References | Classification or detectiona | Deep CNN architecture | Training strategyb | Best accuracy(%)c | Evaluation qualityd |
---|---|---|---|---|---|
Atabay, 2017 | C | VGG16, 19, custom architecture | FS–TL | 97.53 | ** |
Barbedo, 2018b | C | GoogleNet | TL | 87 | * |
Brahimi et al., 2017 | C | AlexNet, GoogleNet | FS–TL | 99.18 | * |
Brahimi et al., 2018 | C | AlexNet, DenseNet169, Inception v3, ResNet34, SqueezeNet1-1.1, VGG13 | FS -TL | 99.76 | * |
Cruz et al., 2017 | C | LeNet | TL | 98.60 | * |
DeChant et al., 2017 | D | Custom three stages architecture | FS | 96.70 | ** |
Ferentinos, 2018 | C | AlexNet, AlexNetOWTBn, GoogleNet, Overfeat, VGG | Unspecified | 99.53 | * |
Fuentes et al., 2017 | D | AlexNet, ZFNet, GoogleNet, VGG16, ResNet50, 101, ResNetXt-101 | TL | 85.98 | ** |
Fuentes et al., 2018 | D | Custom architecture with Refinement Filter Bank | TL | 96.25 | ** |
Liu B. et al., 2017 | C | AlexNet, GoogleNet, ResNet 20, VGG 16 and custom architecture | FS -TL | 97.62 | * |
Mohanty et al., 2016 | C | AlexNet, GoogleNet | FS–TL | 31 | *** |
Oppenheim and Shani, 2017 | C | VGG | Unspecified | 96 | * |
Picon et al., 2018 | C | Custom ResNet50, Resnet50 | TL | 97 | *** |
Ramcharan et al., 2017 | C | Inception V3 | TL | 93 | ** |
Sladojevic et al., 2016 | C | CaffeNet | TL | 96.3 | * |
Too et al., 2018 | C | Inception V4, VGG 16, ResNet 50, 101 and 152, DenseNet 121 | TL | 99.75 | ** |
Wang et al., 2017 | C | VGG16, 19, Inception-V3, ResNet50 | TL | 90.40 | * |
Zhang S. et al., 2018 | C | Custom Three Channels CNN, DNN, LeNet-5, GoogleNet | FS | A/ 87.15 B/ 91.16 | A/ * B/ * |
Zhang K. et al., 2018 | C | AlexNet, GoogleNet, ResNet | TL | 97.28 | * |
Classification (C)—Detection (D).
From Scratch (FS)—Transfer Learning (TL).
If available, the accuracy of the explicitly different test set is privileged.
SSAbsence of three explicit subsets; SSThree explicit subsets; SSSTest set explicitly different from the training set.