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Abstract

Genome analysis should allow the discovery of interdependent loci that together cause antibiotic 

resistance. In practice, however, the vast number of possible epistatic interactions erodes statistical 

power. Here, we extend an approach that has been successfully used to identify epistatic residues 

in proteins to infer genomic loci that are strongly coupled. This approach reduces the number of 

tests required for an epistatic genome-wide association study of antibiotic resistance and increases 

the likelihood of identifying causal epistasis. We discovered 38 loci and 240 epistatic pairs that 

influence the minimum inhibitory concentrations of 5 different antibiotics in 1,102 isolates of 

Neisseria gonorrhoeae that were confirmed in a second dataset of 495 isolates. Many known 

resistance-affecting loci were recovered; however, the majority of associations occurred in 

unreported genes, such as murE. About half of the discovered epistasis involved at least one locus 
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previously associated with antibiotic resistance, including interactions between gyrA and parC. 
Still, many combinations involved unreported loci and genes. While most variation in minimum 

inhibitory concentrations could be explained by identified loci, epistasis substantially increased 

explained phenotypic variance. Our work provides a systematic identification of epistasis affecting 

antibiotic resistance in N. gonorrhoeae and a generalizable approach for epistatic genome-wide 

association studies.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

Epistasis can both enable and prevent the evolution of antibiotic-resistant bacteria1. On the 

one hand, mutations that compensate for costly resistance variants2 can enable the evolution 

of multiresistant bacteria. On the other hand, epistasis can constrain the spread of antibiotic 

resistance if the fitness cost of resistance prohibits its transmission or spread by horizontal 

gene transfer. In the face of pathogens such as Neisseria gonorrhoeae that are rapidly 

evolving resistance to multiple antibiotics3, it has become increasingly important to identify 

the genetic factors causing resistance to develop new treatments.

In a pioneering study, Cui et al.4 found 5 epistatic interactions in an exhaustive genome-wide 

scan of pairs of 271,945 single nucleotide polymorphisms (SNPs) in 51 unrelated isolates of 

Vibrio parahaemolyticus. Nonetheless, in general it is difficult to discover all but the 

strongest epistatic interactions because the number of possible interactions to test is 

prohibitively large. To circumvent this problem, epistatic tests are often restricted to strong 

individual associations5. Alternatively, known protein–protein interactions and network 

information can be used to reduce the number of tests in genome-wide association studies 

(GWAS)6. In the end, neither of these approaches allow a systematic search for epistatic 

interactions.

To conduct a fully epistatic GWAS in the face of the combinatorial explosion of tests, we 

exploit sequence information by computing evolutionary couplings7 to identify epistatic 

interactions (Fig. 1). Evolutionary couplings analysis can separate causal interactions from 

indirect correlations8 including, to a large extent, global correlations caused by population 

structure and phylogeny9,10 or under-sampling. In recent years, evolutionary couplings 

methods have made breakthroughs in ab initio protein and RNA three-dimensional (3D) 

structure7,11, protein complex12 and mutation effects prediction13. Now, these methods are 

being adopted for bacterial genome analysis14,15. We hypothesized that evolutionary 

couplings, inferred from populations of bacterial pathogens, might represent functional or 

mechanistic dependencies betwfigeen loci that affect bacterial fitness. If true, evolutionary 

couplings can be used to filter pairs for epistatic GWAS, suggesting a principled alternative 

to pathway-based filtering approaches6.

Different approaches have been taken to scale evolutionary couplings analysis to whole 

genomes. Skwark et al.14 predefined fixed genomic windows then independently inferred 

and averaged parameters from loci sampled across genomic windows14. Puranen15 
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developed an optimized version of the standard pseudolikelihood inference method for 

evolutionary couplings analysis, capable of handling 104–105 polymorphic sites. Here we 

use our own optimized and parallelized inference method that can handle a similar 

magnitude of polymorphic sites.

In this work, we report SNPs and epistatic interactions, first identified with evolutionary 

couplings analysis, that were significantly associated with changes in minimal inhibitory 

concentration (MIC) in an exploratory dataset of clinical N. gonorrhoeae isolates and 

subsequently confirmed in a separate dataset. We found 35 significant loci and 240 epistatic 

interactions, many of which involved previously identified antibiotic resistance loci. Thus, 

our work provides a foundation for experimentalists and clinicians seeking to understand 

how epistatic interactions affect the rapid evolution of antibiotic resistance in clinical 

pathogens such as N. gonorrhoeae.

Results

N. gonorrhoeae isolate genomes and drug resistance.

We extracted whole-genome sequences and the MICs of five antibiotics (penicillin (PEN), 

tetracycline (TET), cefixime (CFX), ciprofloxacin (CIPRO) and azithromycin (AZI)) from 

clinical studies of N. gonorrhoeae infection (Supplementary Table 1). We used 1 dataset of 

1,102 strains collected in the USA16 for exploration; for confirmation, a second dataset 

comprised 495 strains collected in Canada17 (n = 246) and England18 (n=249) 

(Supplementary Table 1). A phylogenetic analysis of all 1,597 isolates showed considerable 

diversity within both cohorts (Fig. 2, Methods). In general, MIC distributions across 

countries were broadly similar; however, the AZI MIC distribution in Canadian isolates was 

strikingly shifted to higher MICs compared to the distribution for the UK and US isolates 

(two-sample Kolmogorov–Smirnoff test, P ≤ 2.2×10−16; Fig. 2 and Supplementary Fig. 1). 

Ninety-two percent of isolates from both cohorts were resistant to at least one drug, using 

clinically defined thresholds from the European Committee ofAntimicrobial Susceptibility 

Testing (EUCAST)19 (Fig. 2 and Supplementary Fig. 1). Using N. gonorrhoeae FA1090 as a 

reference genome, we identified non-synonymous SNPs and SNPs in non-coding regions 

affecting gene expression20 that had a minor allele frequency≥ 0.5%, resulting in 8,686 loci 

(Methods).

Probabilistic model to capture genome-wide interactions.

To identify epistatic contributions to the observed antibiotic resistance, it would be necessary 

to test over 37 million combinations of the 8,686 loci, resulting in low statistical power and a 

high probability of identifying spuriously correlated pairs. Since it seems reasonable to 

assume that only a small number of pairs of loci, if any, are causally related to the resistance 

phenotype, a logical approach would be to simply test the most correlated pairs. However, 

many of these pairs are probably non-causal, due to population structure that results in 

transitive correlations. This problem is seen in many areas of biological data analysis: 

correlation does not imply causation8. We solve this by applying a maximum entropy model 

to identify which pairs of loci best explain all other observed pairs in the data. The model 

and inference approaches we developed are based on a method that identifies causal 
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dependencies and epistasis between residues in proteins and RNAs that has led to successful 

folding of 3D structure7,8 and prediction of mutation effects13 from sequence alone.

Therefore, we computed the epistatic relationships between the 8,686 loci before exploring 

the association to antibiotic resistance phenotypes. Our statistical model associates the 

genome sequence σ with a probability distribution P(σ) at equilibrium as

P(σ) = 1
Z exp(E(σ))

where Z is a normalization constant. We define E (σ) as the sum of coupling terms Jij 

between every pair of loci in a sequence and a locus-wise bias term hi:

E(σ) = ∑
i

hi σi + ∑
i < j

Ji j σiσ j

We use regularized pseudolikelihood maximization inference21 to compute the parameters Jij 

and hi. To measure the evolutionary coupling strength between pairs of loci, the inferred 

parameters Jij are summarized using the Frobenius norm (FN):21

FNi j = ∑
k, l

Ji j(k, l)2

which is corrected for population structure and under-sampling using the average product 

correction22. From the set of all pairs (~37 million), we selected the most strongly coupled 

pairs using a two-component mixture model (Supplementary Fig. 2, Methods). This resulted 

in a high-confidence set of 242,360 pairs involving 7,868 loci in 1,438 genes with the 

majority in protein-coding genes (7,437); 178 within transcription start sites or 5′ 
untranslated regions; 224 within promoters; and 29 within ribosomal RNAs (rRNAs; 

Supplementary Table 2).

We found good evidence for our hypothesis that evolutionary couplings between genes often 

reflect functional interactions. The top interacting genes were pilY1 and a pilus protein-

encoding gene (NGO1911a) that is 92% identical to pilC. Strikingly, pilY1 interacts with 

seven different opacity proteins (NGO1861a, NGO0066a, NGO1073a, NGO1277a, 

NGO1463a, NGO1513, NGO1040a) within the top 100 gene–gene interactions. Opacity and 

pilus proteins jointly affect adhesion to host cells during infection, so we hypothesize that 

these interactions affect adhesion and pathogenesis23. The second most coupled gene–gene 

interaction was found between transferrin-binding protein A and its cofactor, transferrin-

binding protein B, which are co-transcribed, co-regulated and physically interact with each 

other24,25. We also found an interconnected evolutionary coupling network between the 

genes of the Mtr efflux pump (mtrC, mtrC, mtrE) and its repressor mtrR, as well as an 

interconnected evolutionary coupling network between genes of the type IV pilus (fimT, 
pilE, pilV, pilW and pilX), which is essential for host colonization and pathogenicity26,27, all 

within the top 100 interactions. murE and penA were also highly coupled and formed an 

interconnected evolutionary coupling network with murF. These cell wall biosynthesis genes 
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occur in the same pathway and are highly likely to interact based on their co-occurrence in 

multiple organisms and occasional gene fusions28. Further examples and details are found in 

Supplementary Table 3.

Genome-wide, single-site analysis recapitulates known associations and predicts new 
ones.

Before testing the epistatic pairs, we performed a single-site GWAS analysis. We used a 

linear mixed model to measure the association strength of individual loci with the measured 

change in MICs, correcting for population structure29,30 (Methods). We tested all 8,686 loci 

for association, controlling for multiple hypothesis testing using a Bonferroni correction 

with an unadjusted α = 0.05.

Checking for lineage effects.—To control for spurious associations due to remaining 

phylogenetic correlations, we inferred the population structure of the combined dataset using 

RhierBAPS31,32, assigned the strains into 18 inferred clades and removed significant loci 

whose minor allele only occurred in one clade, following Coll et al.5 (see Methods). On 

average, significant loci were found in 11 (s.d. = 6) clades with a mean maximal clade 

distance of 23.4% (s.d. = 4.1, ~1,998 nucleotide differences), indicating that the associated 

loci evolved multiple times and were not caused by ancestral resistance. Loci within five 

genes (gyrA, gshB, doxX, pyrG and uvrC) associated with CIPRO were found in all clades, 

suggesting that these associations were spuriously caused by a deep ancestral origin. 

However, when we tested that hypothesis we found that the five loci occurred dozens of 

times on the phylogeny, contradicting a deep ancestral origin (Methods and Supplementary 

Fig. 3). An analysis of the homoplasy distribution of all SNPs showed that significant loci 

reoccurred on the phylogeny far more because of recurrent mutation and selection, or 

recurrent recombination, than the average SNP (two-sample Kolmogorov-Smirnoff test, P < 

10−8). This result implies that the population structure correction successfully filtered out 

SNPs on deep internal branches as well as recent SNPs near the tips of the tree 

(Supplementary Fig. 3). Nearly half (38/82) of the significant associations in the exploratory 

dataset were also significant in the confirmatory dataset (Tables 1 and 2 and Supplementary 

Table 4).

Single-site associations to CIPRO.—Of these 38 confirmed loci, 22 were associated 

with CIPRO, with known loci in gyrA (2 loci) and parC as the most significant (P = 8.25 × 

10−101, 1.98 × 10−43 and 9.96 × 10−18, respectively) (Table 1). The 22 associations occur in 

15 genes and 3 non-coding regions. Associations found in dldH (dihydrolip oyl 

dehydrogenase, p.A88V, P = 6.68 × 10−9) and gshB (glutathione synthetase, p.E221K, P = 
2.71 × 10−8) suggest involvement of the oxidative stress response33, which can be induced 

by fluoroquinolones34 such as CIPRO. The dldH locus p.A88V lies on the homodimer 

interface of the multimeric enzyme, suggesting that multimerization stability is part of its 

mechanism (Fig. 3). Our analysis suggests that the dldH minor allele variant (alanine in the 

confirmatory dataset) causes greater CIPRO sensitivity, since it is uncommon in resistant 

isolates (5/833) and its regression coefficient (β) is negative. By contrast, the minor allele 

variant p.E221K in gshB is associated with a higher CIPRO MIC and a positive regression 

coefficient, suggesting that the lysine variant increases resistance. The highest density of 
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CIPRO associations was found in the AsnC family transcriptional regulator NGO1407 (three 

loci), gyrA, gshB and in the 5′ untranslated region of pyrG (two loci each).

Single-site associations to CFX.—Eight of our CFX-associated loci are in the 

antibiotic target penA (penicillin-binding protein 2). penA is mosaic in the test isolates16 and 

only one of these eight associations has been shown to affect resistance35 (G546S, P = 5.08 

× 10−12). The remaining four loci are in the cell wall biosynthesis gene, murE. Mutations in 

murE increase β-lactam resistance in Streptococcus pneumoniae36, but to our knowledge, 

have not been reported in N. gonorrhoeae (Fig. 3).

Single-site associations to PEN, TET and AZI.—We recovered a known porB site 

associated with increased resistance16 (p.A121D/G/V, P = 2.45 × 10−4) in our confirmatory 

dataset. We also identified loci in porB that are probably associated with increased antibiotic 

sensitivity (their regression coefficients (β) are negative). One was associated with PEN 

(p.V151A, P = 4.73 × 10−3) and another was associated with TET (p.F131Y, P = 1.33 × 

10−3). This shows that porB variation can increase sensitivity as well as resistance to 

antibiotics. The only single association we see for AZI is a known locus in 23S rRNA 

c.C2617T, previously described as c.C2611T (P = 2.19 × 10−31).

As expected, a number of the significant loci (10 loci in 7 haplotypes) to all the antibiotics 

are in perfect linkage disequilibrium. When these are haplotypes of linked mutations, for 

example, penA or murE loci affecting CFX resistance, this suggests that the full haplotype 

affects antibiotic resistance. However, when they are instead mutually exclusive haplotypes, 

for example, pyrG or NGO1407 loci affecting CIPRO resistance, this suggests selection and 

parallel evolution for antibiotic resistance (Tables 1 and 2).

Genome-wide association identifies epistatic pairs associated with antibiotic resistance.

Next, we tested all 242,360 pairs of loci with high-scoring evolutionary couplings for 

epistatic association. To assess the contribution of each epistatic effect, we compared a linear 

mixed model with an interaction term against a model that considers the individual sites as 

additive effects. As before, we applied a Bonferroni correction for multiple testing at an 

unadjusted α = 0.05 and removed pairs if either of the two loci was only observed in one 

clade. We considered an epistatic pair to be present in a clade if one of the two loci were 

observed as minor allele in at least one strain of the associated clade. To rule out ancestral 

resistance, we verified that the allele co-frequency of each pair was dissimilar across the 

clades (Supplementary Table 5).

We verified 240 epistatic associations in the confirmatory dataset (Fig. 4 and Table 3), out of 

729 significant epistatic associations in the exploratory dataset (Supplementary Tables 5 and 

6). We confirmed epistatic interactions to CIPRO, CFX and AZI but not to TET (54/729 

significant in the exploratory dataset) or PEN (0/729 significant in the exploratory dataset). 

Notably, all epistatic interactions involved loci that were confirmed in our single-locus 

GWAS; 10 epistatic associations connected two loci, each of which were significant in our 

single-locus GWAS. The remaining 230 interactions connected an associated locus to a non-

associated one. In addition, most of the previously known resistance loci that we identified 

in our single-locus GWAS (5/6) also occurred in our epistatic GWAS analysis (135 
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occurrences); 119 of the confirmed epistatic associations were associated with CIPRO MIC 

change, 58 with CFX and 63 with AZI.

Epistatic associations to AZI.—All significant epistatic associations to AZI involved a 

single, known antibiotic resistance locus C2617T (identical to C2611T in previous reports16) 

in the 23S rRNA (Table 3 and Fig. 4a). The interaction between 23S rRNA and the p.S90R 

locus of the NGO1861a opacity protein stood out as one of the pairs appearing in the fewest 

clades (16) with the highest maximum clade distance (25.9%) of all AZI-associated 

interactions (Fig. 5a). The S90R mutation was independently observed in 15% of resistant 

strains and co-occurred together with C2617T in 10.8% of resistant strains. Of the 12 genes 

containing 2 or more associated loci, 7 were either membrane proteins (NGO1496, 

NGO1861a, NGO1463a, PorB), cell wall biosynthesis proteins (LgtE) or pilus proteins 

(NGO1911a, PilA).

Epistatic associations to CIPRO.—Epistatic associations correlated with CIPRO MIC 

change involved 79 genes (Fig. 4b). The 26 most significant interactions (all at P = 1.73 × 

10−45) involved the well-known p.S91F resistance locus in gyrA3. Epistatic pairs involving 

S91F and D95A/G are highly correlated, suggesting underlying epistatic interactions 

between a gyrA haplotype with both S91F and D95A/G variants and several other loci in the 

genome (Fig. 5b). These include strong interactions between known resistance variants in 

gyrA and parC (gyrA S91F to parC S87F, P = 1.73 × 10−45; gyrA D95A/G to parC S87F, P 
= 1.26 × 10−30). parC and gyrA both encode type II topoisomerases and their resistance 

variants S91F (gyrA) and S87F (parC) are in homologous positions close to DNA and 

CIPRO binding sites, where these mutations allow the enzyme to religate DNA37 in the 

presence of antibiotic. To our knowledge, this is the first report of epistatic effects between 

these loci in N. gonorrhoeae; notably, homologous epistatic interactions (affecting both 

CIPRO resistance and fitness) have been seen in experiments with S. pneumoniae38. Several 

of the significant associations involved loci associated with sensitivity or resistance to 

CIPRO in other organisms. For instance, we identified interactions between gyrA S91F and 

birA E261K (P = 1.73 × 10−45), and between gyrA S91F and glmU T425A (P = 1.73 × 

10−45). birA is known to increase sensitivity to CIPRO when under-expressed in 

Mycobacterium smegmatis39, while the abundance of GlmU protein increases under CIPRO 

stress in Salmonella typhimurium, possibly modulating cell wall permeability40.

We also identified an epistatic interaction between L339F in translocation and assembly 

module subunit TamA and S87F in parC (P = 5.73 × 10−15), co-occurring in 81% of all 

resistance strains. This epistatic pair was present in only 6 clades (Fig. 5b), with an average 

clade distance of 22% (max = 25.9%). This epistatic pair occurred in the fewest number of 

clades over all CIPRO resistance-associated pairs, indicating that the epistatic pairs that we 

identified are not artefacts caused by population structure. In total, 10 genes and 1 promoter 

contained 3 or more epistatic associations, dominated by inner and outer membrane proteins 

(DoxX, LrgB, CirA, PetC, TamA, TamB), some of which are associated with oxidative 

stress33.

Epistatic associations to CFX.—By contrast with CIPRO, epistatic associations with 

CFX involved only 11 genes (Fig. 4c), each with multiple associated loci (58 pairs of 
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alleles). Seven epistatic interactions involved the known G546S resistance variant in penA. 
The 11 genes were dominated by cell membrane, cell wall and cell wall biosynthesis 

proteins (PenA, YebE, MdoB, OafA), but also included cell division (FtsL, GidA) and DNA 

repair (DinG) proteins. Mutations in ftsL are known to confer ampicillin resistance, affecting 

penicillin-binding proteins and leading to reduced β-lactam affinity41 causing potential 

resistance to first- and second-generation cephalosporins in Haemophilus influenzae42. 

Similar effects may also govern

N. gonorrhoeae resistance.—Three different penA loci (p.N173S, p.V160A and 

p.G546S) interacted with the p.L52V locus in ftsL and occurred in the same 13 clades 

distributed across the phylogeny (Fig. 5c). Each of these penA loci anti-correlate with the 

minor allele of ftsL. The close correlation among these epistatic pairs indicate an underlying 

haplotype block in penA that is epistatic with ftsL.

Taken together, significantly associated epistatic interactions often involve known antibiotic 

resistance loci. Of the interactions that did not involve known antibiotic resistance loci, some 

were found in genes associated with cell division and oxidative stress. However, the majority 

of epistatic loci were found in genes encoding inner and outer membrane proteins, or cell 

wall biosynthesis proteins that potentially affect N. gonorrhoeae’s permeability to 

antibiotics43,44.

Heritability increases with epistatic pairs.

To estimate how well the identified single loci and epistatic pairs explain observed MIC 

variation, we inferred SNP-based heritability (h2) using a linear mixed model45 (see 

Methods) considering either all common SNPs hSNP
2 , significant loci only h singles

2  or 

significant loci combined with all epistatic loci and their effects h pairs
2  (Table 4, 

Supplementary Fig. 4). As expected, the heritability hSNP
2  of the MIC for an antibiotic was 

high, ranging from 0.83 to 0.93. The identified loci could explain the majority of the 

observed variance, excepting the loci associated with PEN and TET MICs. This might be 

understood by the fact that these strains were not explicitly selected for TET and PEN 

resistance, and neither antibiotic is currently used as a treatment for gonococcal infection3. 

Thus, PEN or TET may not represent active selection pressures; resistance is mostly 

probably ancestral. The identified epistatic pairs further increased the explained heritability 

compared to h singles
2  (CFX: 5.3% increase; CIPRO: 24.9% increase; AZI: 43.3% increase); 

in the cases of CFX (3% increase) and CIPRO (2.4% increase), it explained even more than 

hSNP
2 .

Discussion

We report the results of the first systematic GWAS of single loci and epistatic interactions 

affecting antimicrobial sensitivity and resistance in N. gonorrhoeae. As expected, we 

recovered many known resistance-causing loci; many of the epistatic interactions that we 

discovered involve known resistance-causing loci.
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In our study, reported loci can cause either heightened sensitivity or greater resistance to 

antimicrobials. Examples for heightened sensitivity include loci in dldH and comF that are 

associated with CIPRO (Table 1). We also found several unreported loci and interactions that 

associate strongly with greater antibiotic resistance, including several loci in murE linked to 

CFX resistance and two interactions between gyrA and parC linked to CIPRO resistance. 

Each antibiotic showed distinct epistatic association patterns. While epistatic associations 

with CIPRO occurred in many genes, all epistatic associations with AZI involved a single 

resistance locus in 23S rRNA and all epistatic associations with CFX involved loci in a few 

genes, mostly concentrated in the peptidoglycan synthesis gene penA. These observations 

suggest that the mechanism of CIPRO-induced death involves many genes across diverse 

cellular pathways, including oxidative stress, while the mechanism of CFX and AZI killing 

is focused on disabling peptidoglycan synthesis and 23S rRNA, respectively.

Population structure can cause spurious associations in GWAS; for this reason, we took 

several measures to correct for population structure and verify that our findings were not 

confounded by relatedness among the sampled strains. First, we explicitly corrected for 

spurious phylogenetic correlations through the application of a linear mixed model that 

includes a population structure term as a random effect. Second, we applied a phylogenetic 

correction to the inferred strength of evolutionary couplings before identifying high-

confidence interactions. Finally, we filtered out all loci and epistatic interactions that 

occurred in only one clade (as inferred by RhierBAPS) of the phylogeny and verified that 

significant loci were subject to greater homoplasy. Thus, all significant associations occurred 

multiple times across the phylogenetic tree and did not act as markers for particular resistant 

or sensitive lineages.

By calculating SNP heritability, we found that taking epistatic pairs into account 

significantly improved the amount of MIC variation that could be explained by the additive 

effects of significant loci, and even all common loci combined. This finding reinforces the 

causal nature of the identified epistatic pairs. However, we caution that a more rigorous 

statistical approach would be to estimate heritability for these loci and epistatic pairs on a 

distinct genomic dataset.

In principle, GWAS can identify causal variation. However, our study focuses only on point 

mutations found by comparison to the N. gonorrhoeae FA1090 reference genome. Thus, the 

effects of horizontally transmitted genes and more complex variants, such as gene 

duplications, indels and mobile element transpositions, will be missed. Some of these 

missing variants may be hidden yet causal variables that affect antibiotic resistance. If so, the 

effects of these missing variants will either be absent or associated to non-causative markers 

in our data that closely track the presence of the true, but missing, causal variants. We found 

some evidence of missing causal variables in our analysis because many epistatic 

associations are linked to genes that are highly variable in the genome alignment, such as 

transferrin-binding proteins46. Thus, it is possible that some associations involving highly 

variable genes are actually markers that represent the closest possible association to hidden 

causal variants. Nevertheless, our work demonstrates that evolutionary couplings combined 

with standard GWAS methods is a promising new approach for discovering epistatic 

interactions affecting antibiotic resistance in multiresistant pathogens, such as N. 
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gonorrhoeae. The loci and interactions reported in this study may support efforts in 

predicting antibiotic resistance from whole-genome sequence data47. We anticipate that our 

findings and evolutionary couplings approach will be valuable in unravelling the genetics of 

complex traits.

Methods

Alignment construction and annotation.

We used breseq48 to call variants in each isolate with reference to the N. gonorrhoeae 
FA1090 genome. To identify variants in rRNAs, we masked all except the first copy of the 

rRNA operon in the reference genome. We ran breseq in consensus mode using the masked 

reference genome. We filtered variants in the consensus mode runs for SNPs, then mapped 

the SNPs onto the reference sequence using gdtools (part of breseq) to generate a genome 

alignment. We ran breseq in polymorphism mode to infer the copy number of rRNA variants 

in each isolate. The FA1090 reference genome was used to annotate the location of coding 

regions and other genomic features. Promoters and 5′ untranslated regions associated with 

experimentally determined RNA transcripts20 were annotated as follows. Regions bounded 

by the transcriptional start site and the location of the first gene on the transcript were 

annotated as 5′ untranslated regions as long as the annotated region was no more than 150 

nucleotides (nt) long. This decision rule was based on experimental results on the 

distribution of 5′ untranslated region lengths in Bacillus subtilis, Escherichia coli and 

Pseudomonas aeruginosa49. Sequences up to 70 nt upstream of the transcript (or, the end of 

the upstream gene on the same strand if within 70 nt) were annotated as promoters, 

following Remmele et al.20. The genome alignment was filtered for variants that occurred in 

at least 5 strains (0.5% minor allele frequency). Synonymous variants within coding regions 

were excluded from the alignment.

Genome-wide evolutionary couplings inference.

To identify strongly coupled positions within a genome of length L, we fitted a q = 2 state 

undirected graphical model of the form:

P(σ) = 1
Z exp ∑

i = 1

L
hi σi + ∑

i = 1

L − 1
∑

j = i + 1

L
Ji j σi, σ j

using a multiple sequence alignment σ of N bacterial genomes. Minor alleles were encoded 

as 1 and major alleles were encoded as 0. To prevent overfitting, we used L2-regularized 

pseudolikelihood estimation, similar to previous work11–13,21,50. The site-specific 

regularization weight was set to λh = 0.01 and the pairwise regularization weight was set to 

λJ = λh(L − 1)q . We used maximum pseudolikelihood inference to fit the parameters of the 

model and summarized the evolutionary couplings strength of each pair of loci with the 

FN21 of each Jij matrix:
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FNi j = Ji j σpσ j 2 = ∑
k, l = 1

q
Ji j(k, l)2

Identification of highly evolutionarily coupled loci.

To correct for under-sampling and phylogenetic bias in the alignment, we adjusted the 

summarized FN scores with an average product correction (APC):51

FNi j
APC = FNi j −

FN . j ⋅ FNi
FN

Where FN . j and FNi . represent the column and row mean of the FN matrix, respectively, 

while FN.. is the matrix mean.

Following Toth-Petroczy et al.50, we fitted a two-component mixture model to the corrected 

FN score distribution (Supplementary Fig. 2) to separate evolutionary couplings representing 

noise from strongly evolutionarily coupled genomic loci:

FNi j
APC (1 − π)SN 0, ω2, ξ + πLN μ, σ2

where π represents the mixing parameter, SN is a skew normal distribution with location at 

0 and unknown scale ω and shape ζ parameters and LN represents a log-normal distribution 

with unknown mean μ and variance σ. The parameters were inferred by expectation 

maximization. All evolutionary couplings whose posterior probability of membership in the 

log-normal component was >0.95 were deemed significant and used for later analysis.

Detection of antibiotic-resistant loci and co-evolutionarily coupled pairs.

To test single-locus and epistatic associations to a specific phenotype, we employed a linear 

mixed model29,30 of the following form:

y N Sβ, σg
2K + σe

2I

S: = 1, Xi, X j, XiX j  or S: = 1, Xi  denotes the design matrix with the loci or epistatic 

interactions of interest, y denotes the log-transformed MIC for a specific antibiotic measured 

for each strain, /denotes the identity matrix, and σg
2 and σe

2 denote the genetic and noise 

variance components. The bacterial sequences are first binary encoded in X with Xi = 0 as 

major and Xi = 1 as minor allele and then standardized for the purpose of association testing. 

K = 1
L XXT represents the kernel matrix that is used to correct for population structure.

Parameters of the single-locus model were inferred with restricted maximum likelihood; the 

association strength was assessed with a Wald test. The regression coefficients of the 
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epistatic model were inferred with maximum likelihood, assuming fixed variance 

components, while the variance components were inferred based on a null model 

y N 0, σg
2K + σe

2I  following Kang et al.29. The epistatic association strength was tested using 

a likelihood ratio test with 1 d.f. comparing the full interaction model to a model 

disregarding the interaction effect. Bonferroni correction was used for multiple testing 

correction at α = 0.05.

Estimation of SNP-based heritability.

To estimate the SNP-based heritability h2 of the observed MICs, we fitted a variance 

component model of the following form:

y N μ, σg
2 1

LSST + σe
2I

with μ being the estimated mean and S a design matrix encoding the loci and epistatic 

interactions of interest. The same data encoding and normalization procedures conducted in 

the GWAS analysis were applied.

Heritability was defined as

h2 = σg
2/ σg

2 + σe
2

and is a lower bound of the broad sense heritability52. We estimated h2 for all common 

SNPs, all significant loci and all significant loci combined with all significantly epistatic 

loci. Singly significant loci are encoded in S as additive terms and epistatic loci are encoded 

in S as interaction terms and single additive terms. Parameters were estimated with restricted 

maximum likelihood; the posterior of h2 was approximated using the sampled log-likelihood 

during parameter estimation (Supplementary Fig. 4).

Population structure analysis.

We used Gubbins53 to predict regions of recombination and ran FastTree54 with default 

parameters to make an approximately maximum likelihood phylogeny of all 1,597 strains, 

excluding regions of recombination. Bayesian analysis of population structure was 

performed with RhierBAPS31. To further reduce false associations caused by residual 

phylogenetic correlations, we removed all significant single loci which were clade-specific. 

For epistatic pairs, we considered a pair to be present in the clade if either of the two loci 

were observed as minor alleles and removed all epistatic pairs that were only present in one 

clade. Additionally, we calculated the average Hamming distance between two clades Ck 

and Cg,

dc Ck, Cg = 1
Ck Cg

∑
ck ∈ Ck
cg ∈ Cg

i ∈ [1, L] Xcki ≠ Xcgi /L
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as a measure of clade relatedness and annotated the maximum clade distance for each 

significant association to further substantiate their phylogenetic independence. Finally, we 

counted the number of homoplasies (parallel changes due to mutation or recombination 

events, possibly under selection) at each SNP locus along the phylogeny. As a fast 

approximation to a joint maximum likelihood ancestral sequence reconstruction55 of the full 

genome alignment, we binary encoded all SNPs in the genome and used RAxML56 under 

the BINCAT model to reconstruct ancestral states by marginal maximum likelihood. Many 

loci were subject to dozens, even hundreds, of homoplasies, consistent with high 

recombination rates in N. gonorrhoeae populations.

Implementation.

The undirected graphical model was inferred using plmc (https://github.com/

debbiemarkslab/plmc). The linear mixed model was implemented in Python version 3.5 and 

is based on pylmm30. Population structure analysis was performed with RhierBAPS31, an R 

implementation of hierBAPS32 (https://github.com/gtonkinhill/rhierbaps). The remaining 

data analysis was performed in Python and Jupyter Notebook. Chord diagrams and 

phylogenetic tree visualization were made with circlize57 and iTOL version 358.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Evolutionary couplings power epistatic GWAS.
a, First, non-synonymous SNPs and non-coding variants with experimentally derived 

functional annotation are identified and used to generate a whole-genome alignment. b, 

Highly evolutionarily coupled loci are identified using an undirected graphical model given 

the multiple sequence alignment. c, The inferred evolutionary couplings are then tested in an 

exploratory set of 1,102 N. gonorrhoeae strains, using a linear mixed model, for their 

epistatic association to MICs for 5 antibiotics: PEN, TET, CFX, CIPRO and AZI. d, 
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Significant epistatic associations are then confirmed in a geographically distinc set of 495 N. 
gonorrhoeae genomes.
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Fig. 2 |. MIC (mgl−1) for N. gonorrhoeae strains.
a, The dotted lines indicate clinical breakpoints for N. gonorrhoeae as defined by EUCAST. 

The upper panels show the MIC distribution in the exploratory dataset (n = 1,102) and the 

lower panels the distribution in the confirmatory dataset (n = 495). (See Supplementary Fig. 

1 for details.) b, Geographic and phylogenetic distribution of resistance strains in the 

combined dataset. The coloured branches indicate the geographical origin of the strain and 

the lines surrounding the phylogenetic tree indicate resistance to one of the five antibiotics 

considered in this study (from PEN at the innermost ring, to TET, CFX, CIPRO and AZI at 

the outermost ring).
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Fig. 3 |. Associations that occur in structural binding sites.
a, dldH A88 (magenta), associated with CIPRO resistance, maps onto the interface of the 

homodimer shown in the 3D structure of the homologous protein in Pisum sativum, 1dxl 

(ref. 59). b, Two out of four variants associated with CFX resistance in murE map onto the 

enzyme active site, as shown in the 3D structure of the homologous protein in E. coli, 1e8c 

(ref. 60), co-crystallized with its substrate uridine-5′-diphosphate-N-acetylmuramoyl-L-

alanine-D-glutamate (UAG). See Tables 1 and 2 for details.
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Fig. 4 |. Significant epistatic interactions affecting antibiotic resistance and sensitivity in N. 
gonorrhoeae.
The edges between pairs of positions that are both individually associated with changes in 

MIC are outlined in black. a, Epistatic interactions affecting resistance to AZI (n = 63). All 

interactions are connected to a single C2617T variant in 23S rRNA, which is known to cause 

significant resistance to AZI. b, Epistatic interactions affecting resistance to CIPRO (n = 

119). c, Epistatic interactions affecting resistance to CFX (n = 58). Significance was 

determined by a likelihood ratio test using a linear mixed model with and without an 
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interaction term. Bonferroni correction was used to adjust for multiple comparison. See 

Supplementary Table 5 for more details.
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Fig. 5 |. Occurrence of selected epistatic pairs across phylogenetic clades.
Each of the 18 clades inferred by RhierBAPS is coloured on the phylogeny. The occurrence 

of selected epistatic loci that are mentioned in the text is indicated by the coloured rings. A–
c, The innermost black ring indicates strains that are resistant to AZI (a), CIPRO (b) and 

CFX (c). Detailed information can be found in Supplementary Table 5.
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Table 4 |

SNP-based heritability of MIC for different antibiotics

hSNP
2 h singles

2 hpairs
2

PEN 0.830 0.203 –

TET 0.891 0.073 –

CFX 0.825 0.807 0.850

CIPRO 0.931 0.763 0.953

AZI 0.900 0.4970 0.712

Heritability was estimated on the whole dataset (n = 1,597) using a linear mixed model: hSNP
2

 estimated considering all common SNPs; h singles
2

was estimated considering significant loci only; and h pairs
2

 was estimated considering significant loci and significant epistatic pairs.
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