Skip to main content
. 2019 Jul 23;10:941. doi: 10.3389/fpls.2019.00941
References Classification or detectiona Deep CNN architecture Training strategyb Best accuracy(%)c Evaluation qualityd
Atabay, 2017 C VGG16, 19, custom architecture FS–TL 97.53 **
Barbedo, 2018b C GoogleNet TL 87 *
Brahimi et al., 2017 C AlexNet, GoogleNet FS–TL 99.18 *
Brahimi et al., 2018 C AlexNet, DenseNet169, Inception v3, ResNet34, SqueezeNet1-1.1, VGG13 FS -TL 99.76 *
Cruz et al., 2017 C LeNet TL 98.60 *
DeChant et al., 2017 D Custom three stages architecture FS 96.70 **
Ferentinos, 2018 C AlexNet, AlexNetOWTBn, GoogleNet, Overfeat, VGG Unspecified 99.53 *
Fuentes et al., 2017 D AlexNet, ZFNet, GoogleNet, VGG16, ResNet50, 101, ResNetXt-101 TL 85.98 **
Fuentes et al., 2018 D Custom architecture with Refinement Filter Bank TL 96.25 **
Liu B. et al., 2017 C AlexNet, GoogleNet, ResNet 20, VGG 16 and custom architecture FS -TL 97.62 *
Mohanty et al., 2016 C AlexNet, GoogleNet FS–TL 31 ***
Oppenheim and Shani, 2017 C VGG Unspecified 96 *
Picon et al., 2018 C Custom ResNet50, Resnet50 TL 97 ***
Ramcharan et al., 2017 C Inception V3 TL 93 **
Sladojevic et al., 2016 C CaffeNet TL 96.3 *
Too et al., 2018 C Inception V4, VGG 16, ResNet 50, 101 and 152, DenseNet 121 TL 99.75 **
Wang et al., 2017 C VGG16, 19, Inception-V3, ResNet50 TL 90.40 *
Zhang S. et al., 2018 C Custom Three Channels CNN, DNN, LeNet-5, GoogleNet FS A/ 87.15 B/ 91.16 A/ * B/ *
Zhang K. et al., 2018 C AlexNet, GoogleNet, ResNet TL 97.28 *
a

Classification (C)—Detection (D).

b

From Scratch (FS)—Transfer Learning (TL).

c

If available, the accuracy of the explicitly different test set is privileged.

d

SSAbsence of three explicit subsets; SSThree explicit subsets; SSSTest set explicitly different from the training set.