on either the frequency of CNVs at each location in 

the genome (STAC, Diskin et al., 2006) or the (SNP array or sequencing) inferred intensities 

of the segmented CNVs (GISTIC, Mermel et al., 2011; JISTIC, Sanchez-Garcia et al., 

2010). As a result, the uncertainty in the CNV calling is carried over to the testing stage, 

thus diminishing the statistical power of the test. Also, different choices of parameters (such 

as the cut off value) might leads to very different results because the uncertainty from the 

first stage is not taken into consideration in the second stage. This could lead to serious 

information loss especially when the intensity of the individual CNVs is small. Related to 

CNV association testing, methods for identifying recurrent CNVs have also been proposed 

recently. For example, Recurrent Aberrations from Interval Graphs (RAIG, Wu, 

Hajirasouliha, and Raphael, 2014) identifies recurrent CNVs using interval graphs. Cancer 

driving pathways using mutual exclusivity of genomic alterations are identified in Babur et 

al., 2015. A random effect model to model the association between disease and CNVs is 
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used in Tzeng et al., 2015. CNVtools (Barnes et al., 2008) tests for known CNV regions 

using Gaussian mixture models.

Interestingly, most of the existing methods focus on identifying recurrent CNVs and cannot 

be readily applied to an association test with both cases and controls (or with cases of two 

different types of cancer). To the best of our knowledge, there are only a few of methods that 

aim to identify the association between a disease trait and the CNVs using both cases and 

controls. For example, VTET (Shi et al., 2014) and CNVtest (Jeng, Wu, and Li, 2015) 

identify trait associated CNVs by testing for all regions with length less than a pre-defined 

threshold.

In light of the significance of CNV association tests and the limitations with existing 

methods, we propose a method called double penalized CNV association test (DPtest) that 

uses a penalized regression model for CNV association testing for CNVs in somatic DNA. 

As such, unless we explicitly refer to CNVs as germline, all references to CNV are to 

somatic CNVs in the remainder of this paper.

A unique aspect of our model is that we minimize a cost function with two penalty terms to 

prioritize the identification of the disease associated CNVs. The first penalty term is 

designed to encourage the selection of CNVs that are shared across multiple individuals. The 

second penalty term is to encourage the selection of those CNVs that are associated with a 

disease outcome, that, for example, is occurring more frequently in cases than controls. 

Using this novel approach, we combine the two tasks (CNV detection and association 

testing) in a single step. As such, efficient usage of information is achieved, as well as a 

great improvement of the detection power compared to the existing two-step procedures. 

One salient feature of the proposed method is that, through a unified regression model, we 

are able to leverage CNV signals from different individuals and compare the differences 

between cases and controls. Therefore, our method is advantageous to other method when 

the signal of CNVs from each individual is weak but there is concordance between 

individuals. In what follows, the newly proposed method is compared to existing methods 

using simulated data, and is applied to a genomic study of ovarian cancer aiming to identify 

CNVs that are associated with platinum resistance.

2. Methods

In this section, we provide details of the DPtest method. The testing of the CNV association 

with a (binary) phenotype can be viewed as a combination of two problems: The first is a 

regression or dimension reduction problem for the log ratio (LR), where LR is defined as 

log2(observed copy number/2). It helps us to identify the CNVs with their locations and 

intensities. The second problem is a regression problem for the phenotype and the CNVs. 

This helps us to understand whether the CNV is associated with the phenotype.

2.1 Description of CNV data

Let z1 be a vector of LR for a subject. Suppose for the moment, copy number data are 

collected from normal human samples. Then the observed copy numbers should be close to 

for all locations in the entire genome and the LRs should be close to 0. Similarly, positive 
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LR values for a specific region suggest a copy number gain (copy number greater than 2) 

and negative LR values for a region suggest a copy number loss (copy number less than 2) 

for that region.

If we plot the LR values (as y-axis) along the locations on a chromosome (as x-axis), then 

for samples with chromosome regions of gains or losses, we should observe that the LRs for 

those regions are away from 0. Thus, the CNV detection or change point detection problem 

can be formulated as a change point detection problem using linear regression. We introduce 

a covariate matrix X, where X is a p by p lower triangular matrix with all 1’s for the lower 

triangle (Harchaoui and Lévy-Leduc, 2008). Each column of X can be viewed as a covariate, 

with the first column corresponding to the intercept and the jth column corresponding to a 

change in copy number at location j. Let’s assume there is a copy number gain (copy 

number 3 for example) for a region starting from the 100th location to the 200th location. 

Then, in our formulation the coefficients for X .100 and X .200 are log2(3/2) and −log2(3/2) 

respectively, and 0 for all the remaining coefficients. This provides a natural way of 

incorporating spatial continuity of the LRs.

An alternative approach to perform the CNV detection is to simply set X to be an identity 

matrix. However, in order to enforce the continuous nature of the LRs, an extra fused 

penalty term will be needed to penalize the difference between neighboring coefficients. 

Thus, this alternative approach will create an extra penalty term in the regression model and 

increase the computational cost. Due to this reason, we will follow the set up of X as in 

Harchaoui and Lévy-Leduc (2008).

2.2 A double penalized linear regression problem

Let Z = (z1,…,zn) be the matrix with the LR data for n subjects; i.e. Z is a p by n matrix with 

each column representing a subject and each row representing a location on the genome. 

Usually p is of the order of 106 or even higher, a much larger number than the sample size n, 

which will typically be of the order of 10 to 1000. We use the same linear regression set up 

as introduced in the previous subsection. Let B = (β·1,··· ,β·n) be a p by n matrix with the ith 

column being the coefficient for regressing zi on X. The first part of the regression problem 

treats Z as the outcome or response variable and treats X as the covariates.

Let {ỹ1,… , ỹn} be a 0–1 vector of phenotypes. We assume the first n1 subjects are cases 

(ỹ1,…, ỹn1 = 1) and the last n2 subjects are controls (ỹn1+1,…, ỹn = 0, n1 +n2 = n). Let y be 

a mean and variance standardized version of ỹ such that ∑i = 1
n yi = 0 and ∑i = 1

n yi
2 = n . Let 

X be a column-wise mean standardized version of X, so that each column of X has mean 0. 

Note that the first column of X is all 0’s and can thus be dropped.

Denote the jth row of B as βj·, then βj· is a vector of length n, with the ith element 

corresponding to the copy number change (shift) at location j for individual i. The 

association between the shift at location j and the phenotype can be modeled as:

β j . = θ j + η jy + ϵ j, (1)
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where y = (y1,…,yn), θ = (θ1,…,θn) and η = (η1,…,ηn). If a shift at location j is truly 

associated with the phenotype, then we should have ηj ≠ 0. We can decompose bj as

∑i = 1
n β ji

2 = nθ j
2 + nη j

2 + nσ2,

∑i = 1
n β jiyi = nη j,

(2)

where βji is the ith element of βj··

Motivated by the model above, we propose to identify the non-zero ηjs by minimizing

1
2 ∑

i = 1

n
Zi − Xβ ⋅ i

2

2
+ λ(1 − α) ∑

j = 1

p
β j .

T y + λαn ∑
j = 1

p
log β j . 2/ n + 1 , (3)

where ‖βj·‖p = (Σ|βji|p)1/p. The first term measures the difference between the observed LR 

and the estimated LR. Heuristically, the second term can be rewritten as λ(1 − α)∑ j = 1
p nη j ,

which helps to select the non-zero associations between copy number and phenotype. The 

third term encourages the non-zero element of B to be at the same location across all 

samples. This helps to construct a common boundary for CNVs that occur across n 
individuals. Here α is a parameter between 0 and 1. It can be viewed as a weight that 

leverages the importance of the last two terms. Some additional factors are included for the 

second term and the third term so that all terms are on the same scale. In particular, for each 

location j, β j
T y ≈ nη j , so an n is included as a scale for the third term along with λα. Each 

βj· is a vector of length n, denoting the shift of the LR at location j for all individuals. 

Therefore, we standardize this vector by dividing its l2 norm by √n. Finally, 1 is added to 

‖βj·‖2/√n to make sure that the logarithm of it is always larger or equal than 0.

One potential issue with having X as the covariate is that neighboring columns are strongly 

correlated. So if an l1 norm were to be used as the penalty term for βj·, j = 1,…,p, then the 

true shift location and it’s neighboring locations would tend to be selected together because 

of the collinearity of the columns of X. An l0 penalty would appear to be a good option to 

deal with this problem, but it introduces computational difficulties at the same time. Instead, 

we employ a log−l2 penalty, whose linear approximation is identical to that of an l0 penalty, 

but results in a more straightforward computation. Thus the log−l2 penalty can be viewed as 

an approximation of an l0 penalty with a computational benefit.

We apply a group version of the coordinate descent method to solve the problem (3). Given 

B( − j) = β1 . , …, β j − 1, . , β j + 1, . , …, β p, . ′,, we estimate βj· by minimizing

1
2 Ri − x jβ j ⋅

T
2

2
+ λ(1 − α) β j

T y + λαn log β j ⋅ 2 + n , (4)

Cheng et al. Page 5

Biometrics. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Ri = Zi − X( − j)β .i , with X(−j) = (x1,…,xj−1,xj+1,…,xp−1). Using the subgradient 

method, we get that when βj· ≠ 0, it satisfies the equation

−x j
T R − x jβ j ⋅

T + λ(1 − α)sign(η)yTt + λαn
β j ⋅

T

β j ⋅ 2
β j ⋅ 2 + n

= 0, (5)

for some t ∈ [−1,1].

Let β j . = RT x j, β j .* = β j ⋅ − λ(1 − α)
x j
Tx j

 sign (η)yTt, where t = sign (η) min 1, |η | XTX
λ(1 − α) , η = β j

T y/n .

Then the solution is β j . = d j
β j ⋅*
β j ⋅* 2

 with dj being a positive number that solves

d j
2 − d j* − n d j + λα

x j
Tx j

n − d j* n = 0, (6)

where

d j* = β j ⋅* 2 =
θ2 + σ2 + η − λ(1 − α)/ x j

T x j
2 λ < ηx j

Tx j/(1 − α)

θ2 + σ2 λ > ηx j
T x j/(1 − α)

(7)

After some algebra, we get that βj· ≠ 0 if and only if λx j
T x j lies in the intervals given in Table 

1.

For given λ and α, we will obtain B and η( = By). B is a p × n matrix, with the (j,i) element 

being the copy number shift at location j for subject i. Because of the penalty terms, B will 

be a sparse matrix. Let S be the collection of the index for non-zero rows of B, then S 

provides the collection of all copy number shift locations. Since copy number variation 

occurs over regions, we expect the size of S to be much smaller than p. Similarly, η is a 

vector of length p. It measures the change in association strength at each location. If the jth 

row of B is all zero, then the corresponding jth element in η will be zero. Thus, S also 

denote the non-zero element in η.

2.3 Choice of λ and α

N-fold cross validation can be used to select the combination of λ and α that produces the 

smallest prediction error. However, a direct application of cross validation can be time 

consuming because there are two tuning parameters. Empirical evidence shows that the 

model selected usually has a good performance in terms of prediction error when α ∈ 
(0.2,0.5) (See Appendix). So throughout this paper, we fix α to be 0.4 and set λ to take a 
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series of value between λmax and λmin, where λmax is the value when the first variable 

enters the model and λmin can be a very small number, for example, 0.001. Usually λ can be 

set to take values equally spaced between λmax and λmin on a logarithmic scale. More 

details on the choices of α are given in Web Appendix A.

2.4 Identification of disease associated regions and false discovery rate

In order to determine which CNVs are associated with the disease status, we use ζˆ
1,…,ζˆ

p 

ζ j = ∑k = 1
j ηk  as candidate associations, the selection of which can be controlled by the 

false discovery rate. Similar to the estimation procedure described in Tibshirani, and Wang, 

2008, we propose to estimate the false discovery rate by

FDR = number of segments identified under the null distribution 
number of segments identified in the data set  . (8)

Although the observations are not independent, the above expression still serves as a valid 

estimator as discussed in Benjamini, and Hochberg (1995), Storey (2002), Efron, and 

Tibshirani (2002).

While the null distribution is unknown, we can use permutations to approximate it. For the 

mth permutation, we randomly permute the response y → y(m). Then ζ j
(m) can be obtained 

using the algorithm introduced in this paper. Thus, by combining the results from M 

permutations, ζ j
(m) | 1 ⩽ j ⩽ p, 1 ⩽ m ⩽ M  provides an approximation of the ζ.

To summarize the steps used for the identification of the disease associated CNVs, Figure 1 

shows a diagram that explains the processes of the proposed method. To be specific, the 

proposed method consists of three steps. The first step is to use penalized regression to 

obtain the segmented data and the corresponding association strength of each segment. Note 

here, that if a segment range from location j1 to j2, then the disease association strength for 

locations j1 to j2 are all the same, that is ζ j1
= ζ j1 + 1 = … = ζ j2

. In the second step, the same 

procedure is used for the M permuted datasets, and the association measure 

ζ j
(m) | 1 ⩽ j ⩽ p, 1 ⩽ m ⩽ M  are obtained. In the the third step, a threshold ζ0 is obtained 

by controlling the FDR; all segments with ζ j > ζ0 are labeled as disease associated CNVs.

3. Simulations

We conducted two sets of simulation studies to answer the following questions: What are the 

advantages of our method? What is the effect of different choices of algorithm parameters on 

the results? Empirical results show that our method is not very sensitive to the choices of the 

parameters. So we will focus on answering the first question in this section. More 

illustrations on the effect of the algorithm parameters are given in the Appendix.

We compare the performance of the proposed method (DPtest) with existing methods 

including CNVtest (Jeng et al., 2015) and a procedure inspired by GISTIC (Mermel et al., 
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2011) which uses CBS for segmentation and then applies the two sample t-test to the 

segmented data).

First, we give a brief overview of these methods. CNVtest scans the whole genome by 

computing the “length-standardized sum” for each candidate interval. This sum is coded into 

a 0–1 indicator (Z) by comparing it with a pre-defined cut-off value (ν). The cut-off value ν 
is a function of the interval length as well as the total number of markers in the data. Then 

the Z for the same region across samples are tested using a GLM model. The resulting p-

value shows the significance of the association between the disease trait and the genomic 

region. The authors showed that CNVtest controls the genome-wide error rate with a 

probability close to 1 (Jeng et al., 2015). However, because the cutoff value is gauged 

towards reducing the overall rate of falsely discovering a CNV, the cutoff value is usually set 

to a large number which decreases the power of identifying true (disease associated) CNVs.

GISTIC is a multi-stage method developed to identify recurrent CNVs among cases. At the 

first stage, CNVs are identified using the Circular Binary Segmentation (CBS) algorithm 

(Olshen et al., 2004). Then a reconstruction method is used to further decompose the 

identified CNVs into independent CNV events to recover the most likely history of the CNV 

developments. A G-score is assigned to each CNV as the sum of all the intensities higher 

than a threshold. Finally a permutation test is used to access the significance of each CNV 

by comparing the G-score with the permuted G-scores. To adapt GISTIC for our purpose, 

we modify GISTIC by applying a two-sample t-test to test the association between the 

individual G-scores and their disease status. Also, we did not include the deconstruction step 

of the original GISTIC as the code to do so was not available to us. We refer to this approach 

as CBS-Ttest.

The goal of this simulation study is to learn the advantage and disadvantage of DPtest 

relative to existing approaches. For CNVtest, we use the R code available at the authors’ 

website. Direct application of CNVtest provides extremely conservative results. Instead, we 

fine-tuned this method by varying the cut-off values (ν) and select the ν that provides the 

largest number of correctly identified CNVs. For CBS-Ttest, we first use the 

“segmentByCBS” function from the “PSCBS” package in R to obtain segments. Then, we 

apply the two-sample t-test on the segmented data to obtain T scores as the association 

strength measurements. Disease associated segments are identified by controlling the false 

discovery rate (FDR) at 0.05.

We simulate data sets with n = 500 individuals, of whom 250 are cases and 250 are controls. 

We generate the LRs for m = 5000 markers and randomly select 5 regions with length S = 20 

or S = 30 as the candidate CNV regions. The LRs are generated in two steps to mimic the 

observed correlation between nearby locations. Step 1: we generate 5000 independent 

N(0,1) values for each individual. Step 2: we randomly split the 5000 markers into 100 

segments, then for each segment extra additive noise with distribution N(0,0.3) is added. 

This extra noise can be thought of as an experimental artifact that induces correlation 

between nearby locations in the genome, as often observed in actual genomic data.
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For each of the 5 candidate CNV regions for each individual, we randomly decide whether 

to add a CNV to that region. We consider several combinations for the parameters of the 

CNVs as listed below.

• For each candidate CNV region, the probability of adding a CNV is set to be p0 

= 0.2 for the controls and p1 = 0.2,0.3,0.4,0.5 for the cases. So for an individual 

without a disease, the expected number of CNVs is 5 × 0.2 = 1. And for an 

individual with a disease, the expected number of CNVs is 1,1.5,2,2.5 for 

different p1 values, respectively. Note that if p1 = 0.2 there is no difference 

between cases and controls for this CNV.

• The first model assumes that each disease associated CNV occurs at the same 

genomic locations across all samples and the length of the region S is 20. The 

second model assumes each disease associated CNV occurs within a range with 

length of the region set to S = 30, the starting position is selected uniform over a 

segment of length 30.

• For the region with a CNV, the average LR is set to be μ = 0.5,0.75,1.0,1.25, such 

that the corresponding copy numbers CN ≈ 2.8,3.4,4,4.8, by noting that CN = 2 

× 2LR.

For each combination of p1, S, and μ, we simulate 10 data sets and compare the number of 

correctly and falsely identified CNVs as well as the “recovery rate”. To calculate the false 

discovery rate, the null distribution is generated using 100 permuted data sets. The false 

discovery rate is controlled at level 0.05. For any CNV identified, if more than 50% of the 

region overlaps with the region where the CNV was generated, we call it is a correct 

identification. If it does not overlap with a known CNV or if the overlap is less than 50% of 

the length of the region, we refer to it as a false identification. The “recovery rate” refers to 

the ability to correctly recover the regions where CNVs occur. It is calculated as the ratio 

between the total length of the identified true CNVs and the total length of the CNVs (i.e. 

100 if S = 20 and 150 if S = 30).

In Figure 2, we report the average number of true disease associated CNVs identified for 

each method for p1 = 0.3, p1 = 0.4, and p1 = 0.5, respectively. Any CNV region is classified 

as correctly identified by a method if at least 50% of the region is identified to be disease 

associated. For the first row of the figures, a CNV happens at exactly the same location 

across all samples (S = 20, model one). For the second row of the figures, a CNV happens 

randomly within a region (S = 30, model two). As expected, as the percentage of CNV 

carried among the cases increases, the power for all the methods increases as well. Similarly, 

the power increases when the LR (μ) of the CNVs increases. Among all methods, DPtest has 

the highest power: when the signal is strong (p1 = 0.5, μ = 1.0 or 1.25), it always correctly 

identifies all CNV regions, while other methods only identify a portion of the 5 disease 

associated CNV regions. When the signal is moderate (p1 = 0.4), DPtest still consistently 

performs better than the other methods. It is worth mentioning the difference between the 

performance of DPtest and the other methods is the largest when the LR is low (μ = 0.5 or μ 
= 0.75) while the percentage of CNV carriers is reasonably higher in the cases (p1 = 0.4 or 

p1 = 0.5) than in the controls (p1 = 0.5). This is largely due to the fact that DPtest does not 

depend on identifying CNV regions individually for each subject. Rather, DPtest looks at all 
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samples and picks the regions with a large difference in LR between cases and controls. In 

other words, DPtest is most powerful when the signal of CNVs from each individual is weak 

but there is joint signal from all samples.

In Figure 3, we report the average number of false CNVs identified for each method. DPtest 

produces on average less than 0.1 false CNV, which corresponds to about a 0.05 false 

discovery rate. While CNVtest is a little conservative, it does not identify any false CNV 

regions. CBS-Ttest identifies the most number of false CNVs. This is partially because we 

summarize the results by counting the number of segments. Since the segmentation for CBS 

is performed at the individual level, we might have several falsely identified segments but 

each only contains a small number of loci.

In Figure 4, we report the “recovery rate”. For example, when there are 5 such disease 

related CNVs, each with S = 20 loci, there are in total 100 disease associated loci. We 

summarize the percentage of the loci correctly identified, to assess the ability to recover the 

disease associated region in terms of coverage. The first row of the figures corresponds to 

the model with fixed CNV locations and S = 20 and the second row of the figures 

correspond to model with variable CNV locations and S = 30. Overall, DPtest has the best 

coverage rate, followed by CNVtest and CBS-Ttest. DPtest shows the largest advantage 

when the signal is weak to moderate, since it has the ability to group the signal across 

subject. When the CNV location is not exactly the same across subjects, DPtest still gives 

reasonably good recovery rate, while there is a dramatic decrease for other methods. 

CNVtest has a much smaller identification rate. The reason for that is two-fold: First, the 

signal strength for each subject is attenuated, so it becomes harder for any region to be 

identified as a CNV at the individual level. Second, in order to identify a wider spread CNV 

region, CNVtest needs to test for more candidate regions, and as it needs to adjust for more 

multiple testing, a smaller p-value is needed to claim any region significant.

4. Case study: identification of driver CNVs for platinum-resistant ovarian 

cancer patients

Ovarian cancer is one of the most common cancers among women. It is diagnosed in over 

20,000 women in the US each year (TCGA, 2011). The most commonly used first-line 

chemotherapy agents after surgery are taxanes (paclitaxel or docetaxel) and platinum 

(carboplatin or cisplatin). There is, however, a proportion of the ovarian cancer patients (20–

30%) who will not respond to such treatment, and they are referred to as the platinum-

resistant patients (Davis, Tinker, and Friedlander, 2014). Predicting chemo-resistance using 

genomic features in resected tumor samples at surgery will facilitate selection of alternative 

treatment regimens.

In this section, we apply DPtest to identify the CNVs that are associated with 

platinumresistant status, using whole exome sequencing (WES) and SNP array data from the 

TCGA for our analysis. Detailed description of the data sets can be found in the original 

paper (TCGA, 2011). The TCGA data were downloaded from NCI/GDC data portal under 

project 11179. There are in total 470 patients and we have the platinum sensitive/resistant 
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status available among 299 of them. Among these 299 patients included in our analysis, 91 

patients were platinum-resistant and the remaining patients were platinum-sensitive.

Exome sequencing data for each patient for both tumor samples and blood (normal) samples 

were obtained using Illumina GAIIx and ABI SOLiD at the Broad Institute, Washington 

University School of Medicine, and Baylor College of Medicine. We obtain the sequencing 

data and calculated the LR of the read count for tumor/normal pairs over windows of size 

10kb. The SNP array copy number data for tumor/normal sample pairs were obtained using 

multiple array platforms including Illumina 1MDUO and Affymetrix SNP6, processed at the 

Broad Institute and the Hudson Alpha Institute for Biotechnology. We obtained copy 

number data and calculated the LR using the tumor/normal pairs. For the follow up analysis, 

the LRs are used as the input of DPtest. We fix α at 0.4. To evaluate the false discovery rate, 

we run the analysis 10 times with permuted y values to approximate the distribution of the 

association under the null.

In Figure 5, we plot the estimated association strength by genomic location. The top figure 

contains the results obtained using the whole exome sequencing data. The bottom figure 

contains the results obtained using the SNP array data. The solid line is the cutoff value by 

controlling the false discovery rate at 20%. The dashed line is the cutoff value by controlling 

the false discovery rate at 10%. Multiple regions of CNVs are identified to be associated 

with platinum resistant status. For example, CNVs in 4q23, 6q26 and 15q21 are identified. 

We observe that more regions are identified using the SNP array data for the same set of 

patients, and the signal from the SNP array data is stronger than the signal from the WES 

data. This is possibly because the CNVs are interrogated in high density by SNP arrays 

while exome-sequencing is concentrated in the exome, and thus non-exome regions were 

omitted in the WES data. Other than the difference in signal strength, the overall pattern of 

the results is similar for both types of data.

In Table 2, we list the regions that are identified to be associated with platinum-resistant 

status using our method by controlling the FDR at 0.2. For each identified region, we list the 

chromosome, and starting and ending base-pair (bp) locations. We also indicate whether 

CNVs or genes in those regions have been previously reported in the literature. Genomic 

locations are based on human genome build 37. We line up the regions that are identified to 

be associated with the platinum-resistant phenotype, as identified by DPtest for the SNP 

array and WES data, with bold font being regions identified by both the SNP array and WES 

data. We note that many of the genes and regions that DPtest identifies have been previously 

associated with ovarian cancer. Using our method, we successfully identified regions 

containing genes such as AKT3, HTRA1, IGF1R, and RCCD1 that have been reported in 

the literature to be linked to ovarian cancer (references listed in Table 2). It should be noted 

that gene CCPG1 has been found to be predictive of chemo-response (Bosquet et al., 2016).

5. Discussion

CNVs play an important role in disease etiology. Understanding the association of CNVs 

with diseases will help early detection and outcome prediction of those diseases. In some 

cases, it may also help in identifying the most effective patient dependent treatment 
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strategies. Despite the scientific significance, only a few methods have been developed to 

identify CNV-disease association. Most of the current research on CNVs focus on 

(recurrent) CNV identification, or ad-hoc two-stage procedures to identify disease-

associated CNVs. In light of methodological challenges, we proposed a novel method, 

DPtest, to address the limitations of existing methods. Compared to two-step procedures that 

identify CNVs in the first step and conduct association test in the second step, the penalized 

regression model we propose combines these two steps in one cohesive model. The 

advantage of this novel approach is supported by both simulation and real data analysis.

In simulated data, we show that under different scenarios our method can outperform 

competitors in terms of power to identify disease-associated CNVs, while maintaining 

correct control of false discovery rates. The advantage stems from the fact that our method 

uses a unified algorithm for the association test based on the original LR data. Thus there is 

no information loss in the modeling process. Also, the double penalty term helps us to 

leverage the information across individuals. In contrast, for the two-step process, there are 

uncertainties in determining whether a CNV occurred at a given region, and that information 

is lost when only the CNV identification results are passed to the second stage of the 

algorithm. In the two-stage procedures, the segmentation in the first stage is usually 

performed separately for each subject while no cross subject information is utilized in this 

process. The partial utilization of the information in the two-step procedure might lead to 

potential power loss. As shown in Figure 2, the largest power gain occurs when the CNV 

from any single individual is weak but there are multiple cases or controls who carry the 

CNV. This is because our method is capable of leveraging the potential CNV signal 

occurring at similar locations across samples.

We applied DPtest to discover CNVs that are associated with platinum-resistance status 

among ovarian cancer patients. This is a serious clinical problem: about 30% of the ovarian 

cancer patients that will not respond to the platinum-based chemotherapy and the expected 

survival time for resistant patients is less than one year. If the platinum-resistance status 

could be predicted successfully before treatment is assigned, an alternative treatment regime 

could be offered to resistant patients, which would potentially improve the patients survival. 

We have successfully identified a list of CNVs and many of the findings are potentially 

relevant based on a literature search on genes that were previously linked to ovarian cancer. 

Interestingly, we were able to identify genes that are reported to be predictive of the 

chemoresponse status (such as the gene CCPG1 on 15q21 and THBS1 on 15q15, Bosquet et 

al., 2016). These findings could help to predict platinum resistant patients and help 

physicians assign alternative treatment regimens. Naturally, our findings would need to be 

replicated in independent data sets.

We have illustrated the power of our method in the case-control setting where the outcome 

variable is binary. However, our method can be readily extended to the situation where the 

outcome variable is continuous. Such extension can be useful if people are interested in 

identifying CNVs that are associated with continuous disease trait.
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6. Supplementary Materials

Web Appendices referenced in Section 2.3 are available with this paper at the Biometrics 

website on Wiley Online Library. Accompanied R codes are also available and are described 

in detail in Web Appendices.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram for the process to identify the disease associated CNVs.
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Figure 2. 
Averaged number of true disease associated CNVs identified by each method. For the top 

row the CNV occurs at the same genomic location for all subjects carrying the CNV, which 

has length 20 (S = 20). For the bottom row the CNV occurs at slightly shifted genomic 

locations for each subject carrying the CNV, which has length 30 (S = 30). DPtest performs 

the best among all competitors, especially when the LR (μ) of the CNVs is small. This figure 

appears in color in the electronic version of this article.
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Figure 3. 
Average number of false disease associated CNV regions identified by each method. For the 

top row the CNV occurs at the same genomic location for all subjects carrying the CNV, 

which has length 20 (S = 20). For the bottom row the CNV occurs at slightly shifted 

genomic locations for each subject carrying the CNV, which has length 30 (S = 30). Overall, 

the number of false discoveries is low for DPtest and CNVtest, but the number of false 

discoveries for CBS-Ttest is higher. This figure appears in color in the electronic version of 

this article.
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Figure 4. 
Average percentage of markes within true disease associated CNVs identified by each 

method. For the top row the CNV occurs at the same genomic location for all subjects 

carrying the CNV, which has length 20 (S = 20). For the bottom row the CNV occurs at 

slightly shifted genomic locations for each subject carrying the CNV, which has length 30 (S 
= 30). DPtest performs the best among all competitors, especially then the LR μ of the 

CNVs is small. When the averaged true LR of the CNVs (μ) is high, DPtest, CNVtest and 

CBS-Ttest perform equally well: they are all able to capture a large fraction of the true CNV. 

However, when the μ value is low, DPtest is still able to capture a big portion of the true 

CNV regions while the other methods do not perform as well. This figure appears in color in 

the electronic version of this article.

Cheng et al. Page 19

Biometrics. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The estimated η values using the WES data and the SNP data. The dashed and solid line are 

the cutoff values for controlling the false discovery rate at 10% and 20%, respectively. 

Multiple locations of CNVs are identified to be associated with the platinum resistant status, 

with more locations being identified using the SNP data. For example, the regions at 4q22, 

6q26, and 15q26 are significant at a false discovery level of 20% for both WES and SNP 

data. This figure appears in color in the electronic version of this article.
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Table 1

Intervals for λx j
Tx j such that bj ≠ 0, where A = min |n | − a*

1 − α , |η | − a
1 − α , a = 1 − θ2 − σ2, 

λ1 = λ2 =
|η | (1 − α) − (1 − α) θ2 + σ2 r2 − 1 + η2r2

(1 − α)2 − α2 .a* satisfies θ2 + σ2 + a * 2 + 1
2

= 4r |η | − a* , r = α/(1 − α),

a* ∈ [0, |η | ], δ = θ2 + σ2 .

|η |r ∈ (0, δ] |η |r ∈ δ, (δ + 1)2
4 |η |r ∈ (δ + 1)2

4 , ∞

δ2 > 1 0, (δ + 1)2
4α 0, (δ + 1)2

4α

0, max λ1, |η | − a*
1 − α (α < 1/2)

0, max δ2 + η2
2 |η | (1 − α) , |η | − a*

1 − α (α = 1/2)

0, max λ2, |η | − a*
1 − α (α > 1/2)

δ2 < 1 0, δ
α

0, max λ1, |η | − a
1 − α

0, max δ2 + η2
2 |η | (1 − α) , |η | − a

1 − α

0, max λ2, |η | − a
1 − α

0, max λ1, A (α < 1/2)

0, max δ2 + η2
2 |η | (1 − α) , A (α = 1/2)

0, max λ2, |η | − a*
1 − α (α > 1/2)
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Table 2

CNV regions identified to be associated with the platinum-resistant phenotype, as identified by DPtest using 

the SNP array and WES data, with an FDR controlled at 0.2. If a region is identified by both SNP array and 

WES data, we mark the region with bold font. Locations are from human genome build 37. The genes are 

those that have been reported in the literature as being associated with ovarian cancer or cancer drug resistance 

in or near the interval.

Chrom Start End Selected Gene & Literature

1 18,029, 434 21,576, 796 1p36 Alvarez et al., 2001

1 244,183, 432 249,222,471 AKT3 TCGA, 2011

4 96,324,052 99, 069, 827 4q23 TCGA, 2011

6 155,184, 273 171,050, 993 RPS6KA2 Bignone et al., 2007

10 124,671, 655 129,282, 460 HTRA1 Chien et al., 2004

10 133, 326, 776 135,424,083

15 42, 373, 631 49,408, 050 15q21 TCGA, 2011

15 55,311,786 56,928, 535 CCPG1 Bosquet et al., 2016

15 87,201,931 93,590,130 RCCD1 Kar et al., 2016

15 99,797,210 102,429,113 IGF1R Denduluria et al., 2015
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