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In matrilineal populations, the descent group affiliation is transmitted by

women whereas the socio-political power frequently remains in the hands

of men. This situation, named the ‘matrilineal puzzle’, is expected to pro-

mote local endogamy as a coping mechanism allowing men to maintain

their decision-making power over their natal descent group. In this paper,

we revisit this ‘matrilineal puzzle’ from a population genetics’ point of

view. Indeed, such tendency for local endogamy in matrilineal populations

is expected to increase their genetic inbreeding and generate isolation-by-

distance patterns between villages. To test this hypothesis, we collected

ethno-demographic data for 3261 couples and high-density genetic data

for 675 individuals from 11 Southeast Asian populations with a wide

range of social organizations: matrilineal and matrilocal populations (M),

patrilineal and patrilocal populations (P) or cognatic populations with pre-

dominant matrilocal residence (C). We observed that M and C populations

have higher levels of village endogamy than P populations, and that such

higher village endogamy leads to higher genetic inbreeding. M populations

also exhibit isolation-by-distance patterns between villages. We interpret

such genetic patterns as the signature of the ‘matrilineal puzzle’. Notably,

our results suggest that any form of matrilocal marriage (whatever the

descent rule is) increases village endogamy. These findings suggest that

male dominance, when combined with matrilocality, constrains inter-village

migrations, and constitutes an underexplored cultural process shaping

genetic patterns in human populations.

This article is part of the theme issue ‘The evolution of female-biased

kinship in humans and other mammals’.
1. Introduction
In matrilineal populations (which represent about 12–17% of the world’s popu-

lations), descent group affiliation is transmitted through the mother, whereas in

patrilineal populations (about 45% of the populations), it is transmitted through

the father [1,2]. These descent systems are not the symmetrical opposite of each

other because, in both cases, authority and socio-political power (beyond the

household) lie in the hands of men [3–6]. Indeed, while women play key

roles within the domestic unit in terms of provisioning, childrearing and house-

hold organization, men are usually more empowered than women to control

public sphere affairs [4,5,7,8]. Hence, it has been argued that matrilineal
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societies are caught in what has been named by A. Richards as

a ‘matrilineal puzzle’ [5]. Indeed, in these populations, a man

has to conciliate his loyalties to his conjugal and to his natal

kin [8]: he is expected to exert, at the same time, his authority

of husband and father over his spouse and children, and his

authority of brother and uncle over his sisters and their children,

who are members of his own clan and to whom material and

immaterial forms of inheritance are transmitted. In addition,

by following the matrilocal residence rule that exists in 70% of

these matrilineal populations [2], men are supposed to move

out to settle with their wife, possibly in a different village.

The further away they marry, the more challenging it is for

them to exert their authority over their sisters and their

children. In addition, in these populations, the husband has to

share authority with his brothers-in-law and other men in

charge of his wife’s lineage or clan, thus generating the problem

of organizing relationships between the in-marrying husband

and the male members of his wife’s descent group [9].

The matrilineal puzzle has been discussed for over 60 years

by different schools of anthropologists. Recent works by evol-

utionary anthropologists have outlined the evolutionary

paradoxes of these matrilineal systems [10–12]. Indeed, in

these societies, frequently men invest more in their sisters’

children than in their own children, which violates the expec-

tation of Hamilton’s rule [13]. In addition, according to the

Trivers–Willard hypothesis, it would be more beneficial

for parents to transmit wealth to the sex that is most capable

of converting it into large reproductive success, typically

males [14]. The relative benefit of transmission to males over

females depends on the nature of heritable wealth. For

instance, livestocks and productive lands are both usually con-

sidered more beneficial to men than women because of their

greater impact on male’s capacity to acquire partners and to

increase their reproductive success [10,12]. More recently, the

matriliny as daughter-biased investment (MDBI) hypothesis

proposes that daughter-biased investment could be an adap-

tive strategy if the risk of paternity uncertainty (usually high

in matrilineal societies) outweighs the benefits of wealth trans-

mission to sons [15]. On the other hand, the expendable male

hypothesis suggests that the matrilineal puzzle may not be a

puzzle in the evolutionary sense at all, and proposes that

matriliny may emerge if females are capable of meeting the

subsistence needs of their families while males invest little

in children (their own, or their sisters’), this latter condition

reconciling these systems with Hamilton’s rule [7].

Here, we propose to come back to the original sense given

to the matrilineal puzzle by A. Richards and other structural-

functionalists [5,8], who were referring to the conflict in

authority, and in particular to the constant ‘pull-father-pull-

mother’s brother’ stretch existing in these matrilineal

populations. Interestingly, through the study of many matrili-

neal populations, these anthropologists have described several

‘solutions’ which may appease such tensions: (i) a handful of

these matrilineal populations do not follow the matrilocal resi-

dence rule but follow a duolocal residence rule—the husband

does not live with his wife but visits her regularly while staying

with his sisters [8,16]; (ii) more often, the residence rule is avun-

culocal with, for example, fraternal extended families exerting

full authority over the community, while men’s sisters are

loaned away to other communities and their children

are reclaimed at puberty [5,17]; (iii) in the case of the matrilineal

populations exhibiting a matrilocal residence rule, the eldest

brother may be exempted from such a rule, thus exerting his
authority over his sisters and their children [5,17]; (iv) in

addition, matrilateral cross-cousin marriages are frequent

in these populations, contributing to strengthen the authority

of men who have contracted matrilocal marriages—by marry-

ing their daughters to their sister’s sons, they bring in their

spouse’s village, their nephews as sons-in-law, who come

from their own descent group and natal village [5,18]; (v) finally,

a very frequent ‘solution’ to the matrilineal puzzle is the strong

preference for local endogamy observed in these populations—

according to Murdock [19], 17 out of 24 matrilocal populations

(70%) were found to be endogamous (as opposed to only 7 out

of 101 patrilocal populations). This preference for marrying a

woman from the same village, or from a nearby village, may

allow men to stay close to the members of their maternal descent

group and to exert their authority as brothers/uncles over them,

as well as control their descent-group affairs.

In this study, we propose to explore the potential impact of

the matrilineal puzzle on the genetic evolution of these popu-

lations. A number of studies in the past 20 years have shown

that social organizations shape the uniparental genetic diversi-

ties of human populations [20–29]. Fewer studies have

explored the evolutionary implications of descent and resi-

dence rule on autosomal data [30–32]. Here, we propose to

focus on the matrilineal puzzle, whose impact on human

genetic diversity has been left untouched by population geneti-

cists. Our working hypothesis is that the preference for local

endogamy observed in matrilineal populations should increase

the genetic inbreeding level in these matrilineal populations, in

comparison to populations where such preference does not

exist, in particular populations with patrilineal descent.

Indeed, when local endogamy increases, we expect not only

the proportion of consanguineous marriages to be higher

(owing to the small size of the matrimonial market and its

enrichment in relatives), but also the genetic drift to increase,

both leading to higher genetic inbreeding [33]. In addition,

we expect such preference for marrying within the same vil-

lage, or in a nearby village, in matrilineal populations to

generate isolation-by-distance patterns between villages [34].

Such isolation-by-distance patterns are less expected in patrili-

neal populations, because there is weaker pressure for local

endogamy, leading to long distance gene flow.

To test such a hypothesis, we collected ethno-demographic

data for 3261 couples as well as high density autosomal single

nucleotide polymorphism (SNP) data for 675 individuals

from 11 mainland Southeast Asian populations exhibiting a

wide variety of social organizations, with different descent

and residence rules, but living in similar tropical environ-

ments and having similar lifestyles based on rice farming.

More precisely, we compared three populations (M) with

matrilineal descent and matrilocal residence (Jarai, Tampuan

and Kacho’), to four populations (P) with patrilineal descent

and patrilocal residence (Khmu’, Lamet, Ta-oih and Pacoh).

This dataset has been completed by four populations (C)

with cognatic descent and either matrilocal residence

(Khmer and Bunong) or multilocal residence with final settle-

ment in the wife’s village (Brao and Kreung). We grouped

these four cognatic populations into a single group of cogna-

tic populations with predominant matrilocal residence. These

populations were included to disentangle the effect of des-

cent from the effect of residence on migrations of men. In

particular, we investigated whether matrilocality by itself

could generate a similar level of constraint on male migration

as when it is associated with matrilineal descent. Indeed, it
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may be that under any form of matrilocal marriage, and inde-

pendently of matrilineality, men find themselves, at least

initially, in a position of subjection in their wife’s village

(while possibly losing a position of leadership in their village

of origin) [5], a situation that can be lessened by marrying a

woman from the same village [6]. Consequently, in popu-

lations following a matrilocal residence rule but with

no matrilineal descent group (i.e. cognatic populations), we

could expect a similar preference for endogamous marriages

as in matrilineal populations. The populations under study

are presented in table 1 (their geographical location is shown

in electronic supplementary material, figure S1).
 tb
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2. Results
(a) Estimation of village endogamy
We estimated the village endogamy rate (as a proxy for local

endogamy) for each population from ethno-demographic

information collected by the research team for 3261 couples

(figure 1). The village endogamy rate was defined as the pro-

portion of couples for which both spouses were born in the

same village. These rates were compared among social organ-

izations using a generalized linear mixed model. As expected

under the matrilineal puzzle hypothesis, village endogamy

was significantly higher in M than P populations (0.87 versus

0.73 respectively, p-value ¼ 0.029). In C populations, village

endogamy was similar to M populations (0.84, p-value ¼

0.62) and higher than in P populations, although the difference

was not statistically significant ( p-value ¼ 0.066). This suggests

that the matrilocal residence rule alone (with no matrilineal

descent groups but cognatic descent) may generate a similar

level of constraints on migrations of men as when this residence

rule is associated with matrilineal descent. In addition, social

organization was estimated to explain 43% of the variance in

village endogamy rate among populations.

We observed variation in the village endogamy rate

within groups (electronic supplementary material, table S1).

In particular, the Kacho’ population had a significantly

higher village endogamy rate compared to the other M popu-

lations (Tampuan and Jarai). Among the P populations, the

Khmu’ had a significantly higher village endogamy rate

than the Pacoh and Ta-oih. The Pacoh had significantly

lower village endogamy rate than the Khmu’ and Ramet.

(b) Estimation of inbreeding coefficients
We tested whether M and C populations exhibited higher

inbreeding levels in comparison to P populations as a result

of their higher village endogamy rate. The FEstim software in

the FSuite pipeline [35,36] was used to estimate the inbreeding

coefficient of each individual (figure 2a) and to infer the genea-

logical relationship between the parents (parental mating type)

of each individual (electronic supplementary material, table

S2). M and C populations had similar mean inbreeding coeffi-

cients (0.018 and 0.017 respectively, p-value ¼ 0.91, figure 2b),

and both had higher mean inbreeding coefficient compared

to P populations (0.011, both p-values , 0.05). In addition,

social organization was estimated to explain 27% of the

variance in inbreeding coefficients among populations.

Mating type inference showed that M populations had a

higher proportion of individuals whose parents were related

(90.2%: 77.7% of second cousins, 12.1% of first cousins, and
0.5% of double first cousins) compared to C populations

(81.8%: 70.6%, 9.8% and 1.5% for the same mating types,

x2 test p-value ¼ 0.012) and compared to P populations

(60.0%: 61.6% of second cousins, 7.6% of first cousins and

0.5% of avuncular relationship, p-value , 0.01, electronic

supplementary material, table S2). In addition, C populations

also had a higher proportion of individuals whose parents

were related compared to P populations ( p-value , 0.01).

We observed variation within groups in terms of inbreed-

ing coefficient (figure 2 and electronic supplementary

material, table S3). In particular, the Kreung population had

a significantly higher inbreeding level than other C popu-

lations (F ¼ 0.026 compared to 0.014 on average for the other

C populations). This may relate to the fact that their effective

size is lower (only significantly so compared to the Khmer)

than the effective population size estimated for the other cog-

natic populations (see table 1 and electronic supplementary

material , tables S4 and S5). In addition, the Khmu’ population

had a significantly higher inbreeding coefficient than other P

populations (F ¼ 0.022 compared to 0.0067 on average for the

other P populations). Contrary to the case of the Kreung, this

does not seem to be linked to differences in effective population

size among P populations.

To further investigate the influence of village endogamy on

inbreeding level and confirm that village endogamy is the

social component that explains the differences in inbreeding

level between social organizations, we measured the corre-

lation coefficient between these two parameters at the

population level (figure 3). The village endogamy rate was

indeed significantly correlated with the inbreeding coefficient

(Spearman’s r ¼ 0.73, p-value ¼ 0.015).

(c) Isolation-by-distance patterns
Finally, we explored the patterns of isolation-by-distance at the

village level within each population (figure 4). We performed

this analysis in populations with at least four sampled villages

(after excluding villages with less than five sampled individ-

uals). This filtering step excluded the Kacho’, Kreung and

Ta-oih from this analysis. We observed significant isolation-

by-distance patterns in the two M populations included in this

analysis (Tampuan and Jarai, both p-values , 0.05). Among

the C populations, such isolation-by-distance pattern was

found in the Khmer ( p-value ¼ 0.034) but not in the Bunong

or Brao (both p-values . 0.05). P populations did not

exhibit any significant isolation-by-distance pattern (all

p-values . 0.05).
3. Discussion
In this study, we observed that Southeast Asian matrilineal and

matrilocal populations (M), but also cognatic populations with

predominant matrilocal residence (C), have higher levels of

genetic inbreeding than patrilineal and patrilocal populations

(P). In addition, M populations exhibit isolation-by-distance

patterns between villages. We hypothesize that such findings

are the signature of the higher local endogamy resulting from

what has been called the ‘matrilineal puzzle’, which takes

root in the male dominance over socio-political power [5]: in

matrilineal and matrilocal societies men are supposed to

settle with their wife’s family, possibly in a different village,

while remaining actively involved in decision-making within

their own descent groups. This becomes challenging as the
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geographical distance between the natal villages of the wife

and the husband increases. Consequently, a preference for

local marriages has been observed in these societies, as sum-

marized by Murdock: ‘where residence is matrilocal, a man

in marrying rarely settles in a new community. He merely

takes his possessions from his parents’ home and moves, so

to speak, across the street’ [19, p. 214].

Several lines of evidence support the hypothesis that

the matrilineal puzzle is responsible for the different genetic

diversity patterns observed in the studied populations. First,

we confirmed from our ethno-demographic dataset that M

populations had higher village endogamy rates than P popu-

lations (on average 87% and 73% respectively). In addition,

C populations had similar village endogamy (84%) to M

populations. Previous ethnographic works on the matrilineal

populations under study also confirmed the existence of a pre-

ference for local endogamy. Indeed, the Jarai marry according

to a ‘the closest, the safest’ rule [18] and in the Tampuan popu-

lation [37], the councils of elders are reluctant to integrate into

their villages a man coming from a distant village, a preference

still prevailing these days, that may contribute to increase the

rate of village endogamy.

Secondly, the village endogamy rate was shown to be a

good predictor of the genetic inbreeding levels in these popu-

lations. However, the preference for cousin marriages in these

populations as reported by the ethnographic literature

appears to be a poor predictor of their estimated genetic

inbreeding levels: preferences for cousin marriages were

reported for most M and P populations [18,37–40] but not

for the C populations [38,41–43]. More generally, the percen-

tages of populations with a preference for cousin marriages

estimated in a worldwide population sample are higher for

both matrilineal and patrilineal populations than for cognatic

populations (42.3%, 40% and 19.7% respectively, [2]). These

percentages do not fit with our observation that M and C

populations have higher genetic inbreeding levels than P

populations. Last but not least, a detailed ethnographic

study in the Jarai population had shown that the preference
for village endogamy was stronger than the preference

for cousin marriages: the number of marriages within the

same village exceeded the total number of preferential

marriages, in particular between ego and mother’s brother’s

daughter, and between ego and father’s sister’s daughter

[18]. Consequently, the matrilineal puzzle, and its conse-

quences in terms of endogamy, is a more likely candidate

than the prevalence of cousin marriages to explain the

observed differences in genetic patterns between M, C and

P populations.

Note also that, despite the fact that M populations are

famous for their high paternity uncertainty rate ([12] and refer-

ences therein), we do not think this process could contribute to

the observed genetic differences between M, C and P popu-

lations. Indeed, we would expect such paternity uncertainty

to decrease, rather than increase, the genetic inbreeding level

in these populations in comparison to patrilineal populations;

for example, a child born from first cousins may have lower

genetic inbreeding coefficient than expected because his

parents may share the same grandmother but different

grandfathers.

In patrilineal and patrilocal populations, the matrilineal

puzzle does not occur as most men settle with their wife in

their natal village whether they marry a woman from the

same or from another village, with no risk of losing their pos-

ition of influence or leadership, or their control over their

descent-group affairs. This leads to comparatively lower

local endogamy rates and lower inbreeding levels in these

patrilineal populations, as well as an absence of isolation-

by-distance patterns. In our dataset, we noticed one exception

to this general observation: the Khmu’, a patrilineal and

patrilocal population, exhibits a matrilineal-like rate of village

endogamy and genetic inbreeding level. The reasons for these

differences from the other P populations remain to be inves-

tigated. One explanation could be that, although Khmu’

follow a general patrilineal descent and patrilocal residence,

there is in some families a period of matrilocal residence

(up to three years) [40]. Despite the fact that this matrilocal

residence is not permanent, this may generate a ‘nascent’

matrilineal puzzle, encouraging men to marry a woman

from the same village.

As discussed in the introduction, local endogamy is prob-

ably not the only coping mechanism to the matrilineal

puzzle; for example, one of the brothers could escape from

the matrilocal rule, allowing him to stay in his natal village

(with his wife coming from the same or from a different vil-

lage) and deal with his descent-group matters [5]. However,

our ethno-demographic data do not support such an alterna-

tive coping mechanism to the matrilineal puzzle in the

Southeast Asian populations under study, since the matrili-

neal and matrilocal populations followed their residence

rule more strictly than the patrilineal and patrilocal popu-

lations under study [26].

Lastly, the design of this study, which includes cognatic

populations with predominant matrilocal residence, allows

us to disentangle the effect of descent from the effect of resi-

dence on the ‘matrilineal puzzle’. Indeed, as pointed out

above, the cognatic populations (C) under study exhibit a simi-

lar rate of village endogamy and genetic inbreeding compared

to the matrilineal populations (M). Altogether, these popu-

lations with matrilocal or predominant matrilocal residence

exhibit higher village endogamy and higher genetic inbreeding

than patrilocal populations (both p-values , 0.05, estimated by
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linear mixed model). Consequently, the matrilineal descent

rule is probably not the main component exerting a constraint

over male migrations. As pointed out by A. Richards, under

any form of matrilocal marriage (whatever the descent rule

is), men find themselves, at least initially, in a position of sub-

jection in their wives’ villages (while possibly losing a position

of leadership in their natal village), an ‘irksome’ situation that

can be avoided by marrying a woman from the same village

[5]. As such, the ‘matrilineal puzzle’ could be renamed

the ‘matrilocal puzzle’ in order to express the fact that it

seems to affect not only matrilineal populations but also all

matrilocal populations.

Our interdisciplinary study has a number of limitations. We

could expect populations facing the matrilineal puzzle to exhi-

bit not only a higher rate of village endogamy but also smaller

distances between villages when couples are exogamous. How-

ever, our ethno-demographic dataset did not allow us to

measure the geographical distance between spouses’ natal vil-

lages. Consequently, we used the rate of village endogamy as

a proxy for local endogamy in this study. In addition, our

ethno-demographic dataset may suffer from certain sampling

biases. For example, only individuals having their four
grandparents from the same population were sampled, a cri-

terion often used in population genetic studies, that may have

biased our estimation of village endogamy (however, only

slightly, as the proportion of interethnic marriages in these

populations is low). There may be some other biases in such

endogamy estimation; for example, the information regarding

birth places as remembered by the interviewees for some of

their relatives, especially their grandparents, may be erroneous,

potentially biasing our estimation of village endogamy

upwards (but equally so for M, C and P populations). Some

matrilineal populations are famous for their duolocal residence

mode, with husbands living with their sisters and visiting their

wives [8]. However, such duolocal residence was not observed

for any couple in our ethno-demographic survey, and was not

reported in the ethnographic literature available on the popu-

lations under study [18,37–49], so we do not believe that the

undetected occurrence of this residence mode could have

biased our estimated endogamy rates. The cognatic populations

included in this study were not fully matrilocal but include two

multilocal populations with final settlement in the wife’s vil-

lage. Replication of this study in fully matrilocal populations

is warranted.

Despite these limitations, our study not only suggests that

the matrilineal puzzle is still in action in present-day Southeast

Asia but also that such a puzzle shapes genetic diversity pat-

terns in human populations, thus identifying a new cultural

factor contributing to genetic diversity patterns among

human populations. It has previously been shown that

genetic inbreeding levels are greatly influenced by the preva-

lence of consanguineous marriages in human populations

[33,50–55]. Our study shows that the association of matrilocal-

ity with local endogamy, which takes root in male dominance,

may also contribute to some extent to higher inbreeding levels

in human populations, thus revealing an additional layer of

complexity to the interactions between socio-cultural factors

and human genetic diversity patterns.

It remains to be investigated whether our result can be

generalized to other matrilocal populations. It is likely to be

so, as high endogamy has been reported by anthropologists

as a general feature of matrilocal populations [6,19]. From

our study, we can predict that other matrilocal populations

will have higher genetic inbreeding levels than populations

sharing the same environment, the same way of life, belong-

ing to the same linguistic family (the criteria we used to select
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our populations to study) but having different social organiz-

ations. If such a prediction holds, high inbreeding could

become an informative marker of matrilocality for ancient

DNA studies trying to decipher the social organization of

past human populations.
4. Methods
(a) Data collection
(i) Sampled populations
Twelve populations from Cambodia and Laos were sampled in 57

villages during three field missions carried out between 2011 and

2012: the Tampuan, Jarai, Kacho’, Bunong, Khmer, Brao and

Kreung from Cambodia and the Khmu’, Ramet, Ta-oih, Pacoh

and Prai from Laos (table 1). The populations were chosen for

their differences in social organization. Most of them have been

the focus of ethnographic works, describing in detail their social

organization. The Tampuan, Jarai, Kacho’ and Prai have matrili-

neal descent and matrilocal residence [18,37,38,48], the Khmu’,
Ramet, Ta-oih and Pacoh have patrilineal descent and patrilocal

residence [38–40,46,47], the Bunong and the Khmer have cognatic

descent and matrilocal residence [41,43,44,49], the Brao and

Kreung have cognatic descent and multilocal residence

[38,42,43,45]. Our previous analysis of ethno-demographic data

collected in these populations [26] has shown that the four

cognatic populations actually had comparable percentages of

matrilocal couples (estimated to 43–48% of the exogamous

couples), and that these matrilocal couples outnumbered the

percentages of patrilocal couples (estimated to 13–38% of the exo-

gamous couples). This shows that the final settlement of couples in

the two multilocal populations is most often located in the wife’s

natal village. Consequently, we grouped these four populations

into a single group of cognatic populations with predominant

matrilocal residence. We refer in this paper to the matrilineal

and matrilocal populations, to the cognatic populations with pre-

dominant matrilocal residence, and to the patrilineal and

patrilocal populations respectively as M, C and P populations.

All these populations belong to the Austro-Asiatic linguistic

family, except the Jarai that speak an Austronesian language.

Note that in these Southeast Asian populations, the village is

an important social unit [18,37,40]. In the case of the matrilineal
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and patrilineal populations under study, each village usually com-

prises families belonging to several clans. Some of the 57 villages

that were integrated in this study were ancient and stable in time,

with, for example, a great tree marking symbolically its location.

Others had been moving, either in line with a traditional practice

[37] or because of recent political changes in Cambodia and Laos

in the past two generations [37,40]. The members of each village

usually know the history of the village [37] and our ethno-demo-

graphic data collection allowed us, while in the field, to exclude

from our sampling, villages for which social integrity had been

lost due to political events in the past two generations.

(ii) Ethno-demographic interviews
We interviewed 532 individuals, conjointly with their spouse,

and collected ethno-demographic information (place of birth,

village of residence; see [26] for details) about them and their

family members (parents, grandparents, siblings, children and

their respective spouses). This procedure allowed us to gather

ethno-demographic information for 3530 couples.

(iii) DNA samples
Seven hundred and fifty-three individuals with all four grand-

parents from the same population were studied. We collected

two saliva samples for each individual (4 ml each). Samples

were kept in equivalent volume of lysis buffer with 800 ml of

10% SDS and 20 ml of proteinase K (20 mg ml21). DNA was

extracted from saliva samples using a standard ethanol precipi-

tation protocol [56]. All participants provided written informed

consents and the study was approved by the National Ethic

Comities for Health Research in Cambodia and Laos as well as

by the Comité Opérationnel pour l’Ethique (CNRS, France).

(iv) SNP genotyping
Samples were genotyped on Illumina Omni1 (529 individuals)

and Omni2.5 SNP arrays (224 individuals). SNPs present on

both chips were retained, leading to a dataset of 701 163 SNPs

for 753 individuals. After quality control (electronic supplemen-

tary material, figure S2), the dataset contained 598 764 SNPs for

743 individuals.

We used the method described in Conomos et al. [57] in

order to check if any siblings were present in the dataset. We

removed 24 individuals in order to get a sibling-free dataset

(which will be used when estimating the genetic inbreeding

coefficients). This dataset contained 598 764 SNPs genotyped

for 719 individuals.

In addition, we prepared a dataset excluding first and second-

degree relationships in order to estimate effective sizes, FST,

isolation-by-distance patterns, and allelic frequencies (necessary

for the estimation of genetic inbreeding coefficients). To do so,

first- and second-degree relationships were inferred using KING

v. 2.1.6 [58]. Two hundred and thirty individuals were removed

to generate this first- and second-degree relationships-free dataset,

containing 598 764 SNPs genotyped for 489 individuals.

(b) Data analysis
(i) Selection of populations with similar effective population sizes
Firstly, we checked that all the studied populations have compar-

able effective sizes since this parameter is known to influence

inbreeding levels [59], with smaller effective population sizes

associated with higher inbreeding. We estimated the effective

population size of each population using the method described in

Auton & McVean [60] (electronic supplementary material, table

S4). Effective population sizes were compared between populations

by a Welch’s t-test with a Bonferroni correction for multiple testing.

Among all studied populations, Prai was the only population with

a significantly lower effective population size compared to all other
populations (7182 compared to 13 228 (s.d.+1403) on average for

the other populations; p-values , 0.05; electronic supplementary

material, tables S4 and S5). Consequently, the Prai population

was not included in the analyses presented below (however, similar

results and conclusions were reached when this population was

included; see electronic supplementary material, figure S3 for a

graphical summary of these results). The final dataset included 11

populations, with 598 764 SNPs genotyped for 675 individuals

for the sibling-free dataset and 466 individuals for the first- and

second-degree relationships-free dataset. The ethno-demographic

dataset included 495 ethno-demographic interviews providing

information for 3261 couples (table 1).

(ii) Village endogamy estimation
A full description of the post-marital residence patterns for each

population under study is provided in our previous study [26].

Here, for each population, we estimated the proportion of couples

for which both spouses were born in the same village (village

endogamy rate). We then used logistic regression to assess the

influence of social organization (M, P and C) on the probability

that individuals marry partners from the same village with the

‘glmer’ function in ‘lme4’ package v. 1.1-9 in R [61]. We incorpor-

ated population as a fixed effect and village of residence and

family as random effects in this model in order to account for

potential sampling bias. P-values were estimated with the

‘lsmeans’ function in the ‘lsmeans’ package v. 2.27-2 in R.

(iii) Genetic inbreeding coefficients estimation
We used the FEstim software [36] integrated in the FSuite pipe-

line [35] to estimate the inbreeding coefficient and the parental

mating types of each individual. Genetic maps were retrieved

from the shapeit homepage [62]. The --hotspots option with

hg19 build was used when creating the 100 submaps. Allele fre-

quencies were estimated separately for each population (using

the first- and second-degree relationships-free dataset).

Then, we used a mixed linear model to assess the influence of

social organization (M, P and C) on inbreeding coefficients. We

incorporated population as a fixed effect and village of residence

and family as random effects in this model in order to take

into account potential sampling bias. P-values were estimated

with the ‘lsmeans’ function in the ‘lsmeans’ package v. 2.27-2 in R.

Spearman’s correlation coefficient between village endogamy

rate and mean inbreeding coefficient was estimated at the

population level.

(iv) Isolation-by-distance pattern
Fixation indices (FST) between villages within each population

were estimated using Genepop 4.7 [63]. Only villages with a

minimum of five individuals were included in this analysis.

Populations with less than four villages filling this condition

were removed from the analysis. As such, Kacho’, Kreung and

Ta-oih were excluded from this analysis. The dataset was then

pruned using Plink 1.9 [64] –indep-pairwise option with a

window size of 50 SNPs, sliding by five SNPs and a pairwise

r2 threshold of 0.5 to create a dataset of 252 680 SNPs in low

linkage disequilibrium. Negative FST were changed to 0. A

linear regression model was fitted with genetic distance between

villages estimated by FST/(1 2 FST) as the dependent variable

and geographical distance in metre (decimal logarithmic value)

as the explanatory variable for each population. Statistical

significance of the correlation between genetic distances

and geographical distances was evaluated using a Mantel test

with 10 000 permutations.

All statistical analyses were performed in R v. 3.2.2 [61].
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familiales et sociales. Paris, France: Muséum
national d’Histoire naturelle (Travaux et Mémoires
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