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Abstract

In prostate brachytherapy procedures, combining high-resolution endorectal coil (ERC)-MRI with 

Computed Tomography (CT) images has shown to improve the diagnostic specificity for 

malignant tumors. Despite such advantage, there exists a major complication in fusion of the two 

imaging modalities due to the deformation of the prostate shape in ERC-MRI. Conventionally, 

nonlinear deformable registration techniques have been utilized to account for such deformation. 

In this work, we present a model-based technique for accounting for the deformation of the 

prostate gland in ERC-MR imaging, in which a unique deformation vector is estimated for every 

point within the prostate gland. Modes of deformation for every point in the prostate are 

statistically identified using a set of MR-based training set (with and without ERC-MRI). 

Deformation of the prostate from a deformed (ERC-MRI) to a non-deformed state in a different 

modality (CT) is then realized by first calculating partial deformation information for a limited 

number of points (such as surface points or anatomical landmarks) and then utilizing the 

calculated deformation from a subset of the points to determine the coefficient values for the 

modes of deformations provided by the statistical deformation model. Using a leave-one-out cross-

validation, our results demonstrated a mean estimation error of 1mm for a MR-to-MR registration.

I. INTRODUCTION

Prostate cancer is the most common non-skin cancer and is recognized as the second 

deadliest cancer in men in the Western world. Current radiation-based treatment planning of 

the prostate cancer is conducted using Computed Tomography (CT) images of the prostate. 

CT images provide high geometric accuracy and electron density information that is 

required for accurate dose calculation. In spite of the aforementioned advantages, the 

delineation of the prostate gland in CT images is quite poor due to small differences in tissue 

density within and surrounding the prostate gland. On the other hand, magnetic resonance 

imaging (MRI) provides a high-resolution anatomical detailing of the prostate. Furthermore, 

the introduction of endorectal coil (ERC) in MR imaging of the prostate has significantly 

improved the spatial resolution and signal-to-noise ratio in prostate MR images [1]. The 
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enhanced detailing of the prostate gland provided by ERC-based MRI has proven to provide 

valuable information for cancer staging and image-based guidance during the diagnosis and 

treatment procedures of the prostate cancer [2]. Fusion of ERC-MRI with CT images 

provides a better delineation of the prostate during radiation treatment planning. However, 

the use of ERC in MR imaging poses a major challenge in the fusion of the two imaging 

modalities by deforming the prostate shape (Figure 1).

It is shown that the deformation of the prostate in ERC-MRI cannot be accounted for by just 

simple linear rotation and translation transformations [3], [4]. A number of researchers have 

proposed several nonlinear registration techniques for fusing ERC-MRI with CT images. 

The use of intensity-based metrics is not feasible for MR-to-CT image registration as the 

contrast variation is limited in CT images of the prostate. Fei et al. [5], Lian et al. [6], and 

Venugopal et al. [7], separately, proposed thin plate spline (TPS) point-based 

transformations. The transformation is calculated for a set of control points that were 

selected along the contour of the prostate in corresponding MR and CT images. Others have 

proposed the use of finite element method (FEM) for determining the motion and 

deformation of the prostate gland [8], [9]. A major shortcoming of all these frameworks is 

that the biomechanical properties of the prostate tissue are assumed to be the same within 

the entire prostate gland and accordingly, the tissue deformation is considered as uniform 

across the whole prostate. A quantitative shape and volume analysis of the prostate using 

MR images by Hirose et al. [10] showed that this assumption is incorrect. In a study using 

10 patients, they demonstrated that the peripheral zone undergos significantly greater 

deformation than the central gland during ERC-based MR imaging.

In this work, a novel solution for fusing MR-to-CT images of the prostate is proposed that 

accommodates for nonlinear deformation differences between the two modalities for every 

point of the prostate. The proposed technique consists of a training phase and an estimation 

phase. In the training phase, a set of deformed (ERC-MRI) and non-deformed (MRI without 

ERC) prostate image data are used to generate the deformation model of the prostate. 

Deformation field maps are calculated from intensity-based nonlinear registration of without 

ERC (w/oERC) to with ERC (wERC) MRI datasets. Principal component analysis (PCA) is 

then utilized on the resulting deformation fields to extract the statistical mean deformation as 

well as the most significant modes of deformation for every point of the prostate. Given a 

new registration problem, such as mapping a deformed prostate image in ERC-MRI to a 

non-deformed prostate image in CT for a new subject, first a nonlinear registration is 

calculated for a limited number of corresponding landmarks in both modalities (such as 

surface contours or anatomical landmarks). The deformation field values at the known points 

are then used to calculate the eigen coefficients corresponding to the deformation modes. 

Finally, an estimate of the deformation field for every point constituting the prostate gland is 

computed as the summation of the mean deformation plus a linear combination of the 

deformation modes with the calculated eigen coefficients as the weights.

II. MATERIALS AND METHOD

The imaging study was approved by the institutional review board of the National Cancer 

Institute of the National Institutes of Health. Informed written consent was obtained from 
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volunteer patients. Multi-parametric MR images were acquired from each patient using a 3.0 

T whole body clinical MR scanner (Achieva, Philips Healthcare, Best, The Netherlands). 

T2-weighted MR images covering whole prostate were collected twice. First, with 6-channel 

cardiac coil (SENSE, Philips Healthcare, Best, the Netherlands), then, with a 16-channel 

anterior cardiac coil (SENSE, Philips Healthcare, Best, the Netherlands) and an endorectal 

coil (BPX-30, Medrad, Pittsburgh, PA, USA). A brief summary of the proposed method is 

depicted in Figure 2.

A. Deformable Registration

Prostate gland was segmented in both wERC and w/oERC MR images. All w/oERC 

segmented prostate images were rigidly aligned to the average of all w/oERC segmented 

images. Each individual’s wERC prostate image was then rigidly aligned with the 

corresponding w/oERC image. Next, the w/oERC prostate image was nonlinearly registered 

to the corresponding wERC segmented image using a BSpline-based deformable 

registration. The registration runs in a multi-resolution framework, starting with a coarse 

grid size followed by a finer grid.

B. Phase I: Statistical Deformation Modeling

The principal component analysis was used to derive the linear deformation modes from the 

displacement fields of the available samples in the following fashion.

Given a subset F in R3, the calculated displacement fields (with three x, y, and z 

components) is shown as:

𝒟i
< j >:F R3 (1)

where i = 1, …, m refers to the indices of the data points, P, lying within the Mw/oERC mask, 

and j = 1, …, n refers to the dataset index. m, and n refer to the total number of data points 

(within Mw/oERC), and datasets, respectively.

Each deformation field is reformatted to a 1-D vector by concatenating x, y, and z 

components from all data points (𝒟m × 3
< j > d3m × 1

< j > ). The covariance matrix, Σ, is calculated 

as following:

d∼ < i > = d < i > − d (2)

where d = 1
n ∑

i = 1

n
d < i >.

D3m × n = [d∼ < 1 > d∼ < 2 > .. d∼ < n >] (3)
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∑ = DTD (4)

The matrix of deformation eigenvectors, Ψ, which diagonalizes the covariance matrix Σ is 

found as:

Ψ−1∑Ψ = Λ (5)

where Λ = [λi]n×n is a diagonal matrix with eigenvalues of Σ, as its diagonal elements. 

Finally, the eigenvectors of the displacement field matrix (D3m×n) is found by:

Φ = DΨΛ
− 1

2 (6)

Any displacement field can be estimated from the linear combination of the deformation 

modes (ϕi) as following:

d < j > = d + ∑
i = 1

k
αi

< j >ϕi, k < n (7)

C. Phase II: Estimation

Let P, and S denote all the data points constituting the prostate gland and the surface points 

of the prostate, respectively. Given the displacement field values at the surface points, S, the 

eigen coefficients, αi, i = 1, …, k, corresponding to k deformation modes are found by 

solving the following matrix of equations:

d < j >{S} = d{S} + ∑
i = 1

k
αi

< j >ϕi{S} (8)

Having found the {αi}, the deformation field value for the rest of the points within the 

prostate, P − S, is calculated from:

d < j >{P − S} = d{P − S} + ∑
i = 1

k
αi

< j >ϕi{P − S} (9)

III. RESULTS

wERC and w/oERC T2-weighted MRI available from 77 patients were used in this study. 

Prostate gland was segmented in MR images using iCAD segmentation tool (iCAD Inc., 
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Nashua, NH, USA) with manual corrections. The segmented prostate from w/oERC images 

were rigidly aligned to an average template. Segmented prostate images from wERC data 

were also rigidly aligned to the w/oERC prostate image from the same individual. A multi-

resolution BSpline-based deformable registration, implemented in ITK (Insight Toolkit 

version 4.0, Kitware Inc.), was used to register w/oERC to wERC prostate images resulting 

in a three-component displacement vector for every voxel. The registration consists of two 

resolutions: a coarse grid of 5 × 5 × 5 voxels followed by a finer grid of 20 × 20 × 20 voxels. 

Mutual information was used as the image similarity metric. The calculated displacement 

field was used to warp the w/oERC image data. The registration resulted in poor matching 

for five datasets. These five datasets were excluded from the rest of the experiment. In order 

to assess the performance of the registration, the similarity between warped w/oERC and 

wERC images within the prostate mask was measured using normalized cross-correlation 

(NCC) metric (mean ± std for 72 cases: 96.0 ± 1.0%):

NCC =
E Sw/oERC − Sw/oERC SwERC − SwERC

σ Sw/oERC σ SwERC
(10)

Next, the calculated displacement fields were reformatted and used in a principal component 

analysis to compute the deformation modes as described in the previous section. Based on 

the calculated eigenvalues, at least 29 modes are required to capture more than 95% of the 

variability in the sample. Such high number of modes could be due to the following reasons: 

1) error in the segmentation of the prostate; and/or 2) error in the nonlinear registration, as 

for every 16 voxels a single displacement vector was considered in the registration.

In order to validate the accuracy of the proposed technique in estimating the displacement 

field from partial available displacement field data (e.g., surface points) and eigen modes of 

deformation generated using PCA on displacement fields, a leave-one-out (LOO) cross-

validation scheme was utilized. Out of 72 datasets, one dataset was excluded at a time and 

the rest were passed through PCA to generate the eigen deformation modes (overall 72 

cases). The displacement field values at surface points from the excluded data together with 

the resulting mean displacement field and eigenvectors from the PCA were plugged in Eq. 7 

to estimate the displacement field at the rest of the voxels. On average, surface points 

constitute 4% of the total number of voxels within the prostate mask. Figure 3 demonstrates 

the mean ± std of the normalized eigen coefficient calculated from the 72 leave-one-out 

cases.

For each LOO case, the estimation error was calculated as the mean square difference 

between the estimated displacement field and the displacement field resulting from the 

nonlinear registration between w/oERC and wERC image data. Figure 4(a) shows the 

distribution of the error from all voxels within the prostate mask, collapsed across all 72 

cases. Figure 4(b) demonstrates the localization of the error across the prostate gland.

In order to evaluate the sensitivity of the proposed technique to the number of deformation 

modes considered in estimation (k in Eq. 7) the LOO was repeated using a range of values 

for the number of modes, 10 up to 70 modes with step size of 10. Figure 5 shows the 
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estimation error collapsed across all LOO cases for different number of deformation modes. 

As can be seen in the figure, the minimum error occurs when using 40 modes. This may 

imply that using higher number of modes may result in overfitting. One-way ANOVA 

analysis demonstrated a significant difference between the distribution of error among 

different number of modes. Further post-hoc multiple comparisons revealed that the error 

distribution from all 7 modes are significantly different from one another (F (6, 3 × 107) = 

134261, p < 0.0001).

IV. DISCUSSION

A model-based approach for accounting for the deformation of the prostate caused by using 

an ERC in MR imaging is proposed. The proposed model-based approach overcomes the 

current limitations in fusing ERC-MRI with other modalities such as CT in brachytherapy 

procedures by providing a nonlinear mapping for every point of the prostate rather than a 

limited number of landmarks such as conventional surface-to-surface registration techniques.

A statistical model of the prostate gland deformation is generated using PCA on 

displacement fields provided by nonlinear registration of w/oERC to wERC MR images for 

a large sample. Performing a nonlinear intra-modality registration using an intensity-based 

metric guarantees an accurate match between non-deformed (w/oERC) and deformed 

(wERC) state of the prostate. To be able to utilize PCA in this framework, a point-to-point 

correspondence is required between all datasets within the training sample. In this study, a 

rough correspondence between training data (w/oERC MRI) required for the principal 

component analysis is achieved by a rigid alignment. The PCA performance in this study is 

affected by: 1) way of realizing correspondence among sample points (rigid registration); 2) 

the prostate segmentation accuracy; and 3) nonlinear registration between w/oERC and 

wERC image data. A few alternative techniques are currently being investigated to improve 

the data correspondence, the segmentation and registration accuracies.

As demonstrated in Figure 5, the estimation error significantly changes with the number of 

deformation modes. The increase in the estimation error seen by using more than 40 modes 

could also be explained by the prostate segmentation and registration error, which causes 

overfitting of the model.

In order to use the proposed framework for a nonlinear registration between ERC-MRI and 

any other modality such as CT images, a set of landmarks that are identifiable in both 

modalities are extracted and nonlinearly registered (using a point-based registration 

technique). Such set of landmarks could be a few control points on the contour of the 

prostate, anatomical landmarks that are visible in both modalities or artificial fiducials such 

as radioactive seeds. A deformation field that matches the prostate at every point in both 

modalities is then realized by inserting the calculated deformation values at the selected 

landmarks into the PCA deformation model of the prostate and solving for the eigen 

coefficients of the deformation modes.
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Fig. 1. 
MRI with and without ERC.
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Fig. 2. 
Flowchart of the proposed method. See Section II for details.
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Fig. 3. 
Mean±std of the normalized eigen coefficients from 72 cases calculated in a leave-one-out 

framework.
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Fig. 4. 
(a) Distribution of error between the estimated and the actual deformation field combining 

all 72 cases from the leave-one-out cross-validation. Mean error is depicted by a red vertical 

line; (b) Localization of the distribution of error between the estimated and the actual 

deformation field combining all 72 cases from the leave-one-out cross-validation. The 

distribution is thresholded at 0.25th and 0.75th quantiles.
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Fig. 5. 
Error of estimation from the leave-one-out cross-validation for different number of 

deformation modes.
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