Skip to main content
. Author manuscript; available in PMC: 2020 Aug 1.
Published in final edited form as: Comput Stat Data Anal. 2018 Dec 21;136:30–46. doi: 10.1016/j.csda.2018.12.005

Table 4.

Estimates of the fixed effects from nonlinear quantile mixed-effects regression (NLQMM) and from nonlinear quantile regression (NLRQ) with τ ∊{0.1, 0.5, 0.9} for the fourth scenario. The estimates are averaged over 500 replications and the standard deviations are reported in brackets. Data were generated using the model’s parameter β (2, 0.8, 0.4, −1.5).

β1 β2 β3 β4 PNR
NLQMM (M = 50, n = 5)
τ = 0.1 2.11 (0.63) 1.02 (0.55) 0.30 (0.13) −∞ (∞) 0.04
τ = 0.5 2.06 (0.28) 0.72 (0.22) 0.88 (0.13) −3.06 (0.31) 0.50
τ = 0.9 2.09 (0.40) 0.71 (0.31) 1.65 (0.16) −2.40 (0.18) 0.94
NLRQ(M = 50, n = 5)
τ = 0.1 2.00 (0.60) 0.96 (0.37) 0.46 (0.15) −∞ (∞) 0.09
τ = 0.5 2.07 (0.38) 0.71 (0.30) 0.87 (0.15) −3.24 (1.52) 0.50
τ = 0.9 2.24 (0.73) 0.63 (0.42) 1.40 (0.24) −0.92 (24.07) 0.88
NLQMM (M = 100, n = 5)
τ = 0.1 1.99 (0.26) 0.99 (0.16) 0.37 (0.11) −∞ (∞) 0.04
τ = 0.5 2.04 (0.19) 0.69 (0.16) 0.94 (0.11) −3.15 (0.25) 0.50
τ = 0.9 2.05 (0.24) 0.66 (0.19) 1.71 (0.12) −2.46 (0.14) 0.94
NLRQ(M = 100, n = 5)
τ = 0.1 1.91 (0.37) 0.98 (0.25) 0.54 (0.13) −∞ (∞) 0.09
τ = 0.5 2.05 (0.23) 0.68 (0.20) 0.93 (0.13) −3.23 (0.47) 0.50
τ = 0.9 2.17 (0.31) 0.59 (0.27) 1.46 (0.16) −1.80 (3.46) 0.88
NLQMM (M = 100, n = 10)
τ = 0.1 1.93 (0.19) 1.06 (0.12) 0.46 (0.13) −∞ (∞) 0.06
τ = 0.5 2.04 (0.15) 0.72 (0.10) 1.03 (0.11) −3.19 (0.17) 0.50
τ = 0.9 2.05 (0.17) 0.61 (0.15) 1.82 (0.12) −2.48 (0.11) 0.94
NLRQ(M = 100, n = 10)
τ = 0.1 1.86 (0.26) 0.98 (0.19) 0.61 (0.14) −∞ (∞) 0.09
τ = 0.5 2.04 (0.18) 0.70 (0.14) 1.01 (0.13) −3.27 (0.24) 0.50
τ = 0.9 2.17 (0.21) 0.61 (0.19) 1.55 (0.14) −2.32 (1.89) 0.90