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Abstract

In regression applications, the presence of nonlinearity and correlation among observations offer 

computational challenges not only in traditional settings such as least squares regression, but also 

(and especially) when the objective function is nonsmooth as in the case of quantile regression. 

Methods are developed for the modelling and estimation of nonlinear conditional quantile 

functions when data are clustered within two-level nested designs. The proposed estimation 

algorithm is a blend of a smoothing algorithm for quantile regression and a second order Laplacian 

approximation for nonlinear mixed models. This optimization approach has the appealing 

advantage of reducing the original nonsmooth problem to an approximated L2 problem. While the 

estimation algorithm is iterative, the objective function to be optimized has a simple analytic form. 

The proposed methods are assessed through a simulation study and two applications, one in 

pharmacokinetics and one related to growth curve modelling in agriculture.
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1. Introduction

Quantile regression (QR) (Koenker and Bassett, 1978) is a flexible statistical tool with a vast 

number of applications that complements mean regression. QR has become a successful 

analytic method in many fields of science because of its ability to draw inferences about 

individuals that rank below or above the population conditional mean. The ranking within 

the conditional distribution of the outcome can be considered as a natural index of individual 

latent characteristics which cause heterogeneity at the population level (Koenker and Geling, 

2001). There is an increasingly wider acknowledgement of the importance of investigating 

sources of heterogeneity to quantify more accurately costs, benefits, and effectiveness of 

interventions or medical treatments, whether it be an after-school physical activity program, 

a health care reform, or a thrombolytic therapy (see, for example, Austin et al., 2005; Beets 

et al., 2016; Beyerlein, 2014; Ding et al., 2010; Rehkopf, 2012; Wei and Terry, 2015; 
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Winkelmann, 2006). QR is particularly suitable for this purpose as it yields inferences that 

are valid regardless of the true underlying distribution. Also, quantiles enjoy a number of 

properties (Gilchrist, 2000), including equivariance to monotone transformations and 

robustness to outliers.

Here, we are interested in data from cluster samples that are commonly found, for example, 

in biomedical and agricultural research. QR analysis of clustered data is a very active area of 

research. Since the seminal work of Koenker and Bassett (1978) on methods for cross-

sectional observations, there have been a number of proposals on how to accommodate for 

the dependency induced by cluster designs (e.g., longitudinal). As outlined by Geraci and 

Bottai (2014) and then extensively reviewed by Marino and Farcomeni (2015), approaches 

to linear QR with clustered data can be classified into distribution-free and likelihood-based 

approaches. The former include fixed effects (Koenker, 2004; Lamarche, 2010; Galvao and 

Montes-Rojas, 2010; Galvao, 2011) and weighted (Lipsitz et al., 1997; Fu and Wang, 2012) 

approaches. The latter are mainly based on the asymmetric Laplace (AL) density (Geraci 

and Bottai, 2007,2014; Yuan and Yin, 2010; Farcomeni, 2012) or other, usually flexible, 

parametric distributions (for example, Reich et al., 2010; Noufaily and Jones, 2013). A 

different classification can be made into approaches that include cluster-specific effects (e.g., 

Koenker, 2004; Geraci and Bottai, 2014) and those that ignore or remove them (Lipsitz et 

al., 1997; Canay, 2011; Párente and Santos Silva, 2016).

In some applications, the assumption of linearity may not be appropriate. This is often the 

case in, for example, pharmacokinetics (Lindsey, 2001) and growth curve modelling (Panik, 

2014). Broadly speaking, one can consider two strategies to nonlinear regression modelling: 

parametric nonlinear modelling and nonparametric modelling. We now review parametric 

nonlinear methods, which are of direct relevance to the present study. An account of 

nonparametric quantile regression methods is given elsewhere (Mizera, 2018; Geraci, 2018). 

COntributions to statistical methods for nonlinear mean regression when data are clustered 

can be found in the literature of mixed-effects modelling (Lindstrom and Bates, 1990; 

Pinheiro and Bates, 1995, 2000) as well as generalized estimating equations (Davidian and 

Giltinan, 1995, 2003; COntreras and Ryan, 2000; Vonesh et al., 2002). In contrast, the 

statistical literature on parametric nonlinear QR functions with clustered data is somewhat 

sparse. To our knowledge, there seem to be only a handful of published articles. Karlsson 

(2008) considered nonlinear longitudinal data and proposed weighting the standard QR 

estimator (Koenker and Bassett, 1978) with pre-specified weights. Wang (2012), taking her 

cue from Geraci and Bottai (2007), used the AL distribution to define the likelihood of a 

Bayesian nonlinear QR model. Huang and Chen (2016) proposed a Bayesian joint model for 

time-to-event and longitudinal data using Wang’s (2012) model for the nonlinear 

longitudinal QR component. An approach based on copulas is developed by Chen et al. 

(2009). Finally, Oberhofer and Haupt (2016) established the consistency of the Li-norm 

nonlinear quantile estimator under weak dependency.

Here, we propose an extension of Geraci and Bottai’s (2014) linear quantile mixed model 

(LQMM) to the nonlinear case and, as in LQMM, we use the AL distribution as pseudo-

likelihood for the error which provides the quantile regression interpretation of its location 

parameter. Our proposal is novel in terms of modelling and estimation. We develop an 
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approach to nonlinear QR with random effects in a frequentist setting that makes use of a 

modelling framework akin to that of Pinheiro and Bates (2000), familiar to many 

researchers. None of the papers cited above provides an approach to modelling and 

estimation of nonlinear quantile functions with random effects in a frequentist framework. 

Such an approach is desirable when the correlation between measurements is modelled by 

means of random effects, but the parameters of interest are assumed to be fixed. As 

compared to the Bayesian approach, ours avoids having to introduce prior distributions on 

the fixed effects. Putting ‘philosophical’ considerations aside, this has practical 

consequences in terms of estimation since lack of a closed form for AL-based posterior 

distributions leads to the application of some form of sampling algorithms that are 

computationally demanding (Wang, 2012). In contrast, we will provide an analytic form of 

the objective function to be optimized. What is more important, in the proposal by Wang 

(2012) there is no mention of how to assess uncertainty and this represents a serious 

limitation. In our approach, we propose using bootstrap which provides good coverage in 

LQMMs (Geraci and Bottai, 2014). On the other hand, while Karlsson’s (2008) approach is 

frequentist, it does not allow for inference at the cluster level. Moreover, our model has the 

‘quantile’ interpretation conditionally on the random effects, whereas Karlsson’s (2008) 

model gives a (weighted) estimate of the marginal (with respect to the clusters) quantiles.

Estimation represents another element of novelty. This is carried out using an algorithm 

which is a combination of a smoothing algorithm for QR and a second order Laplacian 

approximation for nonlinear mixed models. The advantages of this approach as compared to 

numerical integration (Geraci and Bottai, 2014; Geraci, 2014) are discussed further on.

In Section 2, we briefly introduce the standard linear QR model and outline the LQMM 

approach. In Section 3, we introduce the nonlinear quantile mixed-effects model, or 

nonlinear quantile mixed model (NLQMM) for short, and related inference. In Section 4, we 

carry out a simulation study to assess the statistical and computational performance of the 

proposed methods. Since there are no alternative models that can be placed in a direct 

comparison with ours for the reasons given above, we consider nonlinear QR for cross-

sectional data to investigate potential gains in efficiency when intra-cluster correlation is 

accounted for. In Section 5, we consider an application of NLQMM to pharmacokinetics and 

growth curves modelling. We conclude with some remarks in Section 6.

2. Linear quantile mixed models

First, let us introduce the classical QR model for cross-sectional data (Koenker and Bassett, 

1978). Let y be a continuous random variable and x a p × 1 vector of known covariates. The 

distribution of y conditional on x is denoted by Fy(t) = Pr (y ≤ t|x), while for a given τ ∊ (0, 

1) its inverse Qy(τ) ≡ Fy
−1(τ) gives the τ th quantile of y conditional on x. The linear 

specification of the QR model for a sample of n independent observations xi
⊤, yi  is given by

Qyi
(τ) = xi

⊤βτ, i = 1, …, n .
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The τ-specific regression parameter βτ is interpreted as the ‘quantile treatment effect’ of x 
on Y (Koenker, 2005). An estimate is obtained by solving the L1-norm regression problem

min
β

∑
i = 1

n
ρτ yi − xi

⊤β ,

where pτ(r) = r {τ — I(r < 0)} is the ‘check’ function and I denotes the indicator function.

COnsider now data from a two-level nested design in the form xi j
⊤, zi j

⊤, yi j , for j = 1, ni and i 

= 1,…,M, N = ∑ini, where xi j
⊤ is the jth row of a known ni × p matrix Xi, Zi j

⊤ is the jth row of 

a known ni × q matrix Zi and yij, is the jth observation of the response vector (yi1, …, yini)⊤ 

for the ith cluster. Throughout the paper, the covariates x and z are assumed to be given. The 

n × 1 vectors of ones and zeros will be denoted by ln and 0n, respectively, the n x n identity 

matrix by In, and the m m×n matrix of zeros by Om ×n

In a distribution-free approach, the linear QR model for clustered (or panel) data (e.g., 

Koenker, 2004; Abrevaya and Dahl, 2008; Bache et al., 2013) can be specified as

Qyi j
(τ) = xi j

⊤βτ + zi j
⊤δτ, i, (1)

where 0 <τ < 1 is the given quantile level, is a βτ is a p × 1 vector of coefficients common to 

all clusters, while the q × 1 vector δτ, i may vary with cluster. All the parameters in model 

(1) are τ-specific, although the cluster-specific effects are often specified simply as pure 

location-shift effects (Koenker, 2004; Lamarche, 2010). Fitting can be achieved by solving

min
β, δ

∑
i = 1

M
∑
j = 1

ni
ρτ yi j − xi j

⊤β − zi j
⊤δi + ∑

i = 1

M
𝒫 δi . (2)

The penalty P on the cluster-specific effects controls the variability introduced by a large 

number of parameters δi and is usually based on the Li-norm (Koenker, 2004; Lamarche, 

2010; Bache et al., 2013).

To mimic the minimization problem (2) in a likelihood framework, Geraci and Bottai (2014) 

introduced the convenient assumption that the responses yij, j = 1, …, ni, i = 1, …,M 
conditionally on a q × 1 vector of random effects ui, independently follow the asymmetric 

Laplace (AL) density

p yi j |ui = τ(1 − τ)
στ

exp − 1
στ

ρτ yi j − μτ, i j ,
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with location and scale parameters given μτ, i j = xi j
⊤βτ + zi j

⊤ui and ar, respectively, which we 

write as yi j 𝒜ℒ μτ, i j, στ  (The third parameter of the AL is the skew parameter τ ∊(0,1) 

which, in this model, is fixed and defines the quantile level of interest.) Also, they assumed 

that ui = (ui1,…, uiq)⊤, for i = 1,…, M, is a random vector independent from the model’s 

error term with mean zero and q × q variance-covariance matrix Στ. Note that all the 

parameters are τ-dependent. The random effects vectors depend on τ through the variance-

covariance matrix. If we let u = u1
⊤, …, uM

⊤ ⊤
 and y = y1

⊤, …, yM
⊤ ⊤

, the joint density of (y, u) 

based on M clusters for the rth linear quantile mixed model (LQMM) is given by Geraci and 

Bottai (2014)

p(y, u) ≡ p(y |u)p(u) = τ(1 − τ)
στ

N
∏

i = 1

M
exp − 1

στ
∑

j = 1

ni
ρτ yi j − μτ, i j p ui .

Geraci and Bottai (2014) proposed estimating LQMMs through a combination of Gaussian 

quadrature and nonsmooth optimization. They approximated the marginal (over the random 

effects) log-likelihood using the rule

𝓁GQ βτ, Στ, στ |y = ∑
i

M
log ∑

k1 = 1

K
⋯ ∑

kq = 1

K
p yi |vk1, …, kq

∏
l = 1

q
wkl

, (3)

With vk1,…,kq = (vk1,…,vkq)⊤, where vkl and wkl, kl = 1, …, K, l = 1, …, q, denote, 

respectively, the abscissas and weights of the (one-dimensional) Gaussian quadrature. In 

principle, one can consider different distributions for the random effects, which may be 

naturally linked to different quadrature rules (or penalties). For example, it is immediate to 

verify that the double exponential distribution confers robustness to the model and is akin to 

a Gauss-Laguerre quadrature. Prediction of the random effects was carried out via best linear 

prediction (BLP) (Geraci and Bottai, 2014).

We depart from Geraci and Bottai’s (2014) estimation approach to avoid its disadvantages in 

a nonlinear modelling framework. First, the product rule entails a ‘curse of dimensionality’, 

an exponential increase of the number of evaluations of the integrand function, which may 

aggravate the typical fragility of nonlinear estimation algorithms. Second, it would not be 

possible to resort to BLP for random effects prediction.

Throughout this paper, we assume that the random effects are normally distributed. Some 

studies have investigated the impact of incorrect specification of the random effects’ 

distribution in mixed models and, in general, there is some disagreement as to whether such 

parametric assumptions are harmless or have important consequences on inference 

(McCulloch and Neuhaus, 2011). The answer partly lies in the specific model and type of 

variables involved, as well as the target of the inference. In the context of QR with random 

effects, Geraci and Bottai (2014) found that parameter estimation in LQMMs was relatively 
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robust to random effects with a heavy-tailed distribution or a distribution contaminated with 

outliers, although bias resulted when random effects followed a skewed distribution. We also 

note that distributions other than normal could be considered, although possibly at the cost 

of more involved technical developments. Alternatively, parametric assumptions on the 

random effects can be avoided following, for example, the approach by Alfo et al. (2016).

Assessing the impact of misspecification of the random effects’ distribution in nonlinear 

quantile regression is particularly complicated due to the nature of the models and the 

difficulty of calculating analytically the ‘true’ quantiles (see further comments in Section 4). 

We do not explore this issue here but our recommendation is to exercise caution if there is 

reason to believe that random effects are non-normal, especially if skewed.

3. Nonlinear quantile mixed models

3.1. The model

We consider the nonlinear quantile regression function

Qyi j |ui
(τ) = f ϕτ, i j, xi j , j = 1, …, ni, i = 1, …, M, (4)

Where f is a nonlinear, smooth function of the s × 1 random parameter ϕτ,ij = Fijβτ + 

Gijui,Fij and Gij are two given design matrices of dimensions s × p and s × q, respectively, 

which in general contain elements of the covariates Xij.

To stress the functional dependence of the quantiles on the p × 1 fixed parameter βτ and on 

the q × 1 random parameter ui, we write f (ϕτ,ij, xij) ≡ fij (βτ,ui). For estimation purposes, 

model (4) can be equivalently written as

yi j = f i j βτ, ui + ϵτ, i j, (5)

conditionally on ui, where ϵτ, i j 𝒜ℒ 0, στ  Moreover, we assume ui 𝒩 0q, Στ  independently 

from e#.

Note the similarities and dissimilarities between the proposed model (5) and the traditional 

nonlinear mixed-effects (NLME) model

yi j = f i j β, ui + ϵi j,

with ui 𝒩 0q, Σ  and ϵi j 𝒩 0, σ2 . First of all, conditionally on the random effects, both 

models impose a restriction on the error term (Powell, 1994). However, the NLME model 

requires E (ϵij | xij, ui) = 0, while the AL-based specification of the error given in (5) leads to 

Qϵτ, i j |xi j, ui
(τ) = 0 or, equivalently, Pr (ϵτ,ij < 0|xij, ui) = τ. Secondly, the fixed effects can be 
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interpreted as the average value of the cluster-specific parameters, i.e. Eui
ϕi j , or as the 

regression parameters of the ‘zero-median’ cluster, i.e. a cluster with a zero random-effect 

vector. However, the parameter is allowed to vary with the quantile level τ, while β in the 

NLME model is not (except for a location shift). Finally, in both approaches the variance-

covariance matrix of the random effects gives a measure of the variability of ui around 

Eui
ϕi j  but, again, estimates are allowed to differ by τ only for the quantile mixed-effects 

model.

In general, neither model (5) nor the NLME model provides fixed parameters that can be 

interpreted as, respectively, regression quantiles or regression means for the population. This 

is because random effects are allowed to enter nonlinearly in the model. (Similarly, several 

generalized linear mixed models with nonlinear link functions lack marginal interpretabil-ity 

(Ritz and Spiegelman, 2004; Gory et al., 2016).) In contrast, the fixed effects of a linear 

(normal) mixed model remain the same after the random effects are integrated out, whereas, 

in general, this is not true for the fixed effects of the LQMMs of Geraci and Bottai (2014).

3.2. Inference

In this section, we discuss NLQMM estimation and other inferential procedures.

Let Ψτ = Στ /στ be the scaled variance-covariance matrix of the random effects and define 

θτ = βτ
⊤, ξτ

⊤ ⊤
, where §r is an unrestricted m-dimensional vector, 1 ≤ m ≤ q(q + 1)/2, of non-

redundant parameters in Ψτ. Our goal is to maximize the marginal log-likelihood

𝓁 θτ; y = N log τ(1 − τ)
στ

− M
2 log Ψτ − Mq

2 logστ − Mqlog 2π

+ ∑
i = 1

M
log∫

ℝq

exp − 1
στ

∑
j = 1

ni
ρτ yi j − μτ, i j − 1

2στ
ui

⊤Ψτ
−1ui dui,

(6)

where μτ,ij = fij (βτ, ui).

First of all, we consider the following smooth approximation of pτ (Madsen and Nielsen, 

1993; Chen, 2007):

κω, τ(r) =

r(τ − 1) − 1
2(τ − 1)2ω  if r ≤ (τ − 1)ω,

1
2ωr2  if (τ − 1)ω ≤ r ≤ τω,

rτ − 1
2τ2ω  if r ≥ τω,
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where r ∈ ℝ and ω > 0 is a scalar “tuning” parameter. ω→ 0we have that κω, τ(r) ρτ(r). A 

similar approximation is given by Muggeo et al. (2012) who claimed that their method 

provides a better approximation than Chen’s (2007) algorithm. However, no analytical 

evidence was provided in their paper to support such claim. This point might offer scope for 

additional investigation but, here, it represents a secondary issue and will not be discussed 

any further.

Let ri = ri1, …, rini

⊤
 be the vector of residuals rij = yij − f (ϕτ,ij, xij), j = 1,…,ni, for the ith 

cluster, and define the corresponding sign vector si = si1, …, sini

⊤
 with

si j =

−1  if ri j ≤ (τ − 1)ω,
0  if (τ − 1)ω < ri j < τω,
1  if ri j ≥ τω .

(7)

(Note that the notation above has been simplified since the rij’s as well as the sij’s should be 

written as functions of the ϕτ,ij’s.) Then, we have

∑
j = 1

ni
κω, τ ri j = 1

2 ri
⊤Airi + bi

⊤ri + ci
⊤1ni

, (8)

where Ai is an ni × n diagonal matrix with diagonal elements Ai j j
= 1 − si j

2 /ω bi and ci q 

are two ni x 1 vectors with elements

bi j = si j (2τ − 1)si j + 1

And

ci j = 1
2 (1 − 2τ)ωsi j − 1 − 2τ + 2τ2 ωsi j

2 ,

respectively.

We now define the function

h θτ, yi, ui = ri
⊤Airi + bi

⊤ri + ci
⊤1ni

+ ui
⊤Ψτ

−1ui, (9)

which is akin to a regularized, nonlinear, weighted least-squares loss function. The gradient 

of h with respect to ui is given
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h′ θτ, yi, ui = − Ji ui
⊤ 2Ai yi − fi βτ, ui + bi + 2Ψτ

−1ui, (10)

Where fi = f i1 βτ, ui , …, f ini
βτ, ui

⊤
 and Ji ui = ∂fi βτ, ui / ∂ui

⊤, while the Hessian is given 

by

h″ θτ, yi, ui = ∑
j = 1

ni
− 2

ω 1 − si j
2 ri j − bi j

∂2 f i j βτ, ui

∂ui∂ui
⊤ + ∑

j = 1

ni ∂ f i j βτ, ui
∂ui

∂ f i j βτ, ui

∂ui
⊤

+ 2Ψτ
−1,

(11)

Moreover, let

ui = arg min
ui

h θτ, yi, ui (12)

be the conditional mode of ui. For a given value of ω, this can be obtained by means of 

penalized least-squares. A second-order approximation of h around ui is given by

h θτ, yi, ui ≃ hi + h
.
i
⊤ ui − ui + ui − ui

⊤H
..

i ui − ui ,

where hi ≡ h θτ, yi, ui , h
.
i ≡ h′ θτ, yi, ui  and H

..
i ≡ h″ θτ, yi, ui /2. Since hi is zero at ui = ui we 

have the following Laplacian approximation of the log-likelihood

𝓁LA θτ; y = Nlog τ(1 − τ)
στ

− M
2 log Ψτ − 1

2στ
∑
i = 1

M
hi + ∑

i = 1

M
log∫

ℝq 2πστ
−q/2

× exp − 1
2στ

ui − ui
⊤H

..
i ui − ui dui = Nlog τ(1 − τ)

στ
− 1

2 ∑
i = 1

M
log ΨτH

..
i + στ

−1 ∑
i = 1

M
hi .

(13)

If we ignore the negligible contribution of the first term in expression (11) (Pinheiro and 

Bates, 1995), then only the first-order partial derivatives of f are required to compute (13). 

Note the slimmer form of (13) as compared to a numerically integrated likelihood as in (3).

Since ui does not depend on σ, the log-likelihood ℓLa can be profiled on σ leading to
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𝓁LAp θτ; y = N log τ(1 − τ)
στ

− 1 − 1
2 ∑

i = 1

M
log ΨτH

..
i , (14)

where στ = (2N)−1∑i
M hi.

Estimation of the parameters is carried out iteratively as described in the pseudo-code in 

Appendix A. The algorithm requires setting the starting value of θτ, στ, and the tuning 

parameter ω, the tolerance for the change in the log-likelihood, and the maximum number of 

iterations, as well as obtaining an initial estimate of the random effects (see further below). 

At each iteration, the parameter ω is reduced by a factor 0 < γ < 1. Hence, γ controls the 

speed at which the smoothing parameter ω approaches zero. At convergence, the value of co 
should be small, ideally, since the approximation of kω,x to the loss function pτ improves 

with decreasing ω.

The modes of the random effects can be obtained by minimizing the objective function of 

the penalized least-squares problem using a Gauss-Newton method. Let Δτ be the relative 

precision factor such that Ψτ
−1 = Δτ

⊤Δτ (Pinheiro and Bates, 2000). Then the function in (9) 

can be rewritten as

h θτ, yi, ui = Ai
1/2ri

2 + bi
⊤ri + ci

⊤1ni
+ Δτui

2

= yi − fi
2 + bi

⊤ yi − fi + ci
⊤1ni

,

(15)

where

yi =
Aiyi

0
, fi =

Aifi
Δτui

, Ai = Ai
1/2 .

Note that, in contrast to an approach based on numerical quadrature (Geraci and Bottai, 

2014), the predicted random effects are a by-product of the estimation procedure.

When using the asymmetric Laplace as pseudo-likelihood, inference must be restricted to 

point estimation since the distribution is misspecified (see for example Reich et al., 2010; 

Yang et al., 2016). Standard errors for non-random parameters can be calculated using block 

bootstrap, although this increases the computational cost. Bootstrap confidence intervals 

have been shown to have good coverage in LQMMs (Geraci and Bottai, 2014).

We conclude this section by introducing additional statistics of interest that can be obtained 

from the fitted model. We define Qyi j |ui = 0
(0) (τ) = f i j βτ, 0q  as the NLQMM prediction of the 

rth quantile of yij at level 0. Similarly, we define Qyi j |ui
(1) (τ) = f i j βτ, ui  as the NLQMM 
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prediction of the rth quantile of j/j, at level 1 (i.e., at the cluster level). Since model (4) is 

conditional on the random effects, only predictions at level 1 can be interpreted as sample 

quantiles. As a consequence, if the model is correctly specified, the proportion of negative 

residuals (PNR) at level 1 should be approximately r. In contrast, predictions at level 0 can 

be seen as sample quantiles of the ‘zero-median’ cluster.

4. Simulation study

In this section, we perform a simulation study to evaluate statistical and computational 

characteristics of the proposed methods. We start from a setting similar to the one used in 

Pinheiro and Bates (1995), which is ideal for normal NLME models, and then investigate 

scenarios more apposite for NLQMM.

In the first scenario, we simulated the data from the following logistic model

yi j =
β1 − β4 + u1i

1 + exp β2 + u2i − xi j /β3
+ β4 + ϵi j , (16)

where β = (70, 10, 3, 10)⊤, ui = u1i, u2i
⊤ 𝒩 02, Σ ,xi j 𝒰(0, 20), and ϵi j 𝒩(0, 1). The random 

effects are thus associated with the asymptotes (β1 and β4) and the sigmoid’s midpoint (β2). 

Their variance-covariance matrix was defined as

Σ = 4 −2
−2 5 .

In the second scenario, we used the same model (16), but we sampled the errors from a 

standardized chi-squared distribution with 3 degrees of freedom, i.e ϵi j χ3
2/ 6.

In the third scenario, we slightly changed model (16) and used

yi j =
β1 − β4

1 + exp β2 + ui − xi j − 0.5xi jϵi j /β3
+ β4, (17)

where β = (1, 4, 1, 0)⊤, xi j 𝒰(0, 5), ui 𝒩(0, 0.1), and ϵi j χ3
2/ 60. Note that the error is skewed 

as in the second scenario but now operates within the exponential function. In this 

heteroscedastic model, there is only one random effect associated with the sigmoid’s 

midpoint.

In the fourth and last scenario, we used the biexponential model
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yi j = β1 + u1i exp −exp β2 + u2i xi j + β3 + u3i exp −exp β4 + u4i xi j + 1 − xi j/8 ϵi j,

(18)

where ui = u1i, u2i, u3i, u4i
⊤ 𝒩 04, Σ , xi j 𝒰(0, 8), and ϵi j 𝒩(0, 0.1), with parameters β = (2, 

0.8, 0.4, −1.5)T and Σ = 0.1I4.

In all scenarios, we used a balanced design (ni = n, i = 1, … ,M)with three sample sizes: (M 
= 50, n = 5), (M = 100, n = 5), and (M = 100, n = 10). Instances of replications are shown in 

Fig. 1. For data sampled from models (16) and (17), we fitted mixed-effects logistic quantile 

functions with parameter ϕτ,ij = Fijβτ + Gijui, where

Fi j =

1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

in the first 3 scenarios,

Gi j =
I2
O2 × 2

in the first and second scenarios, and Gij = (0, 1, 0, 0)T in the third scenario. For data 

sampled from model (18), we fitted mixed-effects biexponential quantile functions with 

parameter ϕτ,ij = Fijβτ + Gijui, where Fij = Gij = I4.

For each scenario, we replicated R = 500 datasets and fitted NLQMMs at three quantile 

levels using r τ ∊ {0.1, 0.5, 0.9}. Estimation was carried out by following the algorithm as 

described in Appendix A. An attempt to maximize the approximated Laplacian log-

likelihood (13) was made by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (optim) in the first instance. Upon failure of the BFGS algorithm during any 

iteration of the main estimation algorithm, the latter was started again and a new attempt to 

maximize (13) was made by using the Nelder-Mead algorithm. The maximum number of 

iterations was set to 500, while the tolerance for the relative change in the log-likelihood was 

set to 10−4.

We now provide details on starting values for the algorithm (further discussion on this point 

is given at the end of this section) and other computational aspects. Starting values for βτ 
were taken from nonlinear quantile regression (NLRQ) for independent data (Koenker and 

Park, 1996), while the mean NLRQ deviance was used to calculate the starting value for στ. 

The parameter §r was initialized using the estimate from NLME. It should be noted that both 

NLRQand NLME are nonlinear models whose estimation algorithms may too, in general, 
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need starting values. These were obtained from a ‘crude’ minimization of ∑i yi − f i(β)

Nelder-Mead. The Newton-type optimization algorithm (nlm) to estimate the random effects 

was initialized with the predictions from NLME. The starting value for the tuning parameter 

ω was set equal to maxi=1,…,N {|ri(βNLRQ)|/τ, |ri(βNLRQ)|/(1−τ)}/2, where ri(βNLRQ) denotes 

the NLRQ residuals, along the lines of the approach suggested in Chen (2007, p. 143). 

Between two successive iterations, ω was multiplied by the factor γ = 0.2. All the 

parameters of the optimization algorithms in optim and nlm were set at their default values. 

COmputations were performed using the R environment for statistical computing and 

graphics (R COre Team, 2016) version 3.3.2 on a desktop computer with a 3.60 GHz quad 

core i7–4790 processor and 16 GB of RAM.

Before we proceed with the analysis of the results, it is important to note that, in general, the 

nonlinearity of the models along with the presence of the random effects poses a difficulty 

for establishing the ‘true’ value of βτfor quantiles other than the median (see for example the 

simulation study in Karlsson, 2008), even when the errors are normal. For example, in the 

logistic model not only the asymptotes βτ and βτ,4 but also the midpoint βτ,2 and the scale 

βτ,3 change with r in a rather complicated way. (An exception is given by model (17) for 

which the lower and upper asymptotes (βτ,4 and βτ,1, respectively) do not change with r.) 

We find solace in observing that such limitation brings out one of the advantages of quantile-

based over moment-based modelling, since direct estimation of conditional quantiles does 

not require nontrivial manipulation of nonlinear relationships (Demidenko, 2013, p. 435). As 

a reference, we can consider the corresponding results from NLRQ under the assumption of 

independent observations. Similarity of the magnitude and direction of the estimates would 

support the interpretation of βτ as regression parameters of the ‘zero-median’ cluster, while 

comparing the variability of the estimates from NLQMM and NLRQ would inform us on 

whether accounting for clustering provides a gain in efficiency. Additionally, we determined 

the proportion of negative level-1 residuals (PNR)

1
N ∑

i = 1

M
∑

j = 1

n
I yi j − Qyi j |ui

(1) (τ) < 0 ,

which is expected to be approximately equal to r. All summary measures were averaged over 

the replications.

The average estimates τ and standard deviations of the estimates are reported in Tables 1–4. 

In summary, NLQMM estimates were close to NLRQ estimates in all scenarios. The 

variability of the estimates from NLQMM was either lower or close to that of the estimates 

from NLQR, and the standard errors decreased with increasing M and n. Of all the results, 

perhaps those related to the quantile 0.9 in the third scenario (Table 3) deserve more 

discussion. Both NLQMM and NLRQ clearly failed to provide meaningful estimates of the 

parameters. This is due to the fact that the range of the simulated values for x was not wide 

enough to correctly estimate the upper asymptote at upper quantiles. This observation may 

have a particular relevance when modelling reference growth curves. Further, the estimated 

variance-covariance parameters and the predicted random effects obtained from (12) were, 

in general, consistent with the parameters of the true distribution of the random effects, 
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although, as noted before, direct comparisons are not straightforward (additional results are 

reported in supplementary material).

In general, PNR rates for NLQMM were equal to the expected nominal r or within binomial 

variability, i.e. τ ± 1.96 N−1τ(1 − τ). However, in the fourth scenario PNRs were somewhat 

below (τ = 0.1) or above (τ = 0.9) the expected proportion. The PNRs for NLRQwere in 

general closer to the nominal r. This is explained by the different models’ setups and 

estimation procedures. While NLQR provides quantiles of the ‘marginal’ distribution of yij, 

NLQMM seeks a balance between random effects and errors. Given the approximated nature 

of (13), some inaccuracies in NLQMM are inevitable, especially at smaller sample sizes.

We now provide basic details about the algorithm’s performance at the larger sample size (M 

= 100, n = 10) and a few recommendations. On average, it took about 7 iterations 

(approximately 35 s) to fit one model for the quantile 0.1 or 0.9, and about 6 iterations 

(approximately 20 s) for the median in the first two scenarios. In the third scenario it took 

between 2 and 7 iterations (approximately 20 s on average) to fit one model for any of the 

three quantile levels. In the fourth scenario, the algorithm needed a similar number of 

iterations as in the first two scenarios but the time to convergence was, on average, twice as 

long. This means that, within each iteration, the number of function evaluations required by 

optim to fit the more complex biexponential model was greater than that needed to fit the 

logistic model. In the first two scenarios, the median value of the smoothing parameter co at 

the last iteration was about 2.0 × 10−3 for all considered quantiles. In the third scenario, it 

was less than 4.5 × 10−5 for the tail quantiles and 0.5 for the median. In the fourth scenario, 

it was less than 4.5 × 10−5 for all considered quantiles.

In a separate analysis with M = 100 and n = 10 (results not shown), the average number of 

iterations to convergence increased to at least 10 when γ was increased to 0.5. In contrast, 

the algorithm converged too quickly to smaller values of the log-likelihood when setting γ to 

less than 0.2. We recommend using γ between 0.2 and 0.5 in most situations.

Further, in the first three scenarios the average number of iterations and the values of the 

estimates were not particularly sensitive to the specific algorithm used for optimizing the 

log-likelihood, although the BFGS algorithm did fail to converge in about 20% of the 

replications, more often when estimating tail quantiles (28%) rather than when estimating 

the median (12%). In contrast, BFGS never failed to converge in the fourth scenario. We 

then ran a separate analysis (results not shown) in which biexponential models were fitted 

exclusively using Nelder-Mead. For τ = 0.1, estimates were unreasonable. We recommend 

using BFGS as default optimization algorithm.

Finally, we comment on the sensitivity of the algorithm to different starting values. We 

simulated data from the first scenario with M = 100 and n = 10 and we fitted NLQMMs for 

three quantile levels τ ∊ {0.1, 0.5, 0.9}. In one case, we used the starting values as defined 

above. Let us denote the resulting estimate by θ1. In another, we initialized βτ using a 

nonlinear least squares (NLS) estimate (Bates and Watts, 1988), while the square root of the 

mean NLS deviance was used to calculate the starting value for στ. The parameter §r was 
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initialized using the NLME estimate as before. Let us denote the resulting estimate by θ2. 

The relative absolute difference of the norms θ1  and θ2  was always less than 3%.

In summary, we conclude that the proposed algorithm gives similar estimates as long as 

starting values are obtained from analogous models, i.e., NLS or NLRQ, for initializing and 

βr, and NLME for initializing βτ and the random effects. In turn, starting values for NLS, 

NLRQ, and NLME can be obtained from a crude estimate as those provided by a self-

starting nonlinear function (R COre Team, 2016). For details on nonlinear algorithms in 

NLS, NLRQ, and NLME, we refer the reader to the relevant publications (Bates and Watts, 

1988; Koenker and Park, 1996; Pinheiro and Bates, 1995, 2000).

5. Applications

5.1. Pharmacokinetics

We begin with the analysis of a dataset taken from an old pharmacokinetics study (Kwan et 

al., 1976), often used as a toy example in nonlinear regression modelling (Davidian and 

Giltinan, 1995; Pinheiro and Bates, 2000). The data consists of 11 measurements of plasma 

concentrations of indomethacin which was injected intravenously in 6 subjects. In this study, 

the goal is to model the distribution and elimination of the drug. By using NLME, one is 

able to describe how the average drug concentration changes (nonlinearly) over time while 

taking into account the heterogeneity among subjects. It might also be of interest to model 

change on the tails of the distribution to establish, for example, percentile reference limits 

for drug concentration at specific times after injection or to compare rates of change across 

quantiles. The advantage of NLQMM is, first of all, its ability to model the quantiles of 

interest directly. The importance of this advantage becomes apparent if we consider that the 

marginal distribution in NLME generally lacks a closed form (Demidenko, 2013). Another 

advantage of NLQMM is its flexibility when assessing the impact of covariates on the 

location, scale, and shape of the conditional distribution of the response (Geraci, 2016). In 

contrast, NLME’s scope is limited to the modelling of location-and location-scale-shift 

effects, always within the bounds of a normal shape of the errors.

To analyse the Indomethacin Data, we used the biexponential model

Qyi j |ui
(τ) = βτ, 1 + u1i exp −exp βτ, 2 + u2i t j + βτ, 3 + u3i exp −exp βτ, 4 t j ,

where yij denotes the jth measurement of drug concentration (mcg/ml), j = i,…, 1, on the ith 

subject, i = 1,…, 6, and tj is the time (hr) of the measurement since injection (given that the 

design is common to all subjects and the dataset is balanced, t does not depend on i). We 

modelled the variance-covariance of the random effects using the diagonal matrix 

Στ = ⊕k = 1
3 στ, k

2  (variance components). Note that the regression model above includes 3 

random effects, one for each of the first 3 fixed effects. In a separate analysis (results not 

shown), we found that the random effect associated with βτ,4, τ ∊ {0.1, 0.5, 0.9}, had near-

zero variance (see also Pinheiro and Bates, 2000, p. 283).
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In this two-compartment model, the first exponential term determines the initial, rapidly 

declining distribution phase of the drug. The elimination of the drug is the predominant 

process during the second phase and is primarily determined by the second exponential 

term. Besides the average rates at which the drug is distributed and then eliminated, it might 

be of interest to assess the change over time of concentrations that are higher or lower than 

the mean. The left plot of Fig. 2 shows the boxplots of indomethacin concentration at each 

measurement occasion. It appears that the scale and possibly even the shape of the 

distribution are changing over time. This would mean that the rates are not similar across the 

quantiles of the conditional distribution.

The fitted biexponential curves for τ ∊{0.1, 0.5, 0.9} are given in the right plot of Fig. 2, 

while estimates of the fixed effects and their standard errors are reported in Table 5. The 

average rate (NLME) at which the drug decreases during the distribution phase was 

comparable to that of the 90th centile. However, the decrease was about 20 % faster at the 

lower 10th centile but about 20% slower at the median as compared to the mean. During the 

second phase, the rate of decrease was, again, greatest at the 10th centile. However, the 

average rate was similar to that of the median and greater than that of the 90th centile. One 

implication is that the distribution of the response becomes increasingly right-skewed as 

time passes. This is an advantage of NLQMM over NLME as the latter cannot obviously 

model changes in the shape of the distribution.

Finally, there was substantial heterogeneity among subjects regarding starting concentration 

levels during the distribution phase, especially at the 90th centile (Table 6). The predicted 

biexponential individual curves for each of the 6 subjects are given in Fig. 3. This kind of 

plot provides potentially useful information at the individual level. For example, the 

estimated drug concentration over time for the individual labelled as ‘Subject 3’ clearly 

shows a wider spread as compared to the other individuals.

5.2. Growth curves

In this section, we analyse data on growth patterns of two genotypes of soybeans: Plant 

Introduction #416937 (P), an experimental strain, and Forrest (F), a commercial variety 

(Davidian and Giltinan, 1995). The response variable is the average leaf weight of 6 plants 

chosen at random from each experimental plot and measured at approximately weekly 

intervals, between two and eleven weeks after planting. The experiment was carried out over 

three different planting years: 1988, 1989, and 1990. Eight plots were planted with each 

genotype in each planting year, giving a total of 48 plots in the study (Pinheiro and Bates, 

2000).

Here, the goal is to compare growth of the plants in the two genotypic groups, P and F. We 

consider the application of NLQMM for reasons analogous to those given in the preceding 

example. From previous analyses of these data (Davidian and Giltinan, 1995; Pinheiro and 

Bates, 2000), we know that the experimental strain yielded on average heavier plants than 

the commercial variety in one particular year. Two questions of interest here are how the two 

genotypes compare at different quantiles of leaf weight and whether quantile treatment 

effects depend on planting year.
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Fig. 4 shows the temporal trajectories of the average leaf weight for individual plots. It is 

apparent that the experimental strain yielded heavier leaves than the F variety, at least on 

average. There also seem to be differences between planting years, with a wider spread of 

the curves in 1989. Given that previous analyses of these data focused on the average growth 

curves, we set out to investigate growth in the tails of the distribution. For our analysis, we 

used the same logistic model as that in Pinheiro and Bates (2000, p. 293) which was selected 

over a number of alternative models, that is

Qyi j |ui
(τ) =

ϕτ, 1i j
1 + exp ϕτ, 2i j − ti j /ϕτ, 3i j

,

where yij denotes the average leaf weight (g) observed on occasion j, j = 1,…, ni, in the ith 

plot, i = 1,…, 48, and tij is the time (days) of the measurement after planting. The number of 

measurements per plot ranged between 8 and 10. The design matrices of the 3 × 1 parameter 

ϕτ,ij = Fijβτ + Gijui were given by

Fi j =

1 χi j
(89) χi j

(90) χi j
(P) χi j

(89) ⋅ χi j
(P) χi j

(90) ⋅ χi j
(P) 0 0 0 0 0 0 0

0 0 0 0 0 0 1 χi j
(89) χi j

(90) χi j
(P) 0 0 0

0 0 0 0 0 0 0 0 0 0 1 χi j
(89) χi j

(90)

and Gi j = 1 0 0 ⊤. Thus,βτ is a 13 × 1 vector. The covariates in the F matrix are dummy 

variables for year of planting, x(89) and x(90), and genotype, x(p). The baseline is represented 

by year 1988 and variety F. The only random effect included in the model was associated 

with the asymptote.

The three plots in Fig. 5 show the 5th centile, 95th centile, and mean predicted growth 

curves by variety and planting year, while the estimates and standard errors of the fixed 

effects are reported in Table 7. For the sake of brevity, we confine our discussion to the 

genotypic effect on the asymptote. In 1988, the experimental strain had an advantage over 

the commercial variety but only at the 95th centile of the leaf weight distribution, with an 

estimated asymptote difference of 6.31 g (as given by βτ, 4)in following year, the overall 

effect of variety P on the asymptote (calculated as βτ, 4 + βτ, 5) was equal to 6.95 g at the 5th 

centile and 10.67 g at the 95th centile. In comparison, the mean effect was 7.19 g, closer to 

the 5th than to the 95th centile. However, the interaction between variety and year 1989 was 

not statistically significant at the 95th centile. Finally, in 1990 the overall effect of variety P 

on the asymptote (calculated as βτ, 4 + βτ, 6) was relatively small at both the 5 th (0.58 g) and 

95th (2.81 g) centiles. In summary, the experimental strain did yield heavier leaves than the 

F variety, not only in 1989 as estimated by NLME, but also in 1988, and the magnitude of 

the genotypic effect was dependent on the quantile level.
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6. Final remarks

Mixed-effects modelling has a long tradition in statistical applications. There is a vast 

number of applications of mixed models to the analysis of clustered data in the social, life 

and physical sciences (Pinheiro and Bates, 2000; Demidenko, 2013). Linear quantile mixed 

models (Geraci and Bottai, 2007,2014) have too been used in a wide range of research areas, 

including marine biology (Muir et al., 2015; Duffy et al., 2015; Barneche et al., 2016), 

environmental science (Fornaroli et al., 2015), cardiovascular disease (Degerud et al., 2014; 

Blankenberg et al., 2016), physical activity (Ng et al., 2014; Beets et al., 2016), and 

ophthalmology (Patel et al., 2015,2016). The present paper provides a novel and valuable 

contribution to the modelling of nonlinear quantile functions which broadens the 

applicability of quantile regression for clustered data.

NLQMMs represent a flexible alternative to nonlinear mixed models for the mean as they 

allow direct estimation of conditional quantile functions without imposing normal 

assumptions on the errors. As shown in two real data examples, NLQMMs reveal nonlinear 

relationships that may be quantitatively and qualitatively different at different quantiles. 

Also, changes in location, scale, and shape of the response distribution determined by the 

covariates are naturally brought into light by examining central and tail quantiles (Geraci, 

2016).

As compared to NLRQ, which is based on the assumption of independent data, the proposed 

models provide additional information about the heterogeneity among clusters and allow for 

inference at the cluster level. The results of a simulation study show that NLQMM 

predictions at the cluster level have approximately the correct quantile level. The results also 

support the interpretation of the predictions at level 0 as sample quantiles of the ‘zero-

median’ cluster.

The performance of the novel algorithm, a blend of a smoothing algorithm for quantile 

regression and a second order Laplacian approximation for nonlinear mixed models, was 

satisfactory overall. The average number of iterations to convergence (5 to 7) and average 

time needed (20 to 30 s with the larger sample size, and 5 to 15 s with the smaller sample 

size) were acceptable. An important advantage of the proposed algorithm relative to, say, 

numerical quadrature (Geraci and Bottai, 2014) is the availability of estimated random 

effects at convergence. However, it is precisely the estimation of the random effects that 

takes up most of the running time. We believe that there is scope for further improvement 

and this is part of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: NLQMM estimation

The estimation algorithm for NLQMM is based on a set of decreasing values of ω. This 

optimization approach has the appealing advantage of reducing the original nonsmooth 

problem to an approximated L2 problem. The pseudo-code is given below.

Smoothing Algorithm with Laplacian Approximation for Nonlinear Quantile 
Mixed Models

1. Set the maximum number of iterations T; the factor 0 < γ < 1 for reducing the 

tuning parameter ω the tolerance for the change in the log-likelihood; and t = 

0. Estimate the starting values as follows:

a. obtain an estimate for βτ
(0) 1using nonlinear quantile regression 

(Koenker and Park, 1996). See, for example, the function nlrq in the 

R package quantreg (Koenker, 2016) which supports self-starting 

models such as SSlogis. If the nonlinear quantile regression 

algorithm fails, consider the estimate of the fixed effects from the 

NLME model in step (l.b) below or, if the latter fails too, a standard 

NLS estimate (Bates and Watts, 1988);

b. obtain an estimate for ξτ
(0) from an NLME model. See, for example, 

the function nlme in the R package (Pinheiro et al., 2014). This 

function too supports self-starting models. If the NLME algorithm 

fails, provide an arbitrary value ξτ
(0);

c. obtain an estimate for στ
(0) For example, this can be estimated as the 

mean of the absolute residuals from step (1.a) above;

d. provide a starting value ω(0) (see, for example, Chen, 2007, p. 143);

e. using βτ
(0), ξτ

(0), and στ
(0) solve the penalized least-squares problem 

(12) to obtain ui
(0), i = 1, M. See, for example, the R function nlm.

2. While t < T

a. Update θτ
(t) by minimizing (13) (or (14)). See, for example, the R 

function optim.

b. If the change in the log-likelihood is smaller than a given tolerance

i. then return θτ
(t + 1);

ii. else set θτ
(t + 1) = θτ

(t); ω(t+1) = γ ∙ ω(t); t = t + 1; go to step 

(2.a).

3. Update στ
(t) and ui

(t), i = 1,…,M.
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Fig. 1. 
Examples of data generated from the logistic (scenarios 1–3) and the biexponential (scenario 

4) models.
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Fig. 2. 
Boxplots of indomethacin concentration by measurement occasion (left) and fitted 

biexponential curves at the 10th, 50th and 90th centiles of drug concentration conditional on 

time since injection (right) using the Indomethacin Data.
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Fig. 3. 
Fitted biexponential curves at the 10th, 50th and 90th centiles of drug concentration 

conditional on time since injection for individual subjects in the Indomethacin Data.
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Fig. 4. 
Observed growth curves of soybean plants. Each line represents the average leaf weight per 

plant in each experimental plot. Curves are grouped by variety (left) or by year (right).

Geraci Page 26

Comput Stat Data Anal. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Fitted logistic growth curves of soybean plants at the 5th centile (left), 95th centile (centre), 

and at the mean (right).
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Table 1

Estimates of the fixed effects from nonlinear quantile mixed-effects regression (NLQMM) and from nonlinear 

quantile regression (NLRQ) with τ.∊{0.1, 0.5, 0.9} for the first scenario. The estimates are averaged over 500 

replications and the standard deviations are reported in brackets. Data were generated using the model’s 

parameter β (70, 10, 3, 10)⊤.

β1 β2 β3 β4 PNR

NLQMM (M = 50, n = 5)

τ = 0.1 69.28 (6.52) 12.85 (0.91) 3.10 (0.59) 9.20 (2.15) 0.09

τ = 0.5 70.40 (0.82) 9.99 (0.45) 3.06 (0.15) 9.55 (0.63) 0.50

τ = 0.9 73.09 (1.40) 7.20 (0.65) 3.16 (0.37) 9.12 (2.42) 0.91

NLRQ(M = 50, n = 5)

τ = 0.1 69.22 (7.98) 12.84 (1.19) 3.07 (0.67) 9.44 (1.27) 0.10

τ = 0.5 69.81 (1.84) 9.99 (0.55) 2.99 (0.39) 10.09 (1.61) 0.50

τ = 0.9 72.13 (1.63) 7.38 (0.81) 2.98 (0.56) 10.82 (5.06) 0.90

NLQMM (M = 100, n = 5)

τ = 0.1 69.04 (2.08) 12.79 (0.54) 3.10 (0.25) 8.93 (0.63) 0.09

τ = 0.5 70.44 (0.57) 10.00 (0.31) 3.06 (0.11) 9.55 (0.42) 0.50

τ = 0.9 73.16 (0.87) 7.20 (0.48) 3.17 (0.22) 9.10 (1.49) 0.91

NLRQ(M = 100, n = 5)

τ = 0.1 68.65 (4.12) 12.80 (0.72) 3.04 (0.41) 9.54 (0.78) 0.10

τ = 0.5 69.84 (1.37) 10.00 (0.37) 3.00 (0.29) 10.12 (1.13) 0.50

τ = 0.9 72.11 (1.17) 7.29 (0.77) 3.02 (0.45) 10.40 (5.05) 0.90

NLQMM (M = 100, n = 10)

τ = 0.1 68.00 (0.73) 12.66 (0.40) 3.06 (0.10) 8.79 (0.34) 0.09

τ = 0.5 70.23 (0.38) 9.99 (0.28) 3.04 (0.05) 9.70 (0.22) 0.50

τ = 0.9 73.47 (0.56) 7.28 (0.38) 3.15 (0.10) 9.76 (0.52) 0.92

NLRQ(M = 100, n = 10)

τ = 0.1 68.47 (2.76) 12.77 (0.58) 3.04 (0.27) 9.54 (0.53) 0.10

τ = 0.5 69.79 (0.92) 9.99 (0.33) 3.00 (0.18) 10.11 (0.71) 0.50

τ = 0.9 72.26 (0.85) 7.19 (0.53) 3.11 (0.32) 9.53 (2.75) 0.90
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Table 2

Estimates of the fixed effects from nonlinear quantile mixed-effects regression (NLQMM) and from nonlinear 

quantile regression (NLRQ) with τ ∊ {0.1, 0.5, 0.9} for the second scenario. The estimates are averaged over 

500 replications and the standard deviations are reported in brackets. Data were generated using the model’s 

parameter β = (70, 10, 3, 10)⊤.

β1 β2 β3 β4 PNR

NLQMM (M = 50, n = 5)

τ = 0.1 71.06 (5.86) 12.90 (1.00) 3.13 (0.51) 10.27 (1.20) 0.09

τ = 0.5 71.54 (0.80) 9.96 (0.43) 3.06 (0.14) 10.58 (0.53) 0.50

τ = 0.9 74.32 (1.45) 7.11 (0.77) 3.21 (0.44) 9.72 (3.56) 0.92

NLRQ (M = 50, n = 5)

τ = 0.1 70.25 (5.89) 12.82 (1.01) 3.06 (0.56) 10.71 (1.03) 0.10

τ = 0.5 70.98 (1.75) 9.98 (0.53) 2.98 (0.37) 11.26 (1.53) 0.50

τ = 0.9 73.51 (1.65) 7.19 (0.94) 3.09 (0.63) 10.77 (5.75) 0.90

NLQMM (M = 100, n = 5)

τ = 0.1 70.25 (1.65) 12.80 (0.49) 3.09 (0.21) 10.32 (0.45) 0.09

τ = 0.5 71.62 (0.50) 9.97 (0.29) 3.07 (0.09) 10.55 (0.36) 0.50

τ = 0.9 74.45 (0.90) 7.19 (0.46) 3.19 (0.22) 10.18 (1.41) 0.92

NLRQ (M = 100, n = 5)

τ = 0.1 69.86 (3.53) 12.79 (0.67) 3.03 (0.36) 10.81 (0.65) 0.10

τ = 0.5 71.06 (1.23) 10.00 (0.35) 3.00 (0.27) 11.30 (1.07) 0.50

τ = 0.9 73.41 (1.13) 7.19 (0.68) 3.08 (0.45) 10.85 (4.14) 0.90

NLQMM (M = 100, n = 10)

τ = 0.1 69.28 (0.68) 12.70 (0.40) 3.05 (0.08) 10.25 (0.22) 0.09

τ = 0.5 71.39 (0.35) 9.97 (0.27) 3.05 (0.05) 10.64 (0.19) 0.50

τ = 0.9 74.67 (0.55) 7.26 (0.38) 3.15 (0.10) 10.98 (0.58) 0.91

NLRQ (M = 100, n = 10)

τ = 0.1 69.67 (2.53) 12.77 (0.55) 3.03 (0.24) 10.80 (0.46) 0.10

τ = 0.5 71.03 (0.90) 9.98 (0.31) 3.01 (0.18) 11.25 (0.72) 0.50

τ = 0.9 73.49 (0.82) 7.17 (0.54) 3.11 (0.32) 10.73 (2.86) 0.90
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Table 3

Estimates of the fixed effects from nonlinear quantile mixed-effects regression (NLQMM) and from nonlinear 

quantile regression (NLRQ) with τ ∊ {0.1, 0.5, 0.9} for the third scenario. The estimates are averaged over 

500 replications and the standard deviations are reported in brackets. Data were generated using the model’s 

parameter β (1, 4, 1, 0)⊤.

β1 β2 β3 β4 PNR

NLQMM (M = 50, n = 5)

τ = 0.1 1.03 (0.20) 4.05 (0.32) 0.96 (0.14) 0.00 (0.01) 0.08

τ = 0.5 0.99 (0.06) 3.19 (0.16) 0.83 (0.10) 0.01 (0.01) 0.49

τ = 0.9 −0.13 (0.86) 2.13 (1.18) −1.51 (2.13) 1.11 (0.66) 0.91

NLRQ(M = 50, n = 5)

τ = 0.1 1.17 (0.93) 4.08 (0.68) 1.01 (0.16) −0.00 (0.01) 0.12

τ = 0.5 1.02 (0.10) 3.20 (0.23) 0.88 (0.14) −0.00 (0.02) 0.50

τ = 0.9 −0.33 (1.60) −0.47 (3.64) −2.06 (2.22) 0.46 (0.44) 0.89

NLQMM (M = 100, n = 5)

τ = 0.1 1.00 (0.08) 4.00 (0.14) 0.98 (0.09) 0.00 (0.00) 0.10

τ = 0.5 0.99 (0.04) 3.18 (0.11) 0.82 (0.07) 0.01 (0.01) 0.49

τ = 0.9 −0.20 (0.73) 2.10 (1.09) −1.36 (1.62) 1.15 (0.45) 0.88

NLRQ(M = 100, n = 5)

τ = 0.1 1.04 (0.15) 3.99 (0.24) 1.01 (0.08) −0.00 (0.01) 0.12

τ = 0.5 1.01 (0.06) 3.18 (0.15) 0.87 (0.09) −0.00 (0.01) 0.50

τ = 0.9 −0.36 (0.69) −0.76 (1.88) −2.11 (1.22) 0.43 (0.27) 0.90

NLQMM (M = 100, n = 10)

τ = 0.1 0.95 (0.06) 4.18 (0.20) 0.92 (0.08) 0.00 (0.00) 0.08

τ = 0.5 1.00 (0.03) 3.19 (0.08) 0.85 (0.05) 0.00 (0.01) 0.49

τ = 0.9 −0.25 (0.93) 2.09 (1.34) −1.16 (1.40) 1.11 (0.36) 0.92

NLRQ(M = 100, n = 10)

τ = 0.1 1.01 (0.03) 3.96 (0.06) 1.01 (0.02) −0.00 (0.00) 0.13

τ = 0.5 1.00 (0.04) 3.18 (0.10) 0.87 (0.06) −0.00 (0.01) 0.50

τ = 0.9 −0.48 (0.57) −1.24 (1.65) −2.19 (0.98) 0.40 (0.22) 0.90

Comput Stat Data Anal. Author manuscript; available in PMC 2020 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Geraci Page 31

Table 4

Estimates of the fixed effects from nonlinear quantile mixed-effects regression (NLQMM) and from nonlinear 

quantile regression (NLRQ) with τ ∊{0.1, 0.5, 0.9} for the fourth scenario. The estimates are averaged over 

500 replications and the standard deviations are reported in brackets. Data were generated using the model’s 

parameter β (2, 0.8, 0.4, −1.5)⊤.

β1 β2 β3 β4 PNR

NLQMM (M = 50, n = 5)

τ = 0.1 2.11 (0.63) 1.02 (0.55) 0.30 (0.13) −∞ (∞) 0.04

τ = 0.5 2.06 (0.28) 0.72 (0.22) 0.88 (0.13) −3.06 (0.31) 0.50

τ = 0.9 2.09 (0.40) 0.71 (0.31) 1.65 (0.16) −2.40 (0.18) 0.94

NLRQ(M = 50, n = 5)

τ = 0.1 2.00 (0.60) 0.96 (0.37) 0.46 (0.15) −∞ (∞) 0.09

τ = 0.5 2.07 (0.38) 0.71 (0.30) 0.87 (0.15) −3.24 (1.52) 0.50

τ = 0.9 2.24 (0.73) 0.63 (0.42) 1.40 (0.24) −0.92 (24.07) 0.88

NLQMM (M = 100, n = 5)

τ = 0.1 1.99 (0.26) 0.99 (0.16) 0.37 (0.11) −∞ (∞) 0.04

τ = 0.5 2.04 (0.19) 0.69 (0.16) 0.94 (0.11) −3.15 (0.25) 0.50

τ = 0.9 2.05 (0.24) 0.66 (0.19) 1.71 (0.12) −2.46 (0.14) 0.94

NLRQ(M = 100, n = 5)

τ = 0.1 1.91 (0.37) 0.98 (0.25) 0.54 (0.13) −∞ (∞) 0.09

τ = 0.5 2.05 (0.23) 0.68 (0.20) 0.93 (0.13) −3.23 (0.47) 0.50

τ = 0.9 2.17 (0.31) 0.59 (0.27) 1.46 (0.16) −1.80 (3.46) 0.88

NLQMM (M = 100, n = 10)

τ = 0.1 1.93 (0.19) 1.06 (0.12) 0.46 (0.13) −∞ (∞) 0.06

τ = 0.5 2.04 (0.15) 0.72 (0.10) 1.03 (0.11) −3.19 (0.17) 0.50

τ = 0.9 2.05 (0.17) 0.61 (0.15) 1.82 (0.12) −2.48 (0.11) 0.94

NLRQ(M = 100, n = 10)

τ = 0.1 1.86 (0.26) 0.98 (0.19) 0.61 (0.14) −∞ (∞) 0.09

τ = 0.5 2.04 (0.18) 0.70 (0.14) 1.01 (0.13) −3.27 (0.24) 0.50

τ = 0.9 2.17 (0.21) 0.61 (0.19) 1.55 (0.14) −2.32 (1.89) 0.90
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Table 5

Estimates of the fixed effects (standard errors) from three biexponential quantile mixed-effects models with τ 
∊ {0.1, 0.5, 0.9} and from the normal nonlinear mixed-effects model (NLME) using the Indomethacin Data. 

Standard errors for quantile regression estimates are based on 200 bootstrap replications. Bold denotes 

statistically significant at the 5% level.

β1 β2 β3 β4

τ = 0.1 2.31 (0.48) 0.99 (0.16) 0.30 (0.13) −1.19 (0.57)

τ = 0.5 2.55 (0.28) 0.58 (0.19) 0.44 (0.17) −1.33 (0.23)

τ = 0.9 3.73 (0.52) 0.75 (0.35) 0.69 (0.34) −1.49 (0.37)

NLME 2.83 (0.26) 0.77 (0.11) 0.46 (0.11) −1.35 (0.23)
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Table 6

Estimates of the variance components from three biexponential quantile mixed-effects models with tτ ∊{0.1, 

0.5, 0.9} and from the normal nonlinear mixed-effects model (NLME) using the Indomethacin Data.

σ1
2 σ2

2 σ3
2

τ = 0.1 0.78 0.06 0.02

τ = 0.5 0.59 0.08 0.02

τ = 0.9 1.34 0.05 0.06

NLME 0.33 0.03 0.01
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Table 7

Estimates of the fixed effects (standard errors) from two logistic quantile mixed-effects models with τ ∊{0.05, 

0.95} and from the normal nonlinear mixed-effects model (NLME) using the Soybean Data. Standard errors 

for quantile regression estimates are based on 200 bootstrap replications. Bold denotes statistically significant 

at the 5% level.

τ = 0.05 τ = 0.95 NLME

β1 17.49 (1.47) 21.43 (2.34) 19.43 (0.95)

β2 −7.99 (1.53) −7.02 (2.30) −8.84 (1.07)

β3 −0.66 (2.06) −1.67 (2.49) −3.71 (1.18)

β4 −1.64 (2.01) 6.31 (1.99) 1.62 (1.04)

β5 8.59 (1.93) 4.36 (2.41) 5.57 (1.17)

β6 2.22 (2.05) −3.50 (2.01) 0.15 (1.18)

β7 56.16 (1.13) 53.71 (2.57) 54.81 (0.75)

β8 3.30 (2.11) −0.86 (2.85) −2.24 (0.97)

β9 1.94 (2.48) −3.14 (2.79) −4.97 (0.97)

β10 −2.50 (1.70) 0.51 (0.97) −1.30 (0.41)

β11 8.11 (0.32) 8.63 (0.79) 8.06 (0.15)

β12 −0.29 (0.51) −0.76 (0.85) −0.90 (0.20)

β13 0.40 (0.49) 0.44 (0.91) −0.67 (0.21)
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