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Abstract

Selecting between competing Structural Equation Models (SEMs) is a common problem. Often 

selection is based on the chi square test statistic or other fit indices. In other areas of statistical 

research Bayesian information criteria are commonly used, but they are less frequently used with 

SEMs compared to other fit indices. This article examines several new and old Information 

Criteria (IC) that approximate Bayes Factors. We compare these IC measures to common fit 

indices in a simulation that includes the true and false models. In moderate to large samples, the 

IC measures outperform the fit indices. In a second simulation we only consider the IC measures 

and do not include the true model. In moderate to large samples the IC measures favor 

approximate models that only differ from the true model by having extra parameters. Overall, 

SPBIC, a new IC measure, performs well relative to the other IC measures.
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1 Introduction

Structural equation models (SEMs) refer to a widely used general class of statistical models. 

SEMs are well-established in the social and behavioral sciences, and are diffusing to the 

health and natural sciences (e.g., Bentler and Stein 1992; Shipley 2000; Schnoll et al. 2004; 

Beran and Violato 2010). Key issues in the use of SEMs are determining the fit of the model 

to the data and comparing the relative fit of two or more models to the same data. An 

asymptotic chi-square distributed test statistic that tests whether a SEM exactly reproduces 

the covariance matrix of observed variables was the first test and index of model fit 

(Jöreskog 1969, 1973). However, given the approximate nature of most models and the 

enhanced statistical power that generally accompanies a large sample size, the chi-square 
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test statistic routinely rejects models in large samples regardless of their merit as 

approximations to the underlying process. Starting with Tucker and Lewis (1973) and 

Jöreskog and Sörbom (1979), a variety of fit indices have been developed to supplement the 

chi-square test statistic (see Bollen and Long 1993). Controversy surrounds these alternative 

fit indices for several reasons. For example, the sampling distribution of a particular fit index 

is often not known. Additionally, sometimes the fit index tends to increase as sample size 

increases (Bollen 1989, 269–281). Finally, there is disagreement about the optimal cutoff 

values for a “well-fitting” model.

Researchers frequently use the Bayesian Information Criterion (BIC) to compare the fit of 

models in multiple regression, generalized linear models, and several other areas of 

statistical modeling (Raftery 1995). Yet despite this common use, the BIC has received little 

attention in the SEM literature. Cudeck and Browne (1983) and Bollen (1989) give only 

brief mention to Schwarz’s (1978) BIC as an approximation to the Bayes Factor. Raftery 

(1993, 1995) provides more discussion of the BIC in SEMs, as do Homburg (1991) and 

Haughton et al. (1997). However, compared to the RMSEA, CFI, or other fit indices, it is 

less common to see the BIC in applications of SEMs, despite its potential value in 

comparing the fit of competing models. It is known that asymptotically the BIC should 

choose the true model structure when it is included among the choices (e.g., Hannan and 

Quinn 1979), but this tells us little about how the BIC works in small to moderate sized 

samples. Furthermore, we know of no study that examines the BIC in SEM model selection 

when none of the candidate models is the true model, which is the most common situation in 

applied research.

The primary purpose of this article is to examine the performance of different Information 

Criteria (IC) based on Bayes Factors in model selection in SEM. We compare the BIC, the 

Haughton Bayesian Information Criterion (HBIC, see Haughton 1988), and two new IC 

measures: the Information Matrix-Based Information Criterion (IBIC) and the Scaled Unit 

Information Prior Bayesian Information Criterion (SPBIC, see Bollen et al. 2012). In the 

course of presenting the IBIC and SPBIC, we explain their potential use in choosing among 

models.1 Bollen et al. (2012) present the theoretical justifications for the IBIC and SPBIC, 

but they only examine them in a multiple regression context; no one has examined them in 

the context of SEMs. Our analysis is restricted to IC-based approximations to the Bayes 

Factor; we do not attempt a fully Bayesian analysis. In so doing, we follow the practice of 

the vast majority of social and behavioral scientists working with other types of statistical 

models beyond SEM.2

Our simulation has two parts: 1) when the true model is among the choices and 2) when all 

models are approximations. The first simulation compares the success of the BIC, HBIC, 

IBIC, SPBIC, and more common SEM fit indices in finding the true model across sample 

1The online appendix and complete replication materials for the analyses presented here are available at http://
dvn.iq.harvard.edu/dvn/dv/jjharden.
2A dedicated Bayesian statistician would prefer formal Bayesian analyses, by specifying explicit prior probabilities to develop actual 
Bayes Factors, which could then be compared to the various IC approximations. Though we recognize the value of this approach as an 
ideal, social and behavioral scientists in practice rarely work with prior distributions, but instead use IC based measures that do not 
require prior specifications for model selection. Our goal is to assess the accuracy of such IC measures for selecting the true model or 
the best approximation to the true model in SEM, an area that has received little attention, and with some IC measures that are new.
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sizes ranging from 100 to 5000. Asymptotically, the BIC, HBIC, IBIC, and SPBIC should 

select the true model, but we do not know their behavior in small to moderate sample sizes. 

In addition, we have no information on which, if any of the IC measures, approach their 

asymptotic behavior more quickly. The second simulation addresses the behavior of the IC 

measures when the true model is not in the pool of models.

The next section introduces the SEM equations and assumptions and reviews the current 

methods of assessing SEM model fit. Following this is a section in which we present the 

Bayes Factor, the BIC, and the HBIC, IBIC, and SPBIC. We then describe our Monte Carlo 

simulation study that examines the behavior of various model selection criteria for a series 

of models that are either correct, underspecified, or overspecified. An empirical example 

then illustrates the IC measures in model selection. Finally, we conclude with a discussion of 

the implications of the results and recommendations for researchers.

2 Structural Equation Models and Fit Indices

SEMs have two primary components: a latent variable model and a measurement model. We 

write the latent variable model3 as:

η = αη + Bη + Γξ + ζ . (1)

The n vector is m × 1 and contains the m latent endogenous variables. The intercept terms 

are in the m × 1 vector of αη. The m × m coefficient matrix B gives the effect of the ηs on 

each other. The n latent exogenous variables are in the n × 1 vector ξ. The m × n coefficient 

matrix Γ contains the coefficients for ξ’s impact on the ηs. An m × 1 vector ζ contains the 

disturbances for each latent endogenous variable. We assume that E(ζ) = 0, COV (ζ, ξ) = 0, 

and we assume that the disturbance for each equation is homoscedastic and 

nonautocorrelated across cases, although the variances of ζs from different equations can 

differ and these ζs can correlate across equations. The m × m covariance matrix Σζζ has the 

variances of the ζs down the main diagonal and the across equation covariances of the ζs on 

the off-diagonal. The n × n covariance matrix of ξ is Σξξ.

The measurement model is:

y = αy + Λyη + ε (2)

x = αx + Λxξ + δ (3)

The p × 1 vector y contains the indicators of the ηs. The p × m coefficient matrix Λy (the 

“factor loadings”) give the impact of the ηs on the ys. The unique factors or errors are in the 

3The latent variable model is also called the “structural equation.” Because the latent variable and measurement models both have 
structural parameters we prefer the term “latent variable model” to avoid this confusion.
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p × 1 vector ε. We assume that E(ε) = 0 and COV(η, ε) = 0. The covariance matrix for the ε 
is Σεε. There are analogous definitions and assumptions for measurement Equation 3 for the 

q × 1 vector x. We assume that ζ, ε, and δ are uncorrelated with ξ and in most models these 

disturbances and errors are assumed to be uncorrelated among themselves, though the latter 

assumption is not essential.4 We also assume that the errors are homoscedastic and 

nonautocorrelated across cases.

In these models, the covariance matrix (Σ) and the mean vector (μ) are functions of the 

parameters of the model. These are the implied covariance matrix [Σ(θ)] and the implied 

mean vector [μ(θ)] where θ is a vector that contains all parameters of a model including 

coefficients, means, variances, and covariances. General expressions for Σ(θ) and μ(θ) are 

available in several sources (e.g., Bollen 1989) and by substituting the parameters that apply 

to a specific model the implied moments are available for this model. If a model is true, 

then:

Σ = Σ(θ) (4)

and

μ = μ(θ) . (5)

The log likelihood of the maximum likelihood (ML) estimator, derived under the assumption 

that z, which is the combined vector for the data (x and y), comes from a multinormal 

distribution, is

lnL(θ) = K − 1
2ln Σ(θ) − 1

2[z − μ(θ)]′Σ−1(θ)[z − μ(θ)], (6)

where K is a constant that has no effect on the values of θ that maximize the log likelihood.

The chi-square test statistic derives from a likelihood ratio test of the hypothesized model to 

a saturated model where the covariance matrix and mean vector are exactly reproduced. The 

null hypothesis of the chi-square test is that Equations 4 and 5 hold exactly. In large samples, 

the likelihood ratio (LR) test statistic follows a chi-square distribution when the null 

hypothesis is true. Excess kurtosis can affect the test statistic, though there are various 

corrections that, among other things, address excess kurtosis (Satorra and Bentler 1988; 

Bollen and Stine 1992). In practice, the typical outcome of this test in large samples is 

rejection of the null hypothesis that represents the model. This often occurs even when 

corrections for excess kurtosis are made. At least part of the explanation is that the null 

hypothesis assumes exact fit whereas in practice we anticipate at least some inaccuracies in 

our modeling. The significant LR test simply reflects what we know: our model is at best an 

approximation. If the model is approximately correct and no other assumptions are violated, 

4We can modify the model to permit such correlations among the errors, but do not do so here.
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the large sample distribution of the test statistic is a noncentral chi-square distribution, its 

shape governed by a noncentrality parameter and the degrees of freedom (for example, see 

Cudeck and Browne 1983).

In response to the common rejection of the null hypothesis of perfect fit, researchers have 

proposed and used a variety of fit indices. The Incremental Fit Index (IFI, Bollen 1989), 

Comparative Fit Index (CFI, Bentler 1990), Tucker-Lewis Index (TLI, Tucker and Lewis 

1973), Relative Noncentrality Index (RNI, Bentler 1990; McDonald and Marsh 1990), and 

Root Mean Squared Error of Approximation (RMSEA, Steiger and Lind 1980) are just a few 

of the many indices of fit that have been proposed. Though the popularity of each has waxed 

and waned, there are problems characterizing all or most of these. One is that there is 

ambiguity as to the proper cutoff value to signify that a model has an acceptable fit. 

Different authors recommend different standards of good fit and in nearly all cases the 

justification for cutoff values are not well founded. Second, the distributions of most of these 

fit indices are not given. Thus, with the exception of the RMSEA, confidence intervals for 

the fit indices are not provided. Third, the fit indices that are based on comparisons to a 

baseline model (e.g., TLI, IFI, RNI) can behave somewhat differently depending on the 

fitting function used to estimate a model (Sugawara and MacCallum 1993). This suggests 

that standards of fit should be adjusted depending on the fitting function employed. An 

additional problem is that the means of the sampling distributions of some measures tend to 

be larger in bigger samples than in smaller ones even if the identical model is fitted (e.g., 

Bollen and Long 1993). Thus, cutoff values for such indices might need to differ depending 

on the size of the sample.

Another set of issues arise when comparing competing models for the same data. If the 

competing models are nested, then a LR test that is asymptotically chi-square distributed is 

available. However, in such a case, the issue of statistical power in small samples remains. 

Furthermore, the LR test is not available for nonnested models. Finally, other factors such as 

excess kurtosis can impact the LR test. The situation is not made better by employing other 

fit indices. Though we can take the difference in the fit indices across two or more models, 

there is little guidance on what to consider as a sufficiently large difference to conclude that 

one model’s fit is better than another. In addition, the standards might need to vary 

depending on the estimator employed and the size of the sample for some of the fit indices. 

Nonnested models further complicate these comparisons since the rationale for direct 

comparisons of nonnested models for most of these fit indices is not well-developed.

This brief overview of the LR test and the other fit indices in use in SEMs reveals that there 

are drawbacks to the current methods of assessing the fit of models. It would be desirable to 

have a method to assess fit that worked for nested and nonnested models and that had a 

rationale in statistical theory. From a practical point of view, it is desirable to have a measure 

that is calculable using standard output from SEM software. In the next section, we examine 

the Bayes Factor and methods to approximate it that address these criteria.
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3 Approximating Bayes Factors in SEMs

The Bayes Factor expresses the odds of observing a given set of data under one model 

versus an alternative model. For any two models 2 and 1, the Bayes Factor, B21, is the ratio 

of P(Y|Mk) for two different models, where P(Y|Mk) is the probability of the data Y given 

the model, Mk. More explicitly, the Bayes Factor, B21, is

B21 =
P Y M2
P Y M1

(7)

Conceptually, the Bayes Factor is a relatively straightforward way to compare models, but it 

can be complex to compute.5 The marginal likelihoods must be calculated for the competing 

models. Following Bayes’ Theorem, the marginal likelihood (also known as the integrated 

likelihood) can be expressed as a weighted average of the likelihood of all possible 

parameter values under a given model.

P Y Mk = ∫ P Y θk, Mk P θk Mk d θk, (8)

where θk is vector of parameters of Mk, P(Y | θk, Mk) is the likelihood under Mk, and P(θk | 

Mk) is the prior distribution of θk.

Closed-form analytic expressions of the marginal likelihoods are difficult to obtain, and 

numeric integration is computationally intensive with high dimensional models. 

Approximation of this integral via the Laplace method and the use of modern computing 

technology help solve this problem. Technical details of the Laplace method can be found in 

many sources, including Kass and Raftery (1995). In brief, a second order Taylor expansion 

of the log P(Y|Mk) around the ML estimator θk leads to the expression in Equation 9, where 

l(θk) is the log likelihood function (i.e., logP[Y |θk, Mk]), I E(θk) is the expected information 

matrix, dk is the dimension (number of parameters) of the model, and O(N−1/2) is the 

approximation error, and N is the sample size.

logP Y Mk = l(θk) + logP(θk | Mk) +
dk
2 log(2π) −

dk
2 log(N) − 1

2log I E(θk) + O N−1/2 .

(9)

This equation forms the basis for several approximations to the Bayes Factor. Here we 

briefly present the equations for several approximations, including Schwarz’s BIC, 

5Of course, advances in computational statistics over the last few decades has eased the burden of this complexity.
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Haughton’s BIC, IBIC, and SPBIC. Derivations and justifications for these equations can be 

found in Bollen et al. (2012). Here our goal is simply to present the final equations, show 

their relationships to each other, and explain how they can be calculated for SEM models 

using standard output from software.

The Standard Bayesian Information Criterion (BIC)

Schwarz’s (1978) BIC drops the second, third, and fifth terms of Equation 9, on the basis 

that in large samples, the first and fourth terms will dominate in the order of error. Ignoring 

these terms gives

logP Y Mk = l(θk) −
dk
2 log(N) + O(1) . (10)

If we multiply this by 2, the BIC for M2 and M1 is calculated as

BIC21 = 2[l(θ2) − l(θ1)] − d2 − d1 log(N) . (11)

In SEMs the usual chi-square test statistic is based on a likelihood ratio test of the 

hypothesized model (say M1) compared to the saturated model (say Ms). Setting the 

saturated model to M2 and the hypothesized model to M1, we can write the BIC in terms of 

the usual chi-square test statistic and its degrees of freedom (df) using equation (11) as

BICs1 = Tml − d f log(N) . (12)

where Tml is the chi-square test statistic using the ML estimator and df is the corresponding 

degrees of freedom for the model.

An advantage of the BIC is that it does not require specification of priors and it is readily 

calculable from standard output of most statistical packages. In the case of SEMs, all that is 

needed are the chi-square test statistic (Tml) of the model, its degrees of freedom (df), and 

the sample size (N) to calculate it. In addition, using equation (12), a value of BIC greater 

than zero supports the saturated model over the hypothesized model whereas a negative BIC 

supports the hypothesized model (Raftery, 1995). Sometimes the BIC value is calculated 

without a comparison to a saturated or other model based on equation (10) [l(θk) −
dk
2 log(N)]. 

If this is done for all of the models to be compared, then the one with the lowest value is the 

best fitting model.

For reviews and critiques of the BIC see Winship (1999) and Weakliem (1999).

Haughton’s BIC (HBIC)

A variant on the BIC retains the third term of Equation 9 (Haughton 1988). We call this 

approximation the HBIC (Haughton labels it BIC*).
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logP Y Mk = l(θk) +
dk
2 log(2π) −

dk
2 log(N) + O(1)

= l(θk) −
dk
2 log( N

2π ) + O(1) .

(13)

In comparing models M2 and M1 and multiplying by 2 this leads to

HBIC = 2[l(θ2) − l(θ1)] − d2 − d1 log N
2π . (14)

The HBIC form that compares the hypothesized model to the saturated model using the chi-

square test statistic is

HBICs1 = Tml − d f log N
2π . (15)

The HBIC as with the BIC is straightforward to calculate from the output of SEM programs 

and using a calculator.

The HBIC performed well in model selection in a simulation study for SEMs (Haughton et 

al. 1997). Though this IC measure retains more terms in the approximation than does the 

BIC, this is no guarantee that it is a better approximation of BIC in finite samples. Our 

simulations will explore this issue.

The Information Matrix-Based BIC (IBIC)

A recent article by Bollen et al. (2012) proposes IBIC, which retains additional terms from 

(9). The estimated expected information matrix I E(θk) is obtainable with many SEM 

packages (it can be computed as the inverse of the covariance matrix for parameter 

estimates). Taking advantage of this, we preserve the fifth term in Equation 9.6

logP Y Mk = l(θk) −
dk
2 log N

2π − 1
2log IE(θk) + O(1) .

For models M2 and M1 and multiplying by 2, the Information matrix based Bayesian 

Information Criterion (IBIC) is given by

6Note that this is very similar to Kashyap’s (1982) approximation (KBIC), which uses log(N) rather than log N
2π . We compared 

KBIC to IBIC in our simulation study below and found that IBIC consistently outperformed KBIC, particularly at small sample sizes. 
Thus, the slightly greater complexity in IBIC appears to be worthwhile. See the online appendix for more details on this comparison 
(available at http://dvn.iq.harvard.edu/dvn/dv/jjharden).

Bollen et al. Page 8

Struct Equ Modeling. Author manuscript; available in PMC 2019 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dvn.iq.harvard.edu/dvn/dv/jjharden


IBIC = 2[l(θ2) − l(θ1)] − d2 − d1 log N
2π

− log I E(θ2) + log I E(θ1) .

(16)

The IBIC measure that compares the hypothesized model (M1) to the saturated (Ms) and 

makes use of the chi-square test statistic and its degrees of freedom is

IBICs1 = Tml − d f log N
2π − log I E(θs) + log I E(θ1) . (17)

As with the HBIC, we do not know whether the extra terms retained enhance the finite 

sample performance of the IBIC over the BIC. But we will look at this question in our 

simulation.

The Scaled Unit Information Prior BIC (SPBIC)

An alternative derivation of Schwarz’s BIC makes use of the prior distribution of θk. It is 

possible to arrive at Equation 10 by utilizing a unit information prior, which assumes that the 

prior has approximately the same information as the information contained in a single data 

point. Critics have argued that the unit information prior is too flat to reflect a realistic prior 

(Raftery 1999). This prior also penalizes complex models too heavily, making BIC overly 

conservative toward the null hypothesis (Weakliem 1999; Kuha 2004; Berger et al. 2006). 

Some researchers have proposed centering priors around the MLE (θ) of Mk. Alternatively, 

some researchers have proposed using some form of scaling of the prior by a predefined 

scale (see Kuha 2004). In fact, HBIC defined above can also be derived by scaling the prior 

by a predefined constant. More recently, Bollen et al. (2012) proposed a Scaled Unit 

Information Prior BIC (SPBIC). The SPBIC uses a normal prior centered at zero for the 

parameters in question. As stated above, the BIC has a variance scaled at the level of unit 

information. The SPBIC differs from the BIC in that it chooses the variance that maximizes 

the probability density at the ML estimates of the parameters. Bollen et al. (2012) provide 

complete details of the SPBIC derivation; we refer readers there for more information. The 

final analytical expression is as follows, where Io(θk) is the observed information matrix 

evaluated at θk and θ* is the prior mean for model k.

logP Y Mk = l(θk) −
dk
2 1 − log

dk

θk − θk*
TIo θk θk − θk*

(18)

with SPBIC equal to
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SPBIC = 2(l(θ2) − l(θ1)) − d2 1 − log
d2

θ2 − θ2*
TIo θ2 θ2 − θ2*

+ d1 1 − log
d1

θ1 − θ1*
TIo θ1 θ1 − θ1*

.

(19)

When comparing a hypothesized model (M1) to the saturated model (Ms) and making use of 

the likelihood ratio chi-square, we are led to

SPBICs1 = Tml − ds 1 − log
ds

θs − θs*
TIo θs θs − θs*

+ d1 1 − log
d1

θ1 − θ1*
TIo θ1 θ1 − θ1*

.

(20)

where ds is the number of parameters from the saturated model or the number of variances, 

covariances, and means of the observed variables, d1 is the number of parameters in the 

hypothesized model, and the other terms have already been defined. The observed 

information matrix is obtainable from the inverse of the covariance matrix of the parameter 

estimates when the covariance matrix is based on the observed information matrix (e.g., in 

Mplus or the sem package in R).

To evaluate this, we must use a prior mean, θk*, for the kth model. One possibility is to put all 

parameters at zero (i.e., θk* = 0). This seems reasonable for parameters that are coefficients 

(other than intercepts and means), but is less reasonable for variances, intercepts, means, and 

covariances that are not of central interest. Therefore, for the models we consider we set θk*

to zero for coefficients and keep the remaining parameters at their estimated values. The end 

result is that the only nonzero elements in the difference of θk − θk* are for the coefficients. If 

the saturated model is part of the comparison, we need to take a different approach because 

the parameters of the saturated model are only variances and covariances. If we were to set 

θ* to the sample variances and covariances, then the denominator in the top line of equation 

(20) would be zero and undefined. A simple way around this for the saturated model is to 

have the prior mean be the estimated variances for all observed variables and the prior means 

for the covariances set to zero. If means and intercepts are part of the model, then the 

saturated model could set the elements of θ* that correspond to the means equal to the 

sample means. This would prevent the zero in the denominator.

For more details on the calculation of the scaling factor (which is model dependent and thus 

leads to an empirical Bayes prior) and the derivation of the analytical expression below, see 

Bollen et al. (2012).7 The essential point for the practitioner is that the prior is implicit in the 

information and does not need to be explicitly calculated. All elements of the SPBIC 
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formula are available from SEM software that uses the observed information matrix to 

calculate the asymptotic covariance matrix of parameter estimates (e.g., Mplus or the sem 

package in R). For a basic example of the steps in calculating SPBIC, as well as the other 

Bayes Factor approximations listed here, see the empirical example section.

Theoretically, in large samples we expect the IBIC and SPBIC to perform as well as the BIC 

or the HBIC. But we cannot easily know the finite sample behavior of these measures and 

whether one or the other has better performance in small to moderate samples. Homburg 

(1991) conducted a simulation study of the BIC and compared it to cross-validation 

techniques. His conclusion was that the BIC performed well in finding the true model for 

sample sizes greater than 200 and data from multinormal distributions. Haughton et al. 

(1997) analyzed the BIC, HBIC, and several fit indices. These authors simulate a three factor 

model with six indicators and compare minor variants on the true structure to determine how 

successful the Bayes Factor approximations and several fit indices are in selecting the true 

model. Their simulation results find that the Bayes Factor approximations as a group are 

superior to the p-value of the chi-square test and the other fit indices in correctly selecting 

the true generating model when the true model is among the choices. They find that HBIC 

does the best among the Bayes Factor approximations. Among the other fit indices and the 

chi-square p-value, the IFI and RNI have the best correct model selection percentages, 

though their success is lower than the Bayes Factor approximations.

The Homburg (1991) and Haughton et al. (1997) studies are valuable in several respects, not 

the least of which is their demonstration of the value of the IC measures. However, it is 

unclear whether their results extend beyond the models that they examined. Moreover, the 

structure of most of the models that Haughton et al. (1997) considered were quite similar to 

each other. The performance of the IC measures for models with very different structures is 

unknown. Finally, they did not look at the situation where the true model was not included 

among the possible models.

Our simulation analysis seeks to test the generality of the Homburg (1991) Haughton et al. 

(1997) results by looking at larger models with alternative models that range from mildly 

different to very different structures. In addition, we provide the first evidence on the 

performance of the IBIC and SPBIC in the selection of SEMs. Finally, we provide the first 

evidence on the performance of the IC measures when all models in the pool are 

approximations.

4 Simulation Study

As we mentioned in the introduction, our simulation has two parts. The first part compares 

the IC measures and a variety of fit indices in their ability to correctly select a true model 

from among other models. The second part of the simulation focuses on the IC measures and 

their behavior when choosing from a pool of models that excludes the true structure, that is, 

7Bollen et al. (2012) also discuss an alternative computation of SPBIC when dk ≥ (θk − θ*)TIO(θk)(θk − θ*). As ck = ∞, the 

prior variance goes to 0, so the prior distribution is a point mass at the mean, θ*. This case never occurs in the simulations or empirical 
example we discuss below so we do not discuss it further here. Such a case is less studied so that we would caution readers that we 
have too little experience with the SPBIC to know its behavior under these less common circumstances.
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when all models are approximations. For both parts of the simulation we use models 

designed by Paxton et al. (2001), which has been the basis for several other simulation 

studies. They chose these models after reviewing a large number of empirical studies using 

SEM that appeared in several social and behavioral science journals and tried to capture key 

features of these models in the simulation model. Specifically, we focus on their models with 

few latent variables with a small to moderate number of indicators per factor.

This enables comparisons to the results for other fit indices that use the same design, but 

different fit indices. Standard SEM assumptions hold in these models: exogenous variables 

and disturbances come from normal distributions and the disturbances follow the 

assumptions presented in Section 2 above.

The underlying population model for the first simulation (SIM1) has a latent variable model 

with three latent variables linked in a chain.

η1
η2
η3

=

0 0 0
β21 0 0

0 β32 0

η1
η2
η3

+

ψ11
ψ22
ψ33

The measurement model contains 9 observed variables, 3 of which crossload on more than 

one latent variable. Scaling is accomplished by fixing λ =1 for a single indicator loading on 

each latent variable

y1
y2
y3
y4
y5
y6
y7
y8
y9

=

λ11 0 0

1 0 0
λ31 0 0

λ41 λ42 0

0 1 0
0 λ62 λ63
0 λ72 λ73
0 0 1
0 0 λ93

η1
η2
η3

+

δ1
δ2
δ3
δ4
δ5
δ6
δ7
δ8
δ9

This true model is labeled M1. Panel (a) of Figure 1 is a path diagram of this true model. It 

is the model with both solid and dashed lines included and is equivalent to the model in the 

preceding equations. The population parameters for this model are as follows: primary factor 

loadings were set to a standardized value of .70 to represent a communality of 49%, while 

complex loadings were set to a standardized value of .21. Regression parameters among 

latent variables were set to a standardized value of .60, to represent multiple R2 of 36%. For 

an extended discussion of the rationale for the choice in parameter values see Paxton et al. 

(2001).
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For each simulated data set, we fit a series of misspecified models, which are also depicted 

in Figure 1. This range of models tests the ability of the different fit statistics to detect a 

variety of common errors. Parameters were misspecified so as to introduce error into both 

the measurement and latent variable components of the models. Some of these errors 

corresponded to the true model (M1) with extra, unneeded parameters (M6, M8, M9); others 

dropped necessary parameters (M2, M3, M4, M10), some both added and dropped 

parameters (M5, M7), while some even changed the number of latent variables in the model 

(M11, M12). Figure 1, panels (b) and (c), represent these last two specifications. Table 1 

lists these models with their modifications.

The underlying population model for the second simulation (SIM2) uses a generating model 

that is identical to SIM1 in the latent variable model, but contains an additional two 

observed indicators for each latent variable. Parameter values were the same except for the 

addition of two measured variables per factor.

η1
η2
η3

=

0 0 0
β21 0 0

0 β32 0

η1
η2
η3

+

ψ1
ψ2
ψ3

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

=

λ11 0 0

1 0 0
λ31 0 0

λ41 0 0

λ51 0 0

λ61 λ62 0

0 1 0
0 λ82 0

0 λ92 0

0 λ10, 2 λ10, 3
0 λ11, 2 λ11, 3
0 0 1
0 0 λ13, 3
0 0 λ14, 3
0 0 λ15, 3

η1
η2
η3

+

δ1
δ2
δ3
δ4
δ5
δ6
δ7
δ8
δ9
δ10
δ11
δ12
δ13
δ14
δ15

The misspecified models used in SIM2 are given in Table 2.

For each simulation we generated 1000 data sets with each of the following sample sizes: N 
= 100, N = 250, N = 500, N = 1000, and N = 5000. Note that, following standard practice, 

samples were discarded if they led to non-converging solutions, and new samples were 

drawn to replace the “bad” samples until a total of 1000 samples were drawn that had 
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convergent solutions for each of the 12 fitted models.8 All data were generated in R and 

analyzed with the sem package (Fox 2006).9

4.1 Simulation Part I

In the first part of the simulation we include all of the models including the true one that 

generated the data. Our interest is in the ability of the different IC measures and fit indices to 

choose the true model among the 12 possibilities. The fit statistics included were the BIC, 

IBIC, SPBIC, HBIC, AIC, chi-square p-value, IFI, CFI, TLI, RNI, and RMSEA.

For each simulated data set we estimated all 12 models and calculated each fit index 

including the IC measures. We then determined whether the best fitting model in each 

sample was the true model. This was repeated for all replication samples at a given N. For 

the BIC, IBIC, SPBIC, HBIC, AIC, and RMSEA the model with the lowest value has the 

best fit.10 For all of the other fit indices, the highest value signifies the best fit. Figure 2 

gives the percentage of samples for which the true model was chosen for a given fit measure 

and given sample size across the 1000 replications. These results are for the first underlying 

simulation model (SIM1).

One clear result from these graphs is the dramatic improvement in the performance of the IC 

measures as the sample size grows. At the smallest N (100), success in choosing the true 

model among the 12 models was 20% or less. Choosing a model at random would have a 

success rate of roughly 8%, so the best of the IC measures (SPBIC, HBIC, AIC) are doing 

better than chance but the BIC and IBIC are not. In contrast, increasing the sample size to 

250 has the best IC measures (SPBIC, HBIC, AIC) with success rates of over 40% with 

SPBIC the best at 50% and the IBIC and BIC once again coming in considerably lower. 

Starting at N = 500, the SPBIC and HBIC break away from the AIC with the SPBIC over 

80% success in picking the true model. The BIC comes in next with about 70%, followed by 

the AIC at a little over 60% and the IBIC a little lower. With a large sample size of 1000 or 

5000, all the IC measures except AIC approach 100% success in finding the true model. 

Among the IC measures the new SPBIC and the HBIC have the best overall performance 

across sample sizes.

8This was most problematic at small sample sizes for SIM1—at N = 100, 168 samples had to be discarded for nonconvergence. The 
respective SIM1 numbers at other sample sizes are: N = 250: 32, N = 500: 2, N = 1000: 1, and N = 5000: 0. The numbers for SIM2 
are: N = 100: 27, N = 250: 3, N = 500: 1, N = 1000: 0, and N = 5000: 0.
9The sem package uses the observed information matrix for the calculation of the asymptotic covariance matrix of the parameter 
estimates. This provides the output needed for the SPBIC (observed information matrix). The IBIC uses the expected information 
matrix, which is not available in the sem package in R. We used the observed information matrix in place of the expected information 
matrix. We did not anticipate much of a difference, but checked this issue in the following way. The expected information matrix is the 
expected value, or mean, of the observed information matrices. We computed the mean of the 1000 simulated observed information 
matrices for each model, then replaced each of those means as the expected information matrices for their respective models and reran 
SIM1, n = 100. If there were any differences between using the observed and expected information matrices, we would expect it at the 
smallest sample size of 100. The result was an IBIC performance value (true model selection %) within a percent or two to what we 
got using the observed information. Though we would not anticipate large differences in other cases, we would still recommend that 
the expected information matrix be used for IBIC when it is available.
10Selecting the lowest value for the IC is an exact test that does not take into account the magnitude of the difference in the fit statistic 
from the next best-fitting model. Alternatively, following the guidelines of Raftery (1995), we could consider models with differences 
in fit of less than 2 as essentially tied. Relative performance of the various criteria was similar when we did so; therefore to simplify 
presentation we assess correct selection in terms of the exact selection based on lowest value.
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For comparison purposes we also included other popular fit indices. At the smallest samples 

these fit indices perform roughly the same as the IC indices, but starting at an N of 500 the 

best IC measures are superior to these. Of these common fit indices, the RNI appears best, 

but its performance never gets much better than 70% success even at the largest sample 

sizes. The RMSEA overall has the lowest percentage success in choosing the true model 

from the pool of models.

When we turn to SIM2 which includes more indicators per latent variables, we find a rather 

interesting result (not shown to conserve space). At the same smaller sample size, all fit 

indices are more successful in choosing the true model than they were at the same N in 

SIM1. For instance, at N = 100 several of these measures are approaching a 40% success 

rate, something that we did not see until an N of 250 in SIM1. Starting at 250 we have the IC 

measures pulling away from the other fit indices with the AIC lagging behind the other IC 

measures. Again the SPBIC and HBIC have the best overall performance in choosing the 

correct model.

In sum, our simulation results find that there are differences in the finite sample behavior of 

the IC measures. The SPBIC and HBIC have the best overall performance, but in large 

samples all but the AIC among the IC measures have great success in locating the true 

model. We also find that the IC measures are generally superior to the other fit indices in 

finding the true model in larger sample sizes.

4.2 Simulation Part II

The second part of the simulation examines model selection when the true model is not 

among the choices. This reflects more realistic conditions in that we expect researchers to be 

using an approximate rather than the true structure in practice. We use the same simulation 

data as Part I, but we remove the true structure from among the choices resulting in 11 

alternative models (rather than 12). We restrict our analysis to the IC measures, the primary 

focus of our article. Contrary to Part I, we cannot list the percentage of times the true model 

is selected because there is no true model among the choices. Instead, we provide tables that 

give the median value and Interquartile Range (IQR) for each IC measure for each model. 

Furthermore, we include the median rank in fit that each model has in each replication at the 

different sample sizes. Because this analysis generates a lot of tables, we only report three 

tables in the text for three sample sizes: 100, 500, and 1000 for SIM1. The tables for the 

remaining sample sizes are in the online appendix along with all of the tables for SIM2 

(available at http://dvn.iq.harvard.edu/dvn/dv/jjharden). We also report box-and-whisker 

plots of the values of each IC measure for each of the 11 models in this section. The tables 

and figures give us comparative fit information. We can see which models tended to have 

better fit (lower IC values) than the others and whether this varied with sample size.

We roughly group the remaining 11 models into three categories. The first are models with 

extra parameters (M6, M8, M9). These are the true generating model with unnecessary 

parameters added to it. In other words, the extra parameters have a population value of zero. 

The second group are models with dropped parameters (M2, M3, M4). They are the true 

generating model with one or more parameters incorrectly removed (or set to zero). The 

third group is a mixture of extra and dropped parameters and includes cases with the wrong 
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number of latent variables. Models M5, M7, M11, and M12 fall into this group. Finally, 

M10 is in its own group as a model in which only a β parameter is dropped.

Table 3 presents the results from SIM1 for N = 100. Each time through the simulation the IC 

measure is computed for all the models. Then the IC value for the true model is subtracted 

from each other model’s IC value. This makes the true model value equal to zero. Models 

that fit worse than the true model get positive values and those that fit better get negative 

values. Because lower values signify better fit, a negative median value in the table means 

that the median value on the particular IC measure signifies a better fit than the true model. 

A positive value represents a median value higher than the true model.

Several bad fitting models (M11, M10, M7) are evident across all of the IC measures when 

N is 100. For example, M11 has a median SPBIC of 46.20 and an IQR of 19.28. This is far 

from zero and the IQR suggests considerable variability. The median rank of 11 for M11 

means that its central tendency was to be among the worst fitting models of the 11 

considered. A similar pattern was found for the other IC measures for the three models M11, 

M10, and M7. M11 and M7 involve both dropped and added parameters where M10 only 

drops (sets to zero) the paths between two latent variables in the original (see Figures 1 and 

2). Not all models with dropped parameters fare poorly with the IC measures. M2, M3, and 

M4 drop one, two, or three cross-loadings, respectively, yet the median for the BIC, HBIC, 

and IBIC are negative signifying a better median fit than the true model. Lower median 

ranks for many of these IC measures reflect their tendency to fare well in comparison to the 

remaining models. This tendency is weaker for SPBIC, whose median fit is close to the true 

model’s value of zero.

Contrast this with models M6, M8, and M9 all of which have extra, unnecessary parameters 

included. The median of all IC measures is positive which exhibits a small penalty for the 

extra parameters. The median rank of fit for these models and IC measures tends to be 

toward the middle (fifth to seventh). Considering that the model is correct except for the 

inclusion of unnecessary parameters, this implies that the IC measures are penalizing extra 

parameters more strongly than they are dropped parameters, at least at the smallest sample 

size (N = 100). M12, which has a mixture of dropped and excluded parameters through the 

introduction of an extra latent variable, comes in toward the middle of the rankings for the 

IC measures with the highest median ranking for SPBIC (median rank = 6). It also is worth 

noting that the smallest variability (IQR) of the IC measures occurs for the models that add 

unnecessary parameters (M6, M8, M9).

Increasing the sample size to 500 (Table 4) leads to a general pattern that is similar with 

some important differences. The fit of M11, M10, and M7 are even worse than they were 

with N = 100 and their fit is considerably worse than any of the other models. Another 

difference compared to N = 100 is that M2, M3, and M4, which drop factor loadings, no 

longer have negative median values of the IC measures that suggest a better fit than the true 

model. We might expect that an IC measure that favors parsimony to favor models like M2, 

M3, and M4. Though we saw this in the smallest sample, it is not evident in this moderate 

sized sample. The models M6, M8, and M9, which add unnecessary parameters, have 

positive values and the HBIC and SPBIC have low median ranks for these models. We also 
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note that the models with the extra parameters have the smallest variability as they did with 

N = 100.

Table 5 gives our results for N = 1000. The results are quite similar to those for N = 500 with 

noticeably poorer fit for all but the models with the extra parameters (see the online 

appendix at http://dvn.iq.harvard.edu/dvn/dv/jjharden for N = 250 and 5000).

In Figures 3–6 we provide the box-and-whiskers plots for each IC measure for individual 

models for N = 100, 250, 500, and 1000. The figures differ from the tables in that the 

consistently worst fitting models, M11, M10, and M7, are omitted. We did this because their 

IC values were so high that to plot them in the figures would necessitate greatly expanding 

the maximum for the y-axis and make it hard to see the features of the IC measures for the 

other models which have better fit.

These figures reinforce the impressions from the tables in displaying the small variability of 

the IC measures for the models with extra parameters (M6, M8, M9) and the increase in IC 

measures for the other models as sample size grows. As the sample size increases, the IC 

measures tend to favor the models that are correct except for extra parameters. What was not 

evident from the tables are the outlying values for the IC measures for the M2 to M5 models. 

Along with their greater variability in IC measures, they also have more generally high 

outlier values.

The SIM2 simulation adds more variables to the model, but otherwise is similar to the SIM1 

models that we just reviewed. The online appendix has tables to summarize the median 

value, IQR, and median rank for each model across N = 100, 250, 500, 1000, and 5000 

(available at http://dvn.iq.harvard.edu/dvn/dv/jjharden). SIM2 results are similar to those 

from SIM1 in that the IC measures favor the extra parameter models more as the sample size 

increases. However, one difference at the smallest sample size (N = 100) is that except for 

IBIC, the median IC measure values are nearly all positive for the models that drop factor 

loadings. In SIM1 they tended to be negative and hence favoring these trimmed structures 

over the true structure. That is not true here. Also the separation in IC measures for the three 

extra parameters models tends to be larger at the same sample size for SIM2 vs. SIM1. The 

trend toward favoring the true plus extra parameter models begins at lower sample sizes.

4.3 Simulation Summary

Taken all together, what do we learn from these results using approximate models and 

excludes the true model? One result is that given the choice of models that drop (set to zero) 

some parameters versus a model that is true but has extra parameters included, the IC 

measures tend to favor the extra parameter over the dropped parameters. This trend is most 

clear in the moderate to large sample sizes. The only evidence that we found for the IC 

measures tilting toward simpler models with dropped parameters occurred in the smallest 

sample (N = 100) and in the SIM1 design. Other than that there was not a trend toward 

choosing a model with fewer parameters.

What about the relative performance of the different IC measures? In Part I of the simulation 

study we found that SPBIC and HBIC had the best overall performance in choosing the true 
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model, though the behavior of all IC measures was much more similar in larger samples. In 

Part II where the true model is not one of the choices, the criterion for best model is less 

apparent. If we believe that we are better off selecting a model that has all of the parameters 

in the generating model and its only misspecification is including extra parameters that are 

zero in the population, then we would favor IC measures that have such models with values 

closest to zero. The HBIC and SPBIC are generally better on this criterion than the BIC and 

IBIC, though there are not dramatic differences. Alternatively, suppose a researcher favors 

IC measures that choose parsimonious models that trim small effects. Here the evidence 

slightly favors the BIC and IBIC which have lower median values than the SPBIC and 

HBIC.11

5 Empirical Example

Next we turn to utilizing these IC measures in an applied setting. We use data drawn from 

the National Longitudinal Survey of Youth (NLSY) of Labor Market Experience to illustrate 

the IC measures calculations with SEM. Bollen and Curran (2004) consider five different 

longitudinal models of family income. They extracted a subsample of data consisting of N = 

3912 individuals with complete data assessed at two year intervals from 1986 to 1994. The 

repeated measure was the square root of the respondent’s report of total net family income 

for the prior calendar year. The five longitudinal models considered are listed below (for 

details, see Bollen and Curran 2004).

1. Autoregressive: yit = αt + ρt,t−1yit−1 + ζit

2. Latent Growth Curve: yit = αi + βiλt + ζit

3. Autoregressive Latent Trajectory (ALT) with ρ free: yit = αi + βiλt + ρt,t−1yit−1 + 

ζit

4. ALT with ρ equal: yit = αi + βiλt + ρyit−1 + ζit

5. ALT with ρ zero and yi1 predetermined: yit = αi + βiλt + (0)yit−1 + ζit

Applied researchers are commonly confronted with several choices such as these when 

modeling data with SEMs. We illustrate the calculation of the IC measures employing the 

chi-square statistic that compares the hypothesized model to the saturated model. All the IC 

measures are computable with the following information: (1) the chi square test statistic 

(Tml), (2) the degrees of freedom (df), (3) the sample size (N), (4) the number of estimated 

parameters for the saturated (ds) and hypothesized (d1) models, (5) the expected or observed 

information matrix for the saturated [I E(θs) or Io(θs)] and hypothesized models [I E(θ1) or 

Io(θ1)], and (6) the parameter estimates (θs and θ1). The BIC and HBIC only requires (1) to 

(3); the IBIC requires requires all but (4) and (6), and the SPBIC requires (1) to (6).12

11Of course, we remind readers of the limitations of any simulation design and the need to replicate results under diverse conditions.
12Nearly all SEM software provide all but the information matrices as part of standard output. Many packages permit output of the 
asymptotic covariance matrix of the parameter estimates. The inverse of this covariance matrix provides an estimate of the information 
matrix. Whether it is the expected or observed information matrix depends on the SEM software and the option used. The online 
supplementary materials include a R function that takes output from any software package and computes all of the IC measures.
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The top half of Table 6 gives all of the necessary quantities for the five models presented in 

Bollen and Curran (2004). The lower half of Table 6 presents the IC measures using those 

quantities for each model. Note that all of the measures point to the ALT models as better 

fitting than the autoregressive and latent growth curve models. Among the three ALT 

models, the one with the autoregressive parameter free has the best fit for BIC, HBIC, and 

SPBIC. The IBIC points towards the ALT model with equal autoregressive parameters.

Recall that the IC measures are comparing fit to the saturated model. Though we do not 

know the true model, the IC measures point toward the ALT model, possibly with the free 

autoregressive parameter. Even though the BIC, HBIC, and SPBIC all point toward the ALT 

model with the autoregressive parameters free, only the SPBIC clearly points to this model 

over the saturated model in that it SPBIC takes a large negative value. According to Raftery 

(1995), a difference of less than 2 provides only weak evidence of a difference in model fit 

when using IC for model selection; a difference of greater than 10 is considered very strong 

evidence of superior fit (with the model with the smaller value being preferred).

6 Conclusions

As in any statistical analysis, a key issue in the use of SEMs is determining the fit of the 

model to the data and comparing the relative fit of two or more models to the same data. 

However, current practice with SEMs commonly employs methods that are problematic for 

several different reasons. For example, the asymptotic chi-square distributed test statistic that 

tests whether a SEM exactly reproduces the covariance matrix of observed variables 

routinely rejects models in large samples regardless of their possible merit as 

approximations to the underlying process. Several other fit indices have been developed in 

response, but those measures also have important problems: their sampling distributions are 

not commonly known, some tend to differ with sample size, and there is disagreement about 

the optimal cutoff values for a “well-fitting” model.

Analytic research tells us that the IC measures will choose the true model as the sample size 

goes to infinity. However, this does not tell us how the IC measures perform in finite 

samples or in the typical situation when the true model is not among the choices. One part of 

our article uses simulated data to examine the finite sample behavior of these IC measures 

and traditional fit indices when the true model is one of the options. We find that these IC 

measures are better at finding the true model than are other fit indices in our first simulation. 

The SPBIC and HBIC have the best overall performance among the IC measures, though in 

large samples all but AIC perform well. We also looked at model selection when all models 

are approximate. Here we found that in moderate to large samples all the IC measures 

favored the model that had the true structure with extra parameters. Other models with 

dropped only or a mixture of dropped and extra parameters did not fare as well, though 

models with dropped parameters with small values looked better than other remaining 

misspecifications. Of course, neither the ICs or any fit index eliminates the uncertainty of 

model selection. But, overall, our results suggest that researchers using SEM should take a 

closer look at these IC measures and their use in model selection.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Path Diagrams of the Models in SIM1
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Figure 2: 
SIM1 Percentage Selections of the True Model
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Figure 3: 
SIM1 IC Box-and-Whisker Plots and Median Ranks with No True Model (N = 100). Box-

and-Whisker plots represent each fit statistic for each model over the 1,000 simulations. 

Numbers below the model names represent the median rank of each fit statistic for each 

model over the 1000 simulations.
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Figure 4: 
SIM1 IC Box-and-Whisker Plots and Median Ranks with No True Model (N = 250). Box-

and-Whisker plots represent each fit statistic for each model over the 1,000 simulations. 

Numbers below the model names represent the median rank of each fit statistic for each 

model over the 1000 simulations.
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Figure 5: 
SIM1 IC Box-and-Whisker Plots and Median Ranks with No True Model (N = 500). Box-

and-Whisker plots represent each fit statistic for each model over the 1,000 simulations. 

Numbers below the model names represent the median rank of each fit statistic for each 

model over the 1000 simulations.
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Figure 6: 
SIM1 IC Box-and-Whisker Plots and Median Ranks with No True Model (N = 1000). Box-

and-Whisker plots represent each fit statistic for each model over the 1,000 simulations. 

Numbers below the model names represent the median rank of each fit statistic for each 

model over the 1000 simulations.
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Table 1:

Fitted Models for SIM1

Model Description # Par. Dropped Parameters Extra Parameters

Correct Model

M1 Correct model 23

Misspecified Measurement Models

M2 Drop 1 cross loading 22 λ41

M3 Drop 2 cross loadings 21 λ41, λ72

M4 Drop 3 cross loadings 20 λ41, λ72, λ63

M5 Drop cross-loadings; add correlated errors 22 λ72, λ63 θ67

M6 Correlated errors 24 θ67

M7 Switch factor loadings 23 λ21, λ52 λ51, λ22

Misspecified Structural Models

M8 Add double-lagged effect 24 γ31

M9 Add correlated errors and double-lagged effect 25 θ67, β31

M10 No relations among η’s 21 β21, β32

M11 Two latent variables (remove η3) 19 λ42, λ72, λ73, λ93, β32, ψ33 λ82, λ92

M12 Four latent variables (add η4) 24 λ41, λ62, λ72, λ83, λ93 λ32, λ53, λ74, λ94, β43, ψ44
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