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Aside from abasic sites and ribonucleotides, the DNA adduct
N7-methyl deoxyguanosine (N7-CH3 dG) is one of the most
abundant lesions in mammalian DNA. Because N7-CH3 dG is
unstable, leading to deglycosylation and ring-opening, its mis-
coding potential is not well-understood. Here, we employed
a 2�-fluoro isostere approach to synthesize an oligonucleotide
containing an analog of this lesion (N7-CH3 2�-F dG) and exam-
ined its miscoding potential with four Y-family translesion syn-
thesis DNA polymerases (pols): human pol (hpol) �, hpol �, and
hpol � and Dpo4 from the archaeal thermophile Sulfolobus sol-
fataricus. We found that hpol � and Dpo4 can bypass the
N7-CH3 2�-F dG adduct, albeit with some stalling, but hpol � is
strongly blocked at this lesion site, whereas hpol � showed no
distinction with the lesion and the control templates. hpol �
yielded the highest level of misincorporation opposite the
adduct by inserting dATP or dTTP. Moreover, hpol � did not
extend well past an N7-CH3 2�-F dG:dT mispair. MS-based
sequence analysis confirmed that hpol � catalyzes mainly error-
free incorporation of dC, with misincorporation of dA and dG in
5–10% of products. We conclude that N7-CH3 2�-F dG and, by
inference, N7-CH3 dG have miscoding and mutagenic potential.
The level of misincorporation arising from this abundant
adduct can be considered as potentially mutagenic as a highly
miscoding but rare lesion.

DNA is constantly damaged by both endogenous (e.g. reac-
tive oxygen species and SAM) and exogenous (e.g. polycyclic
hydrocarbons and heterocyclic amines) sources (1). Examples
of DNA damage include DNA adducts (e.g. alkylated and oxi-
dized bases), single strand breaks, double strand breaks, DNA
mismatches, abasic sites, and pyrimidine dimers (2). Such dam-
age, if not repaired, can cause deleterious outcomes (e.g. stalled
replication and miscoding events leading to cancer, teratogen-
esis, and cardiovascular disease) (3–6). Alkylating agents used

in treatment of malignancies (such as cyclophosphamide,
temozolomide, and melphalan) have been associated with caus-
ing cancers (e.g. lymphomas, malignant gliomas, and lung and
ovarian cancers) (7–11).

The nitrogen and oxygen atoms of DNA bases are reactive
toward several known alkylating agents, producing different
types of DNA adducts (12, 13). Exposure of DNA to methylat-
ing agents forms several modified bases, including N3-methyl
deoxyadenosine, N7-methyl deoxyguanosine (N7-CH3 dG),2
O6-methyl deoxyguanosine (O6-CH3 dG), and O4-methyl
(deoxy)thymidine (13). O6-CH3 dG and O4-methyl (deoxy)thy-
midine are minor adducts but are highly cytotoxic and muta-
genic; the mutagenicity of the abundant N7-CH3 dG and
N3-methyl deoxyadenosine adducts is not known (14, 15).

The N7 atom of deoxyguanosine is the most nucleophilic site
in DNA and is susceptible to alkylation, forming various N7-
alkyl deoxyguanosine adducts (13, 16, 17). These adducts
include N7-CH3 dG, N7-ethyl deoxyguanosine, and N7-benzyl
deoxyguanosine (13, 18, 19). The deoxyguanosine adduct
formed with the 8,9-exo-epoxide of the hepatocellular carcino-
gen aflatoxin B1 is highly mutagenic, causing GC to TA trans-
version mutations (6, 19).

N7-CH3 dG has been detected as the major DNA adduct
formed by methylating agents and is the most abundant lesion
in DNA aside from abasic sites (1, 20, 21) and ribonucleotides
(22, 23), present in lymphocytes at levels of 14 adducts/107 nor-
mal nucleotides for nonsmokers and 25 adducts/107 nucleo-
tides in smokers (24). Endogenous methylation of DNA, appar-
ently from SAM, has been identified as the primary source of
N7-CH3 dG adducts observed in the livers of untreated rats
(25, 26).

The miscoding and mutagenic potentials of the resulting
depurination (i.e. abasic sites) and ring-opened (i.e. N7-CH3
formamidopyrimidine (FAPY) dG) products of N7-CH3 dG
have been extensively studied (27–31). The miscoding potential
of N7-CH3 dG itself is not understood. Despite its abundance,
N7-CH3 dG has been largely ignored in favor of other alkylated
bases due to its instability to depurination and base-catalyzed
ring-opening. It has been assumed that N7-CH3 dG is not mis-
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coding because it should not alter the canonical Watson–Crick
hydrogen-bonding pattern (32). However, the techniques that
were used to reach this conclusion were not very sensitive com-
pared with modern methods, and only a few model DNA poly-
merases were considered (21, 33).

In 1961, Lawley and Brookes (34) proposed that alkylation at
the guanine N7 position might induce mispairing due to its
lowering of the pKa of the N1 position from 9 to 7, favoring rare
tautomers (17, 34 –36). Even a low level of misincorporation
across a very abundant lesion would be similar in risk to a highly
miscoding but rare lesion.

Koag et al. (37) employed an isosteric fluorine transition-
state destabilization approach to stabilize the glycosidic bond,
to avoid depurination and mild deprotection conditions to pre-
vent ring-opening to N7-CH3 FAPY dG. Although the lesion
inhibited catalysis by pol �, replication was reported to be
highly accurate (i.e. dCTP was inserted opposite N7-CH3 dG)
(37). We used this 2�-fluoro analog, N7-CH3 2�-F dG, and ana-
lyzed its miscoding potential with several Y-family translesion
synthesis polymerases (human pols (hpols) �, �, and � and Sul-
folobus solfataricus Dpo4). N7-CH3 2�-F dG caused miscoding
with hpol � and has mutagenic potential, which we infer is the
case with N7-CH3 dG.

Results

Synthesis of 2�-F dG- and N7-CH3 2�-F dG– containing
oligonucleotides

A fluorine analog of the lesion (N7-CH3 2�-F dG) was pre-
pared by modifying the approach of Lee et al. (32) (Scheme S1
and Figs. S1–S4). The 23-mer oligonucleotides were character-
ized by LC-ESI-MS (Figs. S5B and S6A). The N7-CH3 2�-F
dG– containing oligonucleotide was resistant to cleavage by
FPG glycosylase, further confirming its identity as the intact
lesion rather than the ring-opened N7-CH3 FAPY 2�-F dG oligo-

nucleotide, which is a substrate for this glycosylase (Fig. S6B).
Following alkaline treatment to form the FAPY lesion, FPG
glycosylase cleaved the lesion (Fig. S6B). We conclude that the
desired N7-CH3 2�-F dG lesion was present and that the two
potential problems, depurination and ring-opening, had been
avoided.

Primer extension past dG, 2�-F dG, and N7-CH3 2�-F dG by
Y-family DNA polymerases

Four Y-family DNA polymerases were studied (hpol �, hpol
�, hpol �, and Dpo4). hpol � and Dpo4 were the most effective of
these in producing full-length extension products, although
they both stalled following the P � 3 and P � 2 products,
respectively (Fig. 1, A and D). In contrast, hpol � stalled at the
adduct (Fig. 1B), and hpol � showed no distinction between the
control templates and the adduct, stalling before the dG tem-
plates and the lesion (Fig. 1C).

To determine the insertions across the adduct, primer exten-
sion experiments were done with individual dNTPs. hpol � and
Dpo4 were highly error-prone with all three templates exam-
ined (Fig. 2, A and D). Dpo4 did not misincorporate dATP in the
2�-F dG control. In contrast with these two polymerases, hpol �
and hpol � incorporated only the correct dCTP for all three
templates under the same conditions (Fig. 2, B and C), and these
two polymerases were not examined further. Rates for dCTP
insertion by hpol � were estimated (in single-nucleotide incor-
poration experiments) to be 1.9 min�1 for dG , 1.4 min�1 for
2�-F dG, and 0.9 min�1 for N7-CH3 2�-F dG (i.e. there was a
�2-fold reduction in the rates when hpol � encountered the
lesion). For hpol �, the rates of insertion of dCTP across the
templates were 0.51 min�1 for dG, 0.56 min�1 for 2�-F dG,
and 0.47 min�1 for N7-CH3 2�-F dG. Thus, the rates when
hpol � encountered the lesion were comparable with the con-
trol templates.
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5´-FAM/CGGGCTCGTAAGCGTC     3´
3´     GCCCGAGCATTCGCAGTAXTACT  5´

Figure 1. Bypass across and extension past dG, 2�-F dG, and N7-CH3 2�-F dG. A, hpol �; B, hpol �; C, hpol �; D, Dpo4. The sequences of the template and
primer are shown at the top. Reactions contained 200 nM FAM-labeled primer–template oligonucleotide complex, 250 �M dNTPs, and 20 nM enzyme, except
for pol � (40 nM). Reactions were done at 37 °C for 2, 5, 10, 20, and 60 min.

Miscoding of N7-methyl deoxyguanosine

10254 J. Biol. Chem. (2019) 294(26) 10253–10265

http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1


Steady-state kinetics of individual dNTP insertion opposite dG,
2�-F dG, and N7-CH3 2�-F dG by hpol � and Dpo4

Steady-state kinetic analysis was performed for hpol � and
Dpo4 (Tables 1 and 2). The catalytic efficiencies and misincor-
poration frequencies for dG and 2�-F dG were comparable, as
noted previously (38), suggesting that fluorine had little or no
impact on polymerase recognition. With all three templates,
hpol � preferred to insert dCTP relative to other dNTPs (Table
1 and Fig. 3). However, there was a 2-fold lower efficiency for
incorporation of dCTP at the N7-CH3 2�-F dG lesion compared
with dG and 2�-F dG. The efficiency for misinsertion of dATP
was similar for all three templates, but the misinsertion fre-
quency �2-fold higher with N7-CH3 2�-F dG (Table 1 and Figs.
3 and S7). The catalytic efficiency for dGTP misincorporation
was �3-fold lower for the N7-CH3 2�-F dG lesion (Table 1 and
Fig. 4). The efficiency for dTTP misincorporation was 3.5-fold
greater for the N7-CH3 2�-F dG lesion compared with the con-
trol templates, and the misincorporation frequency was 5- and
11-fold higher relative to dG and 2�-F dG (Table 1 and Fig. 4).
Thus, the misincorporation frequency for N7-CH3 2�-F dG was
in the order dTTP � dATP � dGTP, ranging from 1 to 4% (Figs.
S8 and S9).

Dpo4 preferentially inserted dCTP opposite N7-CH3 2�-F dG
(Table 2). There was a 4-fold lower efficiency for insertion
across the lesion compared with 2�-F dG (Figs. S8 and S9). The
efficiencies for incorporating other dNTPs were in the order
dATP � dTTP � dGTP (Table 2).

Steady-state kinetics of post-lesion incorporation of individual
dNTPs opposite 2�-F dG or N7-CH3 2�-F dG by hpol �

Steady-state insertion kinetics provides information on
dNTP insertion across a lesion but does not provide informa-
tion about extension past the lesion. Steady-state kinetics were
done for further extension after the correct bp (N7-CH3 2�-F
dG:dC) and a mispair (N7-CH3 2�-F dG:dT). dT was used as the
misincorporated base opposite the lesion because it showed the

greatest misincorporation frequency in the steady-state inser-
tion kinetics with hpol � (Table 1). With the mispairs (2�-F
dG:dT and N7-CH3 2�-F dG:dT), only dATP was incorporated
opposite the next residue (dT) (Fig. S10). The efficiency of hpol
� for incorporating dATP past the mispair was �4-fold lower
for the lesion N7-CH3 2�-F dG than 2�-F dG, indicating some
resistance to extension past the mispair (Table 3 and Fig. 5). On
the other hand, the efficiency of hpol � for inserting dATP past
the N7-CH3 2�-F dG:dC bp was 21-fold higher than the 2�-F
dG:dC control, indicating that the correct pair was preferen-
tially extended past the lesion. For the 2�-F dG control and
lesion, dCTP had a similar efficiency of misincorporation past
the correct pair. Finally, dTTP was misincorporated with a
6-fold higher efficiency for the lesion than the 2�-F dG control
(Table 3 and Fig. 5).

LC-MS/MS sequence analysis of extension products formed by
hpol � and Dpo4

We introduced a dT:dU mismatch upstream of the site of
dNTP addition to utilize uracil-DNA glycosylase (UDG) to cut
the extension products for analysis by LC-MS/MS. Replication
of the unmodified oligonucleotide gave only error-free prod-
ucts, as reported elsewhere (38). Replication across the lesion
by Dpo4 also gave only error-free products, in support of the
results of steady-state insertion kinetics (Table 4). hpol � repli-
cated through the lesion in both an error-free and an error-
prone manner, resulting in three main products (Table 5).
The first product corresponded to error-free products (i.e.
m/z 934.3: 5�-pTCATGA, m/z 1086.3: 5�-pTCATGAT,
and m/z 613.2: 5�-pTCAT) Figs. S11 and S12. The se-
cond corresponded to misincorporation of dA (m/z 934.3:
5�-pTACTGA and m/z 1086.3: 5�-pTAGTCAT), and the
third corresponded to misincorporation of dG (m/z 1086.3:
5�-pTGATCAT) (Figs. S9 and S10). The CID spectra of
the products matched the predicted CID spectra of the
sequences (Tables S1–S6).
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Figure 2. Single-nucleotide incorporation opposite dG, 2�-F dG, and N7-CH3 2�-F dG. A, hpol �; B, hpol �; C, hpol �; D, Dpo4. The sequences of the template
and primer are shown at the top. Reactions were conducted with 120 nM FAM-labeled primer–template oligonucleotide complex, 250 �M dNTPs, and 5 nM

enzyme except for pol � (10 nM). Reactions were conducted at 37 °C for 10 min.

Miscoding of N7-methyl deoxyguanosine

J. Biol. Chem. (2019) 294(26) 10253–10265 10255

http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1
http://www.jbc.org/cgi/content/full/RA119.008986/DC1


To confirm these assignments, mass spectra of commercial
oligonucleotide standards with these sequences were com-
pared with those of the observed products and were nearly
identical. No products were observed containing the misincor-
poration of dT seen in the insertion kinetics experiments (Table
1). Relative areas were calculated for each product on the basis
of the intensity of distinguishing CID ions (e.g. a3-B3 ions dis-
tinguish the error-free product from the product with misin-
corporation of dA). The yields of the observed products were
estimated to be 85% for error-free bypass, 10% for misincorpo-
ration of dA, and 5% for misincorporation of dG (Table 4).

Discussion

Alkylation of DNA was first described in 1960 (20, 39), and
the N7 atom of dG has long been known to be a major site of
damage (34). The change in the pKa of the N1 atom (from 9 to
7) upon N7-methylation (34) was considered to be a potential
reason for miscoding, evoking the original postulate of rare tau-
tomer involvement in miscoding proposed by Watson and
Crick (41). Due to this issue, one cannot consider an approach
with 7-deaza dG for studying N7-alkyl dG miscoding, which

would not reflect the electronic properties of the adduct. For
discussion of the early studies on different alkylated bases and
the development of a major role for O6-alkyl dG adducts in
mutagenesis and carcinogenesis, see Lawley (39). Although
O6-alkyl dG lesions are recognized to be important, the role of
dG N7-alkylation has remained unclear. Some early studies
concluded that N7-CH3 dG was not miscoding (39, 42), but the
results of these studies are compromised by several issues,
including the sensitivity of the assays in detecting miscoding,
the lack of mammalian and microbial translesion DNA poly-
merases, and the lability of N7-CH3 dG. In 2009, Boysen et al.
(21) concluded that there was no evidence for miscoding by
N7-CH3 dG, although the authors suggested the 2�-F isostere
approach we used here to address the issue. Lee and associates
(37) used N7-CH3 2�-F dG with pol � and concluded that it was
not miscoding but did not present limits of detection or utilize
sensitive methods.

N7-Alkyl dG adducts are of particular interest because of
their high endogenous levels and also high levels following
exposure to alkylating agents (21, 39, 43, 44). N7-Alkyl dG

Table 1
Steady-state kinetics of single nucleotide insertion opposite dG, 2�-F dG, and N7-CH3 2�-F dG by hpol �
The oligonucleotides used were as follows,

5�-FAM-CGGGCTCGTAAGCGTCAT- 3�
3� -GCCCGAGCATTCGCAGTAXTACT-5�

where X represents dG, 2�-F dG, or N7-CH3 2�-F dG.
Template base dNTP kcat Km kcat/Km fa

min�1 �M �M�1 min�1

dG dCTP 2.65 � 0.11 0.45 � 0.13 5.9 � 1.7 1
2�-F dG dCTP 1.77 � 0.05 0.23 � 0.06 7.7 � 2.0 1
N7-CH3 2�-F dG dCTP 1.65 � 0.04 0.43 � 0.07 3.8 � 0.6 1
dG dATP 0.76 � 0.06 12 � 5 0.06 � 0.03 0.01
2�-F dG dATP 1.1 � 0.1 19 � 6 0.06 � 0.03 0.01
N7-CH3 2�-F dG dATP 0.97 � 0.04 14 � 2 0.07 � 0.01 0.018
dG dGTP 0.65 � 0.05 4.0 � 1.7 0.16 � 0.07 0.027
2�-F dG dGTP 0.84 � 0.06 2.7 � 1.2 0.31 � 0.14 0.040
N7-CH3 2�-F dG dGTP 0.40 � 0.06 7.5 � 6.3 0.05 � 0.04 0.013
dG dTTP 1.42 � 0.14 32 � 11 0.04 � 0.01 0.0068
2�-F dG dTTP 0.96 � 0.10 38 � 15 0.03 � 0.01 0.0033
N7-CH3 2�-F dG dTTP 0.62 � 0.05 4.6 � 2.2 0.14 � 0.07 0.037

a Misincorporation frequency f � (kcat/Km)incorrect/(kcat/Km)correct.

Table 2
Steady-state kinetics of single nucleotide insertion opposite dG, 2�-F dG, and N7-CH3 2�-F dG by S. solfataricus Dpo4
The oligonucleotides used were as follows,

5�-FAM-CGGGCTCGTAAGCGTCAT- 3�
3�-GCCCGAGCATTCGCAGTAXTACT-5�

where X represents dG, 2�-F dG, and N7-CH3 2�-F dG.
Template base dNTP kcat Km kcat/Km fa

min�1 �M �M�1 min�1

dG dCTP 158 � 8 1.99 � 0.41 79 � 17 1
2�-F dG dCTP 115 � 2 0.30 � 0.03 383 � 39 1
N7-CH3 2�-F dG dCTP 2.88 � 0.10 0.03 � 0.01 96 � 20 1
dG dATP 0.36 � 0.03 14 � 6 0.03 � 0.01 0.0004
2�-F dG dATP NDb ND ND ND
N7-CH3 2�-F dG dATP 0.24 � 0.02 9.8 � 5.1 0.03 � 0.02 0.0003
dG dGTP 0.41 � 0.04 29 � 10 0.014 � 0.005 0.0002
2�-F dG dGTP 0.40 � 0.03 21 � 7 0.019 � 0.007 0.0002
N7-CH3 2�-F dG dGTP 0.11 � 0.01 24 � 21 0.01 � 0.01 0.0001
dG dTTP 1.38 � 0.36 76 � 36 0.018 � 0.010 0.0002
2�-F dG dTTP 0.93 � 0.16 44 � 16 0.021 � 0.009 0.0001
N7-CH3 2�-F dG dTTP 0.42 � 0.04 16 � 5 0.026 � 0.009 0.0003

a Misincorporation frequency f � (kcat/Km)incorrect/(kcat/Km)correct.
b ND, not detected. DNA incorporation was below limits of quantitation (v 	 0.002 min�1).
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adducts are found at the highest levels not only after exposure
to methylating agents but with other alkylating agents as well
(17, 39, 44, 45). Several examples of N7-alkyl dG adducts are
found in laboratory animals and humans not knowingly
exposed to exogenous agents, including N7-(2-hydroxy)ethyl
dG, N7-(2-oxoethyl) dG, and N7-ethyl dG (44), but the origins
of these adducts are not known. Although the levels of ribo-
nucleotides and abasic sites have been reported to be higher
than those of N7-CH3 dG, they are rapidly repaired by multiple
pathways (22, 23), and the steady-state levels in cells are less
than those of N7-CH3 dG (43).

The base-catalyzed imidazole ring opening of guanyl N7-al-
kyl adducts has been recognized for many years. As pointed out
by Gates et al. (17), N7-CH3 dG is not unusually unstable, and at
neutral pH, ring-opening is very slow; even at pH 8.9, the half-
life is 9.8 h (46 –49). Although there was original uncertainty
about the multiple forms of N7-CH3 FAPY dG seen in chroma-
tography, 15N NMR studies demonstrated that the site of the

formyl group did not change (46) and that the adduct exists in
slowly equilibrating rotomeric forms. Studies with rat liver and
bladder DNA reported that levels of N7-CH3 dG decreased
faster than those of the FAPY product, and levels of the two
adducts were similar after 3–9 days (50, 51). However, Den
Engelse et al. (49) reported only very low levels of the FAPY
formed in rat liver following treatment with methylating
agents. Some of the discrepancy may be due to the broadness
of the N7-CH3 FAPY dG peaks, affecting both the resolution
and the sensitivity (46, 49, 50, 52). In the report of Den
Engelse et al. (49), no N7-CH3 FAPY dG adducts were
detected in rat liver (	0.5% of N7-CH3 dG) up to 3 days after
treatment with [14C]dimethylnitrosamine. Even in the
report of Kadlubar et al. (51), the level of N7-CH3 FAPY dG
did not reach the level of N7-CH3 dG (in the rat bladder
epithelium) until 9 days after treatment with [14C]-methyl-
nitrosourea. In considering all of this information, we con-
clude that the level of N7-CH3 dG is considerable and that
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Figure 3. Steady-state kinetic analysis of individual dATP and dCTP insertions by hpol �. Reactions contained templates dG (A and D), 2�-F dG (B and E),
and N7-CH3 2�-F dG (C and F) at position X in the sequences 5�-CGGGCTCGTAAGCGTCAT-3� and 3�-GCCCGAGCATTCGCAGTAXTACT-5�. Reactions were done at
37 °C for 5–10 min by incubating 120 nM primer–template oligonucleotide complex. For different panels, different hpol � concentrations were used as
indicated. For A, B, C, and F, 5 nmol of enzyme was used, and the reaction was done for 5 min, with varying concentrations of dATP and dCTP. In the D and E, 2.5
nmol of enzyme was used, and the reaction was conducted for 5 min, with varying concentrations of dATP and dCTP. Fitting was to a hyperbolic equation in
GraphPad Prism version 8.0, and kcat and Km values are presented in Table 1.
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Table 3
Steady-state kinetics of single nucleotide extension past 2�-F dG:dC, 2�-F dG:dT and N7-CH3 2�-F dG:dC, and N7-CH3 2�-F dG:dT base pairs by hpol �
The oligonucleotides used were as follows,

5�-FAM-CGGGCTCGTAAGCGTCATC- 3�
3�-GCCCGAGCATTCGCAGTAXTACT-5�

5�-FAM-CGGGCTCGTAAGCGTCATT- 3�
3�-GCCCGAGCATTCGCAGTAXTACT-5�

where X represents 2�-F dG and N7-CH3 2�-F dG.
Template base Pairing dNTP kcat Km kcat/Km

min�1 �M �M�1 min�1

2�-F dG Mispair dATP 1.1 � 0.1 4.2 � 1.2 0.26 � 0.08
N7-CH3 2�-F dG dATP 0.49 � 0.04 7.1 � 2.4 0.07 � 0.02
2�-F dG Correct dATP 1.1 � 0.1 15 � 3 0.07 � 0.02
N7-CH3 2�-F dG dATP 2.1 � 0.1 1.4 � 0.3 1.5 � 0.3
2�-F dG Correct dCTP 0.95 � 0.06 5.5 � 2.2 0.17 � 0.07
N7-CH3 2�-F dG dCTP 0.75 � 0.03 4.6 � 1.1 0.16 � 0.04
2�-F dG Correct dGTP 2.1 � 0.06 6.9 � 1.0 0.3 � 0.1
N7-CH3 2�-F dG dGTP 0.97 � 0.03 3.8 � 0.7 0.26 � 0.1
2�-F dG Correct dTTP 1.0 � 0.1 3.4 � 0.7 0.3 � 0.10
N7-CH3 2�-F dG dTTP 1.6 � 0.1 0.96 � 0.47 1.7 � 0.8
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Figure 4. Steady-state kinetic analysis of individual dGTP and dTTP insertions by hpol �. Reactions contained templates dG (A and D), 2�-F dG (B
and E), and N7-CH3 2�-F dG (C and F) at position X in the sequences 5�-CGGGCTCGTAAGCGTCAT-3� and 3�-GCCCGAGCATTCGCAGTAXTACT-5�. Reactions
were done at 37 °C for 5–10 min by incubating 120 nM primer–template DNA complex with varying concentrations of hpol �. For A, B, and C, 8 nmol of
hpol � was used, and the reaction was done for 10 min. In the case of D, we used 8 nmol of hpol � was used, and the reaction was done for 5 min; for E,
10 nmol of hpol � was used, and the reaction was conducted for 5 min; and for F, 5 nmol of hpol � was used, and the reaction was conducted for 5 min,
varying concentrations of dGTP and dTTP. Fitting was to a hyperbolic equation in GraphPad Prism version 8.0, and kcat and Km values are presented in
Table 1.
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any biological effects cannot be simply ascribed to abasic
sites and N7-CH3 FAPY dG.

N7-CH3 dG is a substrate for several glycosylases, in addition
to removal due to nonenzymatic depurination (53, 54), includ-
ing 3-alkyladenine DNA glycosylase (AAG) in humans and the
bacterial homologs 3-methyladenine glycosylase (AlkA), Bacil-
lus cereus DNA glycosylase AlkD, and Streptomyces sahachiroi
AlkZ (55–57). The chemical and biological half-lives of N7-CH3
dG have been estimated to be in the range of 69 –192 h at 37 °C
and neutral pH (chemical) (17) and 29 –58 h (biphasic) in rat
liver (presumably converting to an abasic site in the study

cited, in that N7-CH3 dG was not detected (49). N7-CH3
FAPY dG is also a substrate for Escherichia coli FPG and
other glycosylases (e.g. human OGG1, NTH1, and NEIL1)
(58 –61). The point made here is that N7-CH3 dG is persis-
tent enough to be copied and miscoded, at least in tissues
undergoing DNA replication.

In E. coli, N7-CH3 FAPY dG was not highly mutagenic when
bypassed (G to T transversion mutation frequency of �2%)
(62). When N7-CH3 FAPY dG was bypassed in a shuttle vector
in simian kidney COS-7 cells, it readily produced G to T trans-
version mutations with 30% frequency (63). N7-CH3 FAPY dG
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Figure 5. Steady-state kinetic analysis of dATP extension by hpol �. A, 2�-F dG:dC; B, N7-CH3 2�-F dG:dC; C, 2�-F dG:dT; D, N7-CH3 2�-F dG:dT bp. The
sequences of the template and primer are shown at the top. Reactions were done at 37 °C for 5–10 min by incubating 120 nM primer–template oligonucleotide
complex, 5–10 nM hpol �, and varying concentrations of dNTPs.

Table 4
LC-ESI-MS/MS analysis of full-length extension products across N7-CH3 2�-F dG by hpol �
The oligonucleotides used were as follows,

5�-FAM-CGGGCTCGTAAGCGTCUT- 3�
3�-GCCCGAGCATTCGCAGTAXTACT-5�

where X represents 2�-F dG and N7-CH3 2�-F dG. Products were cut at U, and the expected sequences began at the 3� T of the primer.
Product sequence m/z, observed (charge) m/z, theoretical (charge) Relative peak area/tR (min) %

5�-pTCATGA 934.27 (�2) 1,870.22 (�1), 934.60 (�2) 5,585.4/1.68 85
5�-pTCATGAT 1,086.26 (�2), 724.07 (�3) 1,086.70 (�2), 724.13 (�3) 1,838.2/1.91
5�-pTCAT 613.22 (�2) 1,227.80 (�1), 613.39 (�2) 13,511/1.73
5�-pTACTGA 934.27 (�2) 1,870.22 (�1), 934.60 (�2) 620.6/1.68 10
5�-pTAGTCAT 1,086.26 (�1), 724.07 (�2) 1,086.70 (�1), 724.13 (�2) 2,095.5/1.91
5�-pTGATCAT 1,086.26 (�1), 724.07 (�2) 1,086.70 (�1), 724.13 (�2) 1,397/1.91 5
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was a strong block to replicative polymerases (e.g. pol � and pol
	/proliferating cell nuclear antigen), but hpol �, hpol �, and the
sequential action of hRev1/hpol 
 and Dpo4 were able to bypass
N7-CH3 FAPY dG (29, 30). With hpol �, N7-CH3 FAPY dG
reduced the efficiency of dCTP insertion by an order of magni-
tude (29). Our previous work on the miscoding properties of
N7-CH3 FAPY dG (29, 30) can be summarized and compared
with the present work on N7-CH3 dG. Steady-state kinetic
experiments on misinsertion showed only a low frequency of
miscoding with S. solfataricus Dpo4 (0.01– 0.04) but higher fre-
quencies (0.28 and 0.29 for dT and dG insertion, respectively)
with E. coli DNA polymerase I Klenow fragment. LC-MS anal-
ysis showed only misincorporation of dA for both polymerases
examined with levels of misincorporation (2–35%) but consid-
erable �1 frameshifts (11–17%) (30). In a later study with mam-
malian translesion DNA polymerases (29), we observed 2–5%
misincorporation at N7-CH3 FAPY dG in steady-state kinetics
and 11–29% misincorporation by LC-MS for extension prod-
ucts with hpol � and �. Thus, the extents of misinsertion of hpol
� (Tables 1 and 4) are similar in magnitude to those seen with
N7-CH3 FAPY dG (29), although the oligonucleotide sequence
is not the same.

Although Dpo4 and hpol � are sometimes considered homo-
logs (64, 65), they showed different abilities to replicate past
N7-CH3 2�-F dG (Fig. 1, B and D), with hpol � strongly blocked
at the adduct site. hpol � has been shown to bypass DNA
adducts formed with methyl methanesulfonate more efficiently
than hpols � and �, and it also interacts directly with the ligase
SHPRH to suppress methyl methanesulfonate–induced
mutagenesis (66). hpol �, which also inserted only dCTP, is also
effective in inserting dNTPs across minor groove lesions, such
as N3-methyl deoxyadenosine (67).

Koag et al. (37) evaluated the kinetics of insertion of dCTP
and dTTP across N7-CH3 2�-F dG by pol �, a gap-filling
X-family polymerase. The lesion decreased the rate of pol �
catalysis by �300-fold, yet replication was accurate, and no
misinsertion products were reported. The structures
revealed Watson–Crick base pairing of N7-CH3 2�-F dG with
an incoming dCTP, but the metal ion coordination was not
optimal for catalysis. When N7-CH3 2�-F dG was crystallized
with dTTP, an open conformation was found, with a stag-
gered bp.

The relatively low but finite level of misincorporation at the
N7-CH3 dG might seem unimportant. However, consideration
needs to be given to the overall mutagenic load. In four different
studies cited by Den Engelse et al. (49), the ratio of N7-CH3 dG
to O6-CH3 dG adducts following treatment (of cells or rats)

with dimethylnitrosamine or methylnitrosoureas was �10:1. In
our own studies with hpol � (68), miscoding in the LC-MS
assays was 77%, which may be compared with 15% here with
N7-CH3 2�-F dG (Table 4). Multiplying the adduct level differ-
ences, 77 
 0.1 � 7.7 (O6-CH3 dG), which can be compared
with 15 
 1 � 15 (N7-CH3 (2�-F) dG). Kunkel (43) has esti-
mated a 200 –3,000-fold difference in endogenous cellular
levels of N7-CH3 dG over O6-CH3 dG. In a more recent study
with cultured human lymphoblastoid cells, Sharma et al. (69)
reported a 12-fold higher level of N7-CH3 dG adducts than
O6-CH3 dG after treatment with methylnitrosourea and a
900-fold higher level of N7-CH3 dG in the untreated cells.
Applying the difference in levels of miscoding to these levels
of the adducts can therefore result in an even larger potential
contribution of N7-CH3 dG to miscoding and mutagenesis.

In summary, we have shown that hpol � produces error-free
bypass products in copying past N7-CH3 2�-F dG and also mis-
inserts dA and dG, differing from the products seen for N7-CH3
FAPY dG, which inserted dT and produced a frameshift muta-
tion (29). Our findings indicate that our results are not due to
any contamination by the FAPY degradation product and also
suggest N7-CH3 dG contribution to mutagenicity in cells. Cave-
ats need to be considered about comparing miscoding frequen-
cies in different sequence contexts, the potential roles of DNA
polymerases that were not included here, rates of enzymatic
repair in different cells, and possibly other issues. Inserting
plasmid vectors containing N7-CH3 dG into cells to estimate
mutation frequencies would be very problematic in terms of
being sure that the lesion, even with the 2�-F group, was not
modified before mutation occurred. In conclusion, the abun-
dance of the adduct N7-CH3 dG, coupled with the evidence for
miscoding, argues that this lesion should no longer be consid-
ered innocuous.

Experimental procedures

Materials

All chemicals and solvents were commercially available, of
highest purity grade, and were used without additional purifi-
cation. 9-(2-Deoxy-2-fluoro-�-D-arabinofuranosyl) guanine
was purchased from Metkinen (Kuopio, Finland). Pyridine,
N,N-dimethylformamide, dichloromethane, N,N-diisopropy-
ethylamine, isobutyryl chloride, chlorotrimethylsilane, and
4,4�-dimethoxytrityl chloride were purchased from Sigma-Al-
drich. Synthesis was monitored by TLC on Merck silica gel 60
F254 plates, with visualization at 254 nm and by spraying a
solution of 5% concentrated H2SO4 in ethanol (v/v) and heat-

Table 5
LC-ESI-MS/MS analysis of full-length extension products across N7-CH3 2�-F dG by Dpo4
The oligonucleotides used were as follows,

5�-FAM-CGGGCTCGTAAGCGTCUT- 3�
3�-GCCCGAGCATTCGCAGTAXTACT-5�

where X represents 2�-F dG and N7-CH3 2�-F dG. Products were cut at U, and expected sequences began at 3� T.
Product sequence m/z, observed (charge) m/z, theoretical (charge) Relative peak area/tR (min) %

5�-pTCATGA 934.22 (�2) 1,870.22 (�1), 934.60 (�2) 6,417/ 1.67 100
5�-pTCATG 777.56 (�2) 1,557.01 (�1), 777.99 (�2) 10,707/1.57
5�-pTCAT 613.09 (�2) 1,227.80 (�1), 613.39 (�2) 12,253/1.73
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ing. Restriction endonucleases, UDG, FPG glycosylase, dNTPs,
and T4 polynucleotide kinase were purchased from New Eng-
land Biolabs (Ipswich, MA). Unmodified oligonucleotides and
primers used for extension and steady-state kinetics were
obtained from Integrated DNA Technologies (Coralville, IA)
and were HPLC-purified. Primers used for LC-MS sequence
analysis were also obtained from DNA Technologies (Cor-
alville, IA) and were twice HPLC-purified. Human DNA poly-
merases hpol � (catalytic core residues 1– 432), hpol � (catalytic
core residues 1– 420), and hpol � (catalytic core residues
19 –526) and bacterial Dpo4 were expressed in E. coli and puri-
fied as described previously (70 –73).

NMR spectroscopy and MS
1H and 13C NMR spectra were recorded on a 600-MHz

Bruker NMR spectrometer; 31P NMR spectra were recorded on
a 500-MHz Bruker NMR spectrometer. Mass spectrometry was
performed at the Vanderbilt Mass Spectrometry Research Core
Facility using both Thermo low-resolution (LTQ) and high-
resolution (Orbitrap) spectrometers. Spectra of synthetic
products (negative and positive ion modes) and modified
oligonucleotides (negative ion mode) were obtained using a
Waters Acquity UPLC instrument (Waters, Milford, MA)
interfaced to a Thermo-Finnigan LTQ mass spectrometer
(Thermo Scientific, San Jose, CA), also equipped with an
electrospray source.

Synthesis of 9-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-1,9-
dihydro-N2-isobutyrylguanosine (isobutyrylacetamido-
6H-purin-6-one) (74)

Commercially available 9-(2-deoxy-2-fluoro-�-D-arabino-
furanosyl) guanine (1) (10 mg, 1.05 mmol) was co-evaporated to
dryness with anhydrous pyridine (3 
 10 ml) in vacuo. The
residue was redissolved in anhydrous pyridine (10 ml) solution
under an argon atmosphere, and chlorotrimethylsilane (334 �l,
7.88 mmol) was added. The mixture was stirred at room tem-
perature for 2 h and then cooled to 0 °C. Isobutyryl chloride
(110 �l, 3.15 mmol) was added in a dropwise manner over 20
min (74). The reaction mixture was allowed to warm to room
temperature and further stirred for 3 h. The reaction mixture
was then cooled to 0 °C, and water (10 ml) was added to quench
the reaction. The reaction was stirred consecutively for 5 min at
0 °C and 5 min at room temperature, and then concentrated
aqueous NH4OH (25 ml) was added, with more stirring for 30
min. H2O (170 ml) was added to dilute the reaction mixture,
and the mixture was extracted with CH2Cl2 (50 ml). The aque-
ous phase was evaporated in vacuo to obtain a white solid,
9-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-N2-isobubutyryl-
guanosine (100 mg, 80%). 1H NMR (DMSO-d6): 	 8.10 (d, 1H,
J � 2.0 Hz, H-8), 6.24 (dd, 1H, J � 4.2, 14.9 Hz, H-1�), 5.18 (dt,
1H, J � 4.2 Hz, 52 Hz, H-2�), 4.38 (dt, 1H, J � 4.2, 17.2 Hz, H-3�),
3.89 (dd, J � 4.9, 10.4 Hz, H-4�), 3.63 (m, 2H, J � 40.26 Hz,
H-5�), 2.75 (m, 1H, J � 6.9 Hz, H-11), 1.08 (d, 6H, J � 6.62 Hz,
H-12). 13C NMR (DMSO-d6): 180.8, 155.5, 148.8, 138.8, 120.1,
96.0, 94.8, 84.4, 82.3, 73.0, 60.9, 35.4, 19.5. MS: calculated for
C14H18FN5O5 (M-H) 354.1; found 354.3.

Synthesis of 9-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-1,9-
dihydro-N7-methyl-N2-isobutyrylacetamido-6H-purin-6-one
(32)

To an anhydrous solution of N,N-dimethylformamide (5 ml)
was added 9-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-1,9-
dihydro-N2-isobutyrylguanosine (120 mg, 0.34 mmol) and
methyl iodide (351 �l, 5.63 mmol) under an argon atmosphere.
The reaction mixture was stirred at room temperature for 22 h
and then poured into cold diethyl ether to precipitate the prod-
uct, which was filtered and concentrated in vacuo to afford a
white solid, 9-(2-deoxy-2-fluoro-�-D-arabinofuranosyl)-1,9-
dihydro-N2- isobutyryacetamido-6H-purin-6-one (114 mg,
80%). 1H NMR (DMSO-d6): 	 9.69 (s, 1H, H-8), 6.28 (dd, 1H, J �
2.9, 13.8 Hz, H-1�), 5.88 (s, OH), 5.24 (d, 1H, J � 52 Hz, H-2�),
4.96 (s, OH), 4.40 (d, 1H, J � 17.2 Hz, H-3�) 4.08 (s, 3H,
N7-CH3), 3.98 (s, H-4�), 3.61 (s, 2H, H-5�), 2.69 (t, 1H, J � 7.2
Hz, 13.6 Hz, H-11), 1.04 (d, 6H, J � 6.62 Hz, H-12). 13C NMR
(DMSO-d6): 180.8, 155.5, 148.8, 138.8, 120.1, 96.0, 94.8, 84.4,
82.3, 73.0, 60.9, 35.4, 19.5. MS: calculated for C15H21FN5O5
(MH�) 370.2; found 370.2.

Synthesis of 9-[2-deoxy-5-O-(4,4�-dimethoxytrityl)-2-fluoro-
�-D-arabinofuranosyl]-1,9-dihydro-N7-methyl-N2-
isobutyrylacetamido-6H-purin-6-one

9-(2-Deoxy-2-fluoro-�-D-arabinofuranosyl)-1,9-dihydro-
N7-methyl-N2- isobutyryacetamido-6H-purin-6-one (263 mg,
0.71 mmol), in anhydrous pyridine, and 4,4�-dimethoxytrityl
chloride (721 mg, 2.1 mmol) were stirred at room temperature
for 2 h under an argon atmosphere. The reaction mixture was
diluted with CH2Cl2 (50 ml) and washed with saturated aque-
ous NaHCO3 and then brine (3 
 50 ml). The organic layer was
dried over anhydrous Na2SO4 and filtered, and the solvent was
evaporated. The crude residue was purified by silica gel column
chromatography (3% CH3OH in CH2Cl2 plus 1% triethylamine,
v/v) to afford 9-[2-deoxy-5-O-(4,4�-dimethoxytrityl)-2-fluoro-
�-D-arabinofuranosyl]-1,9-dihydro-N7-methyl-N2-isobutyry-
lacetamido-6H-purin-6-one (290 mg, 60% yield). 1H NMR (600
MHz, CD2Cl2): 	 8.44 (1H, s, H-8), 6.93–7.52 (13H, m, aromatic
H), 6.86 (1H, d, J � 7.7 Hz, H-1�), 5.34 (1H, t, 2.8, H-2�), 4.72
(1H, d, J � 17.22 Hz, H-3�), 4.45 (1H, m, H-4�), 3.97 (3H, s,
N7-CH3), 3.79 (6H, s, OCH3, OCH3), 3.49 –3.56 (2H, m, 7.27,
5.25 Hz, H-5 and H-5�), 2.72 (1H, m, H11), 1.109 (dd, 6H, J �
1.82, 11.62 Hz, H-12). MS: calculated for C36H39FN5O7 (MH�)
672.3; found 672.2.

Synthesis of 9-[2-deoxy-5-O-(4,4�-dimethoxytrityl)-2-
fluoro-�-D-arabinofuranosyl]-1,9-dihydro-N7-methyl-N2-
isobutyrylacetamido-6H-purin-6-one-3-O-(2-cyanoethyl)-N,N-
diisopropylphosphoramidite

The dimethoxytrityl-protected nucleoside from the previous
step (90 mg, 134 �mol) was dissolved in CH2Cl2 (2 ml), and
N,N-diisopropyethylamine (55 �l, 0.33 mmol) was added. N,N-
Diisopropylamino)chlorophosphine (45 �l, 0.2 mmol) was
added, and then the reaction mixture was stirred at room tem-
perature for 2 h under an argon atmosphere. The mixture was
diluted with CH2Cl2 (50 ml) and washed with saturated aque-
ous NaHCO3 and then brine (3 
 50 ml), and the organic phase
was dried over Na2SO4 and filtered. The solvent was evaporated
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in vacuo. The crude reaction mixture was purified by silica gel
chromatography with 1% CH3OH in CH2Cl2 containing 1%
trimethylamine (v/v) to afford 80 mg of 9-[2-deoxy-5-O-(4,4�-
dimethoxytrityl)-2-fluoro-�-D-arabinofuranosyl]-1,9-dihydro-
N7-methyl-N2-isobutyrylacetamido-6H-purin-6-one-3-O-(2-
cyanoethyl)-N,N-diisopropylphosphoramidite, 68%. 31P NMR
(500 MHz, CD2Cl2) 	 152.48, 152.30; MS: calculated for
C36H39FN5O7 (MH�) 872.4; found 872.4.

Synthesis, purification, and characterization of 2�-F dG and
N7-CH3 2�-F dG– containing DNA oligonucleotides

Modified oligonucleotides bearing 2�-fluorines were synthe-
sized with Expedite reagents (Glen Research, Sterling, VA) on a
1-�mol scale utilizing a Perspective Biosystems model 8909
DNA synthesizer and a standard synthetic protocol (75). We
chose the �-anomer for the 2�-fluoro analogs because this con-
figuration has been shown not to alter sugar puckering in DNA;
this is the typical configuration for the 2�-deoxynucleotides
(76 –78). The coupling of N7-CH3 2�-F dG phosphoramidite
was performed off-line for 2 h. The remainder of the synthesis
was done online using standard procedures. Modified oligonu-
cleotides were cleaved from the solid support, and exocyclic
groups were deprotected in a single step using anhydrous
methanolic K2CO3 (50 mM), stirring at room temperature for
8 h. CH3OH was removed by sweeping with a stream of N2
gas. Oligonucleotides were purified by reversed-phase HPLC
with a Phenominex Alumina RP octadecylsilane (C18) col-
umn (250 mm 
 4.6 mm, 5 �m). The solvents used were
aqueous 100 mM triethylammonium acetate (mobile phase
A) and 100 mM triethylammonium acetate in H2O/CH3CN
(1:1, v/v) (mobile phase B). The flow rate was 1.5 ml/min
with the following gradient: initial 20% B, increased to 25% B
over 5 min, held at 25% for 15 min, increased to 40% at 20
min, held for 5 min, then 100% at 25 min, and held until
30 min and 5% B at 31 min and re-equilibrated to 0% B for 5
min (all v/v). The UV detector was set at 240 nm. The col-
lected fractions were lyophilized to dryness, redissolved in
water, and desalted using ZipTip U-C18 columns prior to
characterization.

Oligonucleotide 5�-TCAT(2�-F dG) ATGACGCTTACGAGC-
CCG-3� was purified by HPLC, LC-ESI m/z calculated for
[M-H]�, 7039.193; found 7043.000 (Fig. S5B).

Oligonucleotide 5�-TCAT(N7-CH3 2�-F dG)ATGACGCTT-
ACGAGCCCG-3� was purified by HPLC, LC-ESI m/z calcu-
lated for [M-H]�, 7054.216; found 7075.000 (Fig. S6A) (pre-
sumably sodium adduct).

The identity of the N7-CH3 2�-F dG– containing oligonucle-
otide was further confirmed by subjecting it to FPG glycosylase.
The N7-CH3 2�-F dG– containing oligonucleotide was 32P-la-
beled at the 5�-end using T4 polynucleotide kinase (New Eng-
land Biolabs) and annealed to its complementary strand by
heating at 95 °C for 5 min and then allowing it to cool to room
temperature overnight. A second portion of the N7-CH3 2�-F
dG-oligonucleotide was treated with NaOH and stirred for 12 h
at room temperature to create a hydrolyzed N7-CH3 FAPY-2�-F
dG oligonucleotide. It was also 5�-end–labeled (32P-label and
T4 polynucleotide kinase) and then annealed with its comple-
mentary strand. Both oligonucleotides were subjected to treat-

ment with FPG glycosylase for 1 h at 37 °C. Reactions were
quenched with 9 �l of quenching dye (20 mM EDTA, (pH 9.0) in
95% formamide, v/v) and the products were separated on a 20%
acrylamide (w/v) electrophoresis gel. Results were visualized
using a phosphorimaging system (Bio-Rad, Molecular Imager�
FX) and analyzed by Quantity One software as described pre-
viously (38).

Primer annealing and extension assays

5�-FAM-labeled 16-mer, 18-mer, and 19-mer primers (5�-/
FAM/CGGGCTCGTAAGCGTC-3�, 5�-/FAM/CGGGCTCG-
TAAGCGTCAT-3�, 5�-/FAM/CGGGCTCGTAAGCGTCATC-
3�, and 5�-/FAM/CGGGCTCGTAAGCGTCATT-3�, respectively)
were annealed to a 23-mer template (3�-GCCCGAGCATTCG-
CAGTAXTACT-5�, where X was dG, 2�-F dG, or N7-CH3 2�-F
dG, in a 1:1 molar ratio at 95 °C for 5 min and slowly cooling to
room temperature. For the full-length extension assays, WT
hpol � (20 nM), hpol � (40 nM), hpol � (20 nM), and Dpo4 (20 nM)
were incubated with the 16-mer primer–template DNA com-
plex (200 nM) in 40 mM Tris-HCl buffer (pH 7.5) containing 5
mM MgCl2, 50 mM NaCl, 5% glycerol (v/v), 5 mM DTT, 50 �g/ml
BSA, and 250 �M dNTPs. The reactions were done at 37 °C for
2, 5, 10, 20, and 60 min. For single-nucleotide incorporation
experiments, an 18-mer primer–template DNA complex (120
nM) was used. Enzyme concentrations were as follows: hpol � (5
nM), hpol � (10 nM), hpol � (5 nM), and Dpo4 (5 nM). Reactions
were done for 10 min. In the case of the single-nucleotide exten-
sion experiments, two primer–template DNA complexes (120
nM) were used with hpol � (5 nM) alone for 5 min. All other
reaction conditions were the same as in the full-length exten-
sion experiments. Reactions were quenched as above, and
products were separated on 18% denaturing acrylamide gels
(w/v) and visualized with a Typhoon system (GE Healthcare).

Steady-state insertion and extension kinetics

Insertion reactions were done by incubating FAM-labeled
18-mer primer/23-mer template complexes (120 nM) with hpol
� (2.5–10 nM) or Dpo4 (0.15–10 nM), and extension reactions
were conducted by incubating two FAM-labeled 19-mer prim-
er/23-mer template complexes (120 nM) with hpol � (5–10 nM).
Both reactions were incubated at 37 °C for 5–10 min in 50 mM

Tris-HCl buffer (pH 7.5) containing 5 mM MgCl2, 50 mM NaCl,
5% glycerol (v/v), 5 mM DTT, 50 �g/ml BSA, and varying con-
centrations of dNTPs. Reactions were quenched as described
above, and products were separated on 18% denaturing acryl-
amide gels (w/v), visualized with a Typhoon system, and quan-
tified utilizing ImageJ software (National Institutes of Health).
Data obtained were fit to the hyperbolic Michaelis–Menten
equation in GraphPad Prism software (version 8.0, La Jolla,
CA).

LC-MS analysis of full-length extension products by hpol � and
Dpo4

An 18-mer primer bearing a 2�-deoxyuridine (5�-FAM/
CGGGCTCGTAAGCGTC(dU)T-3�) was annealed to the 23-
mer oligomer used above, in a molar ratio of 1:1. Full-length
extension reactions were done using similar conditions as in the
steady-state experiments, with the exception of primer–
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template complex (2.5 �M), hpol � (150 nM), Dpo4 (300 nM),
and dNTPs (500 �M). Reactions were incubated at 37 °C for 1 h.
Reactions were quenched by spin column separation to remove
Mg2� and dNTPs, and the extension product was treated with
25 units of UDG at 37 °C for 4 h and then with 0.25 M piperidine,
heating at 95 °C for 1 h. H2O was added to the reaction mixture,
which was lyophilized and then redissolved in H2O (70). Prod-
ucts were analyzed by LC-MS/MS, performed using a Waters
Acquity UPLC system linked to a Thermo-Finnigan LTQ
mass spectrometer with electrospray ionization in the negative
ion mode. Separation by chromatography was done using an
Acquity UPLC system BEH octadecylsilane (C18) column (1.7
�m, 2.1 mm 
 50 mm) with UPLC conditions as described
previously (40).
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