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Abstract

Genetic studies have yielded important genes contributing to both early-onset and adult-onset 

forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate 

in a broad range of cellular processes and biological systems. Approximately half the glaucoma-

related genes function in the extracellular matrix, however proteins involved in cytokine signaling, 

lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular 

development also contribute to the disease pathogenesis. While the function of these proteins in 

health and disease are not completely understood, recent studies are providing insight into 

underlying disease mechanisms, a critical step toward the development of gene-based therapies. In 

this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are 

organized according to the cell processes or biological systems that are impacted by the function 

of the disease-related protein product.

1. INTRODUCTION

Glaucoma is a collection of disorders that result in degeneration of the optic nerve. Common 

forms of glaucoma (primary open-angle glaucoma (POAG), normal-tension glaucoma 

(NTG), exfoliation glaucoma (XFG), and angle-closure glaucoma) are leading causes of 

irreversible blindness worldwide. Angle-closure glaucoma, caused by anatomical narrowing 

of the iridocorneal angle with subsequent blockage of the trabecular outflow pathways, is 

particularly common in Asia.1 XFG develops in patients with exfoliation syndrome (XFS) 

characterized by the deposition of a heterogeneous mix of aggregated macromolecules 

throughout the ocular anterior segment.2 POAG is the most common subtype of glaucoma 

and is defined as glaucoma occurring in the absence of any secondary features such as 

exfoliation. Approximately one-third of patients with open-angle glaucoma have NTG with 

progressive optic nerve degeneration despite intraocular pressure (IOP) in the normal range. 

Early-onset glaucoma (developing before the age of 40) includes juvenile open-angle 

glaucoma, developmental glaucoma (related to abnormal development of the ocular anterior 

segment), and congenital glaucoma (developing at birth or with the first three years of life).

Glaucoma has significant heritability with early-onset forms inherited as Mendelian 

autosomal dominant or recessive traits and adult-onset (after age 40) diseases inherited as 

complex traits.3 Mutations in genes causing earlyonset glaucoma are rare and have a large 

biological impact, while variants contributing to various forms of adult-onset glaucoma are 
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common and individually have incremental effects on disease pathogenesis (Fig. 1). Genes 

responsible for early-onset glaucoma have been discovered using linkage analysis of large 

families while genes contributing to adult-onset disease have been identified using genome-

wide association studies (GWAS) that typically require very large numbers of glaucoma 

cases and controls.

Current molecular techniques and approaches, especially GWAS and next-generation 

sequencing, are successfully identifying glaucoma-associated genes. While the function of 

these genes in health and disease are not completely understood, a number of cellular 

processes and systems with relevance to disease development are emerging. In this review, 

genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are 

organized according to the cell processes or biological systems that are impacted by the 

function of the disease-related protein product (Table 1). The types of glaucoma caused by 

(early-onset disease) or associated with (adult-onset disease) are listed in Table 2. The 

biological processes and systems implicated in glaucoma by genetic studies may be future 

targets of novel therapies that could prevent disease development.

2. ENDOPLASMIC RETICULUM STRESS RESPONSE

The endoplasmic reticulum (ER) stress response can be caused by overexpression of genes 

or gene mutations that lead to protein aggregation or other processes that prevent the nascent 

polypeptide from progressing through the ER.92 Genetic abnormalities that disrupt the 

normal function of the ER can lead to the unfolded protein response which can trigger cell 

death.93 ER-related cell death contributes to several diseases, including neurodegenerative 

disorders, renal disease, and ocular disease.94–96 Missense mutations in MYOC, coding for 

myocilin, are likely to cause ER stress through the misfolded protein response4,5,70.

2.1 MYOC (Myocilin)

MYOC mutations are a cause of early-onset POAG (juvenile-onset open-angle glaucoma). 

The majority of disease-causing mutations are dominantly inherited missense alleles. There 

is a range in disease onset with some mutations causing disease during the first decade of 

life (PRO370LEU, TYR357HIS) while others cause later-onset.71 A nonsense mutation 

(GLN368X) is a common mutation in individuals with later-onset disease.72 Interestingly, 

whole-gene deletions or a nonsense mutation near the N-terminal do not cause disease 

suggesting that the underlying disease mechanism is not loss of function but dominant 

negative or gain of function.97–99 Using an in vitro system, MYOC mutations were shown to 

decrease protein solubility and mutant protein solubility was correlated with disease severity.
100 In a Tyr357His transgenic mouse (one of the most insoluble mutations), mutant myocilin 

accumulates in the ER causing the misfolded protein response5 and elevation of IOP. 

Sodium 4-phenylbutyrate, a molecular chaperone known to relieve the misfolded protein 

response in urea cycle disorders,101 also relieved ER stress and lowered IOP in this animal 

model.4 Reagents that relieve the presumed misfolded protein response in humans could be 

developed as novel therapies for patients with glaucoma caused by MYOC mutations.
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3. EXTRACELLULAR MATRIX, CELL JUNCTIONS, AND CELL ADHESION

Processes involving extracellular matrix, especially in the trabecular meshwork, can 

influence aqueous outflow and elevation of IOP.102 A number of glaucoma-related genes 

code for proteins that function in the extracellular matrix. Additionally, two glaucoma-

associated genes influence cell junctions and several extracellular collagens also contribute 

to glaucoma pathogenesis.

3.1 LTBP2 (Latent TGF-Binding Protein 2)

LTBP2 loss of function mutations can cause a range of ocular phenotypes including 

autosomal recessive congenital glaucoma,54,55 microsperophakia,66,67 and Weill Marchesani 

syndrome.68 Recent work suggests that impaired LTBP2 function primarily causes abnormal 

development of the ciliary zonules resulting in lens dislocations and other abnormalities.
47,103 LTBP2 codes for latent TGF-binding protein 2, an extracellular matrix protein that is 

associated with microfibrils.6 LTBP2 also has cell-adhesive properties7,8 and a functional 

role in elastic fiber assembly.9 A possible role in TGF beta signaling is not well established 

despite the protein homology to LTBP1 which does bind TGF beta.104

3.2 LOXL1 (Lysyl Oxidase Like 1)

Common variants in LOXL1 are significantly associated with XFS, an ocular condition 

characterized by the distribution of aggregated macromolecules throughout the eye including 

the trabecular outflow pathways.91 XFS is the leading cause of secondary open-angle 

glaucoma (XFG) worldwide.105 Lysyl oxidase like 1 is necessary for proper elastin 

formation and maintenance, a critical component of the extracellular matrix.10 Initially, 

LOXL1 missense alleles were associated with disease in populations worldwide,106 however 

subsequent studies showed that the missense alleles are not likely to impact the amine 

oxidase activity of the enzyme.107 It is likely that dysregulation of LOXL1 is associated with 

disease development108 and LOXL1 variants influencing gene expression could influence 

disease risk. A LOXL1 null mouse has some, but not all, features of XFS.109

3.3 FNDC3B (Fibronectin Type III Domain Containing 3B)

Recent GWAS have identified common variants within and near FNDC3B associated with 

elevated IOP81 and thin central corneal thickness,82 both risk factors for POAG. FNDC3B 
codes for an extracellular matrix protein involved in several signaling pathways, including 

PI3-kinase/Akt, Rb1 and TGFβ signaling.11 TGF beta is known to induce extracellular 

matrix remodeling and can alter the cytoskeleton though both the canonical Smad and 

noncanonical signaling pathways.110 Experiments have shown that variation in TGF beta2 

can cause elevation of IOP in an ex vivo perfusion organ culture model, and also elevation of 

IOP in rodent eyes.111

3.4 AFAP1 (Actin Filament-Associated Protein 1)

The protein encoded by AFAP1 binds to actin filaments and promotes crosslinking. 

Modulation of the actin cytoskeleton is known to contribute to the regulation of aqueous 

outflow and IOP.112 While not technically in the extracellular matrix, actin formation and 

stability can have a significant effect on cell shape, cell adhesion, and responsiveness to 

Wiggs Page 3

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2019 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



external stimuli presented by the extracellular matrix. A recent GWAS involving 4702 

POGA cases and 9695 controls identified significant association of common AFAP1 variants 

with POAG.12 Immunohistochemistry showed that AFAP1 was present in both anterior 

segment and poster segment tissues, particularly trabecular meshwork and retinal astrocytes.

3.5 PLEKHA7 (Pleckstrin Homology Domain-Containing Protein 7)

PLEKHA7 codes for a protein necessary for formation of adherens junctions that can control 

paracellular permeability.13 This protein is expressed in ocular ciliary body and choroid and 

common variants in the gene have been associated with angle-closure glaucoma.14 

Hypothetically PLEKHA7 may be related to angle closure though a mechanism involving 

compromise of the normal barrier to fluid leakage and/or aberrant fluid dynamics.

3.6 COL11A1 (Collagen Type XI, Alpha1)

COL11A1 encodes one of the two α chains of type XI collagen. Common variants in 

COL11A1 are associated with angle-closure glaucoma in Asian populations.14 Rare 

COL11A1 high-effect mutations cause Marshall syndrome, Stickler syndrome, type 2 or 

Stickler-like syndrome.15 These syndromes include axial myopia, probably caused by 

abnormal fibrillary collagen matrix in the sclera. As angle-closure glaucoma patients 

generally are hyperopic, the associated COL11A1 variants may influence (or are in linkage 

disequilibrium with variants that influence) COL11A1 expression resulting in smaller 

hyperopic eyes predisposed to angle closure. Alternatively, as COL11A1 is also expressed in 

the trabecular meshwork a direct effect on aqueous outflow is also possible.

3.7 COL15A1 (Collagen Type XV, Alpha1) and COL18A1 (Collagen XVIII, Alpha1)

COL15A1 and COL18A1 code for multiplexin collagens type XV and XVIII. These two 

proteins are highly homologous and are localized to the extracellular matrix and basement 

membranes in multiple ocular tissues including the trabecular meshwork and Schlemm’s 

canal.16–18 Variants in both COL15A1 and COL18A1 appear to act as disease modifiers 

influencing the age of disease onset in families with early-onset glaucoma.73 Interestingly, 

the COL18A1 variant was only found in families who also carried the disease-causing 

MYOC mutation Gln368X, one of the MYOC mutations related to milder disease. This 

result suggests that there could be a specific interaction between COL18A1 and MYOC, 

however further study is necessary to confirm this. The effect of the COL15A1 and 

COL18A1 variants could impair the stability of the trabecular outflow pathways including 

Schlemm’s canal thereby reducing aqueous outflow and raising IOP which results in more 

severe disease at an earlier age compared to a family member with the primary mutation 

who does not also carry one of the collagen variants. More work will be necessary to 

confirm this hypothesis.

4. TGF BETA SIGNALING

4.1 CDKN2BAS (Cyclin-Dependent Kinase Inhibitor 2B Antisense)

TGF beta signaling is well known to contribute to processes involving the ocular anterior 

segment and IOP113 as well as the glaucoma-related neurodegenerative processes involving 

the optic nerve.114 Generally, TGF beta inhibits cell cycle progression resulting in terminal 
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differentiation or in some situations, apoptosis. In astrocytes, TGF beta signaling is SMAD 

dependent and increased TGF beta can lead to an increase in CDKN2B which is an inhibitor 

of CDK4/6 (cyclin dependent kinase 4 and 6), which are necessary for cell cycle progression 

(Fig. 2). Excess CDKN2B inhibits cell cycle progression leading to apoptosis.115 

CDKN2BAS is an antisense RNA (also known as ANRIL) that regulates expression of 

CDKN2B among other molecules.19–21 Common variants in the CDKN2BAS region are 

associated with POAG overall and in particular the NTG subgroup.50,80,89,90 The minor 

allele of the CDKN2BAS variant with most robust association is protective. The role of 

CDKN2BAS in glaucoma is not yet defined. One hypothesis is that the associated 

CDKN2BAS allele (minor allele) could result in decreased expression of CDKN2B which 

would increase activity of CDK4/6 promoting cell cycle progression (Fig. 2). Interestingly, 

the opposite allele of the variant associated with glaucoma is associated with glioma (lack of 

appropriate reduction in cell cycle progression) which provides some support for this 

hypothesis.116 It is also possible that the associated SNPs are in linkage disequilibrium with 

other genomic variants within CDKN2BAS or other nearby genes that have a direct role in 

disease development.117 Further experimentation is needed to clarify the role of this 

important molecule in glaucoma.

4.2 TGFBR3 (TGFbeta Receptor 3)

Recently an association between a SNP near the gene coding for TGFbeta receptor 3 

(TGFBR3) was identified for POAG in a mult-ethnic cohort, further supporting a role for 

TGFbeta signaling in this disease.85

5. TUMOR NECROSIS FACTOR-ALPHA SIGNALING

5.1 OPTN (Optineurin), TBK1 (Tank-Binding Kinase 1)

Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine that may contribute 

to retinal ganglion cell death in glaucoma.118,119 TNF-alpha binding to its receptor initiates 

a cascade of events that can activate NFkBeta. Under normal conditions OPTN (coding for 

optineurin) is a negative regulator of NFkBeta activation.22,23 A rare OPTN missense 

mutation (E50K) causes familial NTG,86–88 and some OPTN mutations are also known to 

cause familial amyotrophic lateral sclerosis.120 Mutant forms of OPTN do not efficiently 

inhibit TNF-alpha stimulated NFkBeta transcription which may lead to increased 

transcription of proapoptotic genes and cell death.121 Interestingly, a second protein 

responsible for familial NTG, TBK1 (Tank-binding kinase 1) interacts with OPTN and this 

interaction is enhanced in an optineurin mutant (E50K) suggesting that binding of TBK1 to 

mutant OPTN could prevent the protein from inhibiting NFkBeta activation.24,25 CLYD 

(cylindromatosis turban tumor syndrome protein), another negative inhibitor of TNF-alpha 

induced NFkB activation has also been shown to interact with Optineurin and the interaction 

is also increased by OPTN mutations.23 Together, these results suggest that TNF-alpha 

induced NFkB transcription is detrimental to ganglion cells in glaucoma and that loss of 

inhibitors normally present to modulate this process (OPTN, CLYD) can result in severe 

familial optic nerve disease.

Wiggs Page 5

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2019 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. REGULATION OF AUTOPHAGY

6.1 OPTN (Optineurin), TBK1 (Tank-Binding Kinase 1)

In addition to roles in TNF-alpha signaling there is also evidence that OPTN and TBK1 
regulate autophagy, a process that eliminates accumulation or proteins, organelles and other 

cellular debris.122 Autophagy has been observed in glaucoma animal models.123,124 Both 

TBK1 and OPTN are capable of regulating autophagy. When OPTN is upregulated or 

mutated, autophagy is activated in neuronal cells.26 Phosphorylation of OPTN by TBK1 

promotes the recruitment of microtubule-associated protein 1 light chain 3 beta 

(MAP1LC3B, LC3B) a critical step in the formation of autophagosomes and initiation of 

autophagy.27 The OPTN E50K–TBK1 enhanced interaction also promotes protein instability 

that can lead to autophagy.125 Using iPSCs derived from patients with TBK1 duplication 

increased expression of LC3-II a key marker of activation of autophagy was observed.126 

Data from OPTN and TBK1 experiments suggests that autophagy may be an important 

pathway in the development of NTG.

7. LIPID METABOLISM

7.1 ABCA1 (ATP-Binding Cassette, Subfamily A (ABC1) Member 1)

Recent GWAS have implicated ABCA1 (coding for ATP-binding cassette, subfamily A 

(ABC1) member 1) in POAG.12,74 Variants in this gene are also associated with IOP in 

normal populations.81 The protein encoded by this gene is a major regulator of cellular 

cholesterol and phospholipid homeostasis.28,29 ABCA1 is expressed in ocular tissues 

relevant to glaucoma including iris, ciliary body, retina, optic nerve head, optic nerve, and 

trabecular meshwork.12 Previous studies using the DBA/2J mouse glaucoma model 

identified Abca1 in a cluster of transcripts with varied expression in response to ganglion 

cell death.127 ABCA1 expression has also been reported to be higher in leukocytes from 

glaucoma patients.128 A role for lipid metabolism in glaucoma is also supported by the 

protective effect of statins in patients with hyperlipidemia.129

8. ENDOTHELIAL NITRIC OXIDE SYNTHETASE SIGNALING AND 

CAVEOLAE

8.1 CAV1/CAV2 (Caveolins 1 and 2)

Caveolae are invaginations of the plasma membrane formed primarily by the caveolin 

proteins.30 These are especially common in vascular endothelial cells but can be present in 

many vertebrate cell types. Common variants near CAV1, coding for caveolin 1 have been 

associated with POAG in populations worldwide.75–79 While dysregulation of CAV1 has 

many downstream effects, one consequence of CAV1 deficiency is activation of endothelial 

nitric oxide synthetase (eNOS) with subsequent increase in nitric oxide (NO).31 NO can 

modulate the tone of luminal structures with adjacent smooth muscle including blood 

vessels and ocular structures such as Schlemm’s canal and juxtacanalicular trabecular 

outflow pathways.130,131 eNOS may play a role in the etiology of glaucoma; it is found in 

the human outflow pathway132 and the vasculature supplying retinal ganglion cells,133 

which may affect the regulation of IOP and blood flow to the optic nerve, respectively. 
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NOS3 (nitric oxide synthetase 3, coding for eNOS) may interact with estrogen to contribute 

to POAG in women.134 Recently, CAV1 variants were shown to be preferentially associated 

with the POAG subgroup with initial paracentral visual field loss, a phenotypic feature more 

common in POAG patients with evidence of vascular dysregulation.135 Another potential 

role for caveolae and CAV1 in POAG is the formation of “giant vaculoles” noted in 

trabecular meshwork cells in the setting of elevated IOP.136

9. FRUCTOSE AND MANNOSE METABOLISM

Two genes (GMDS and PMM2) coding for enzymes in the fructose and mannose 

metabolism pathway have been associated with POAG. Interestingly, highly penetrant alleles 

in both of these genes cause congenital glycosylation disorders32 and both genes code for 

enzymes involved in different steps of the overall fructose-mannose metabolism pathway 

(KEGG pathway hsa00051). One of the products of this pathway is N-glycans that have a 

role in a number of cellular processes including targeting of proteins to lysosomes for 

degradation.33

9.1 GMDS (GDP-mannose 4,6 dehydratase)

GMDS has been associated with POAG in a GWAS of Caucasians with European ancestry.12

9.2 PMM2 (Phosphomannomutase)

PMM2 has been associated with POAG in a GWAS of Asians.74

10. REGULATION OF CELL DIVISION

Several genes coding for proteins that can regulate cell division contribute to adult-onset 

forms of glaucoma including POAG and NTG.

10.1 GAS7 (Growth Arrest-Specific 7)

GAS7 is a member of the growth arrest-specific family of genes expressed in terminally 

differentiated tissues.34 This member of the growth arrest-specific gene family is expressed 

primarily in terminally differentiated brain cells and mature cerebellar Purkinje neurons but 

also in terminally differentiated fibroblasts.35 GAS7 can induce neurite outgrowth in 

terminal neurons36 and is also involved in some developmental processes such as osteoblast 

cell differentiation from mesenchymal cells.37,38 Common variants near GAS7 were initially 

associated with elevated IOP in normal populations78,83 and subsequently also associated 

with POAG.12,50 RT-PCR shows that GAS7 is expressed in trabecular meshwork cells as 

well as retina and optic nerve.38 Considering the expression of GAS7 primarily in neurons 

and its function in neurite outgrowth a role for the protein in IOP regulation is not clear. As 

part of the neurite outgrowth function GAS7 interacts with actin and microfilaments, and it 

is possible that this interaction also occurs in trabecular meshwork cells or other cells 

involved in aqueous humor dynamics.137
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10.2 TMCO1 (Transmembrane and Coiled-Coil Domains-1)

Common variants near TMCO1 on chromosome 1q24 were initially associated with IOP in 

normal populations38 and subsequently with POAG in Caucasians of European ancestry.80 

Loss of function mutations cause a recessive condition involving craniofacial dysmorphism, 

skeletal anomalies, and mental retardation that has been termed, “TMCO1 syndrome.”138,139 

Coding sequence mutations do not appear to contribute to glaucoma, including the pedigrees 

affected by TMCO1 syndrome. The protein sequence is very highly conserved across 

mammalian species suggesting a critical biological function, and it is expressed in many 

human tissues including ocular tissues.39 Using a GFP-TMCO1 fusion protein, the protein 

was localized to the ER140 and mitochondria.141 More recently, using 

immunohistochemistry TMCO1 localized to nucleoli suggesting that the protein could have 

a role in aging through cell-cycle regulation.39

10.3 CDKN2BAS (Cyclin-Dependent Kinase Inhibitor 2B Antisense)

CDKN2BAS codes for a long noncoding antisense RNA that negatively regulates the 

expression of CDKN2B, coding for an inhibitor of cyclin-dependent kinases 4 and 6 

necessary for cell cycle progression.19–21 Common variants in the CDKN2BAS genomic 

region are strongly associated with POAG and NTG suggesting that cell-cycle regulation is 

an important feature of disease development.50,80,89,90 Unlike TMCO1 and GAS7 which are 

asso ciated with IOP as well as POAG, CDKN2BAS was initially associated with the cup-to-

disc ratio in normal populations84 and is more robustly associated with NTG compared with 

POAG,50,80,89,90 suggesting that the primary influence is on the optic nerve. The cells 

involved are not yet known.

11. REGULATION OF OCULAR DEVELOPMENT

A number of genes responsible for early-onset forms of glaucoma regulate ocular 

development. Mutations in these genes cause ocular dysgenesis, primarily of the anterior 

segment structures, resulting in elevated IOP and subsequent damage to the optic nerve. 

Currently one adult-onset gene, SIX6 associated with POAG, codes for a protein involved in 

ocular development.

11.1 FOXC1 (Forkhead Box C1)

FOXC1 codes for a member of the family of forkhead domain proteins involved in 

developmental processes in many human tissues.142 In the human eye, FOXC1 mutations 

cause a spectrum of phenotypic abnormalities that includes iris hypoplasia and other features 

of anterior segment dysgenesis.56,57 In addition, some FOXC1 mutations appear to cause 

hearing loss, and FOXC1 may contribute to De Hauwere syndrome characterized by anterior 

segment dysgenesis, hypertelorism, retardation, hypotonia, hearing loss, femoral head 

anomalies, and hydrocephalus.58,59 Disease-causing mutations in FOXC1 include missense 

changes in the forkhead domain, nonsense and frameshift mutations, and whole-gene 

deletions and duplications.57 Mutations resulting in disease cause a loss of protein function 

particularly of the transactivation domain40,41 and are inherited as an autosomal dominant 

trait with variable penetrance. FOXC1 interacts with PITX2 (see later) and PITX2 can 

negatively regulate FOXC1 transactivity.143,144 Moreover, patients who have mutations in 
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both genes have more severe disease.145 In additional to hearing defects, patients with 

anterior segment dysgenesis caused by FOXC1 mutations may also have heart defects.146

11.2 PITX2 (Paired-Like Homeodomain 2)

PITX2 is a member of the bicoid class of homeodomain transcription factors that are 

necessary for embryonic development.42,43 PITX2 mutations were initially identified as a 

cause of classic Rieger syndrome defined by characteristic teeth and umbilical abnormalities 

as well as ocular anterior segment dysgenesis.60–62 PITX2 is also necessary for pituitary 

development147 and PITX2 variants have been associated with cardiac abnormalities, in 

particular atrial fibrillation.148 PITX2 mutations causing Rieger syndrome are loss of 

function and are inherited as an autosomal dominant trait with variable penetrance.57 

Deletion of an upstream regulatory region can also cause disease.149 As noted above, PITX2 
interacts with FOXC1 defining an important pathway for ocular development.143,144 

Induction of PITX2 expression requires the Wnt/Dvl/beta-catenin pathway that leads to cell-

type-specific proliferation.150 Approximately 50% of patients with ocular dysgenesis caused 

by either PITX2 or FOXC1 mutations have glaucoma57 characterized by high IOP. 

Glaucoma is likely caused by abnormal development of the trabecular outflow pathways, 

and in particular Schlemm’s canal.151

11.3 PAX6 (Paired Box 6)

PAX6 plays a critical role in ocular development.44 PAX6 loss of function mutations cause 

Aniridia, characterized by abnormal development of the iris,63 as well as Peter’s anomaly64 

and dominant forms of corneal keratitis.65 Approximately 50% of patients with ocular 

developmental abnormalities due to PAX6 mutations also are affected by early-onset 

glaucoma.63 Interestingly, deletions of the downstream PAX6 regulatory region are 

relatively common disease-causing mutations.152 Large deletions that include PAX6 can also 

involve the gene responsible for Wilm’s tumor153 and patients with ocular phenotypes 

suggestive of Aniridia or other conditions related to PAX6 defects should have renal 

ultrasound screening.

11.4 CYP1B1 (Cytochrome P450, Family 1, Subfamily B, Polypeptide 1)

CYP1B1 loss of function mutations are the most common cause of autosomal recessive 

congenital glaucoma worldwide.51 Reported CYP1B1 mutations include missense, 

frameshift, premature stop codons, small insertion/ deletions, and large deletions.51–53 

CYP1B1 codes for cytochrome P-450 1B1, a member of the large cytochrome P450 family. 

P450 1B1 is known to metabolize complex molecules such as polycyclic aromatic 

hydrocarbons and 17-β-estradiol.154–156 The role of the protein in congenital glaucoma is 

not clear; however, it has been hypothesized that the P-450 1B1 activity is responsible for 

metabolism of a compound involved in ocular development.45,46 Recently, CYP1B1 

mutations have also been shown to contribute to glaucoma in older children (juvenile-onset).
157–160 Mutations in juvenile-onset children (onset between the ages of 3 and 20) are 

primarily missense alleles which may confer some residual enzyme activity (hypomorph 

alleles).161 A recent study has found that the carrier frequency of CYP1B1 mutations in two 

populations in the United States is higher than expected based on the disease incidence of 

congenital glaucoma only. In particular, the frequency of missense alleles was higher than 
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expected suggesting that missense mutations may contribute to disease other than congenital 

glaucoma and this could be juvenile-onset glaucoma and glaucoma related to ocular 

dysgenesis.162

11.5 LTBP2 (Latent TGF-Binding Protein 2)

As noted earlier, LTBP2 loss of function mutations can cause a variety of ocular conditions 

which result from abnormal development of the ciliary zonules.47,54,55,66–68,103 LTBP2 null 

mice develop lens abnormalities including lens dislocation, but not primary congenital 

glaucoma, suggesting that lens dislocation could underlie the development of glaucoma in 

humans with LTBP2 mutations.47

11.6 SIX6 (SIX Homeobox 6)

SIX6 is one member of a human gene family originally identified by homology to the 

Drosophila sine oculis (so) gene required for eye development.48 All six members of the 

human SIX family have a DNA-binding homeobox domain as well as a SIX domain which 

binds effector molecules. The human SIX genes also appear to regulate eye development 

through transcriptional activation of downstream genes.49 SIX6 expression is restricted to 

the eye and pituitary163 and loss of function mutations in this gene are a cause of isolated 

microphthalmia with cataract type 2 (MCOPCT2).69 Common SIX6 variants, including a 

common missense mutation, are associated with POAG.50,84 The missense change 

His141Asn, has also been associated with retinal nerve fiber layer thickness suggesting that 

the associated gene variants increase susceptibility to POAG by limiting the development of 

the retinal ganglion cells.164 Using zebrafish and a morpholino knock-down 

complementation assay His141Asn and several other missense alleles were found to reduce 

the size of the optic nerve providing further support for the hypothesis that SIX6 risk 

variants disrupt the development of the neural retina, leading to a reduced number of retinal 

ganglion cells which increases the risk of glaucoma-associated vision loss.165,166

12. CEREBROSPINAL FLUID PRESSURE

12.1 8q22 Regulatory Region

A NTG GWAS identified significant association with common SNPs located in an 

evolutionarily conserved genomic region on chromosome 8q22.50 This region contains 

regulatory sites annotated by ENCODE167 as enhancers with highest activity in the choroid 

plexus (produces cerebrospinal fluid) and the ocular ciliary body (produces aqueous humor). 

Of interest, recent studies have suggested that low cerebral spinal fluid pressure may create a 

deleterious gradient across the lamina cribrosa in NTG mimicking a similar gradient induced 

by higher IOP in typical high-pressure POAG.168 The genes influenced by the enhancers are 

not yet known although SNPs in this region may impact TGF beta signaling.50

13. SUMMARY

Genetic studies have yielded important genes contributing to both early-onset and adult-

onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes 

participate in a broad range of cellular processes and biological systems. Extracellular 
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matrix proteins are especially prevalent among glaucoma genes; however, proteins involved 

in cytokine signaling, lipid metabolism, membrane biology, fructose and mannose 

metabolism, regulation of cell division, autophagy, and ocular development also contribute 

to disease pathogenesis. The genes currently known to contribute to glaucoma account for 

only a fraction of the overall disease heritability,169 and GWAS with larger and better 

characterized patient cohorts and current next-generation sequencing approaches are needed 

for novel gene discovery. Delineating the complete genetic architecture of glaucoma will 

make it possible to develop sensitive and specific genebased tests that could identify 

individuals at risk for disease before irreversible damage to the optic nerve occurs. The 

discovery of disease-related genes will also provide new insights into the underlying 

molecular mechanisms responsible for glaucoma, an important step toward achieving novel 

gene-based preventative and protective therapies.
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Figure 1. 
Frequency and effect size of gene variants in glaucoma. Mutations in genes causing early-

onset Mendelian forms of glaucoma are rare but have large biological effects (MYOC, 
OPTN, TBK1, FOXC1, PITX2, PAX6, CYP1B1, LTBP1). Variants in genes influencing the 

susceptibility to adult-onset forms of glaucoma with complex inheritance are generally 

relatively common and individually have small biological effects (CDKN2BAS, TMCO1, 
SIX6, CAV1/CAV2, ABCA1, AFAP1, FNDC3B, GAS7, PLEKHA7, GMDS, PMM2, 
TGFBR3, COL11A1, 8q22). COL15A1 and COL18A1, modifiers of early-onset glaucoma, 

have intermediate frequency and effect size (not shown in this figure). Variants in LOXL1 
contributing to exfoliation syndrome are common but also have large biological effects.
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Figure 2. 
CDKN2BAS and cell cycle progression. CDKN2BAS (Cyclin dependent kinase inhibitor 2B 
antisense) is a long noncoding antisense RNA that regulates expression of CDKN2B (cyclin 
dependent kinase inhibitor 2B), coding for an inhibitor of CDK4 (cyclin-dependent kinase 4) 

necessary for cell cycle progression.19–21
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Table 1

Biological Systems and Processes Involved in Inherited Glaucoma

Biological Process or System Gene Protein Key References

Endoplasmic reticulum stress, unfolded protein 
response

MYOC Myocilin 4,5

Extracellular matrix, cell junctions, and cell adhesion LTBP2 Latent TGF-binding protein 2 6–9

LOXL1 Lysyl oxidase like 1 10

FNDC3B Fibronectin type III domain containing 3B 11

AFAP1 Actin filament-associated protein 1 12

PLEKHA7 Pleckstrin homology domain-containing protein 7 13

COL11A1 Collagen type XI, alpha1 14,15

COL15A1 Collagen type XV, alpha1 16–18

COL18A1 Collagen XVIII, alpha1 16–18

TGF beta signaling CDKN2BAS Cyclin-dependent kinase inhibitor 2B antisense 19–21

TGFBR3 TGFbeta receptor 3

TNF-alpha signaling OPTN Optineurin 22,23

TBK1 Tank-binding kinase 1 24,25

Regulation of autophagy OPTN Optineurin 26

TBK1 Tank-binding kinase 1 27

Lipid metabolism ABCA1 ATP-binding cassette, subfamily A (ABC1) 
member 1

28,29

eNOS signaling and Caveolae CAV1/CAV2 Caveolins 1 and 2 30,31

Fructose and Mannose Metabolism GMDS GDP-mannose 4.6 dehydratase 32,33

PMM2 Phosphomannomutase

Regulation of cell division GAS7 Growth arrest-specific 7 34–38

TMCO1 Transmembrane and coiled-coil domains-1 39

CDKN2BAS Cyclin-dependent kinase inhibitor 2B antisense 19–21

Regulation of ocular development FOXC1 Forkhead box C1 40,41

PITX2 Paired-like homeodomain 2 42,43

PAX6 Paired box 6 44

CYP1B1 Cytochrome P450, family 1, subfamily B, 
polypeptide 1

45,46

LTBP2 Latent TGF-binding protein 2 47

SIX6 SIX homeobox 6 48,49

Cerebrospinal fluid pressure 8q22 NA 50
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Table 2

Glaucoma Genes and Diseases

Disease Gene Protein Key References

Congenital glaucoma CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 51–53

LTBP2 Latent TGF-binding protein 2 54,55

Anterior segment dysgenesis, Rieger syndrome FOXC1 Forkhead box C1 56–59

PITX2 Paired-like homeodomain 2 60–62

Aniridia PAX6 Paired box 6 63–65

Microsperophakia, Weill Marchasani LTBP2 Latent TGF-binding protein 2 66–68

Microphthalmia and cataract SIX6 SIX homeobox 6 69

Juvenile-onset primary open-angle glaucoma MYOC Myocilin 5,70–72

COL15A1 Collagen type XV, alpha1 73

COL18A1 Collagen XVIII, alpha1 73

Adult-onset primary open-angle glaucoma ABCA1 ATP-binding cassette, subfamily A (ABC1) member 1 12,74

AFAP1 Actin filament-associated protein 1 12

CAV1/CAV2 Caveolins 1 and 2 75–79

CDKN2BAS Cyclin-dependent kinase inhibitor 2B antisense 80

FNDC3B Fibronectin type III domain containing 3B 81,82

GAS7 Growth arrest-specific 7 78,83

GMDS GDP-mannose 4,6 dehydratase 12

PMM2 Phosphomannomutase 74

SIX6 SIX homeobox 6 50,84

TGFBR3 TGFbeta receptor 3 85

TMCO1 Transmembrane and coiled-coil domains-1 80

Familial normal-tension glaucoma OPTN Optineurin 86–88

TBK1 Tank-binding kinase 1 25

Adult-onset normal-tension glaucoma 8q22 NA 50

CDKN2BAS Cyclin-dependent kinase inhibitor 2B antisense 50,89,90

Angle-closure glaucoma COL11A1 Collagen type XI, alpha1 14

PLEKHA7 Pleckstrin homology domain-containing protein 7 14

Exfoliation syndrome LOXL1 Lysyl oxidase like 1 91
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