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Recently, oxidized phospholipid species have emerged as
important signaling lipids in activated immune cells and plate-
lets. The canonical pathway for the synthesis of oxidized phos-
pholipids is through the release of arachidonic acid by cytosolic
phospholipase A2� (cPLA2�) followed by its enzymatic oxida-
tion, activation of the carboxylate anion by acyl-CoA syntheta-
se(s), and re-esterification to the sn-2 position by sn-2 acyltrans-
ferase activity (i.e. the Lands cycle). However, recent studies
have demonstrated the unanticipated significance of sn-1 hydro-
lysis of arachidonoyl-containing choline and ethanolamine
glycerophospholipids by other phospholipases to generate the
corresponding 2-arachidonoyl-lysolipids. Herein, we identified
a pathway for oxidized phospholipid synthesis comprising
sequential sn-1 hydrolysis by a phospholipase A1 (e.g. by patatin-
like phospholipase domain– containing 8 (PNPLA8)), direct
enzymatic oxidation of the resultant 2-arachidonoyl-lysophos-
pholipids, and the esterification of oxidized 2-arachidonoyl-
lysophospholipids by acyl-CoA– dependent sn-1 acyltrans-
ferase(s). To circumvent ambiguities associated with acyl
migration or hydrolysis, we developed a synthesis for opti-
cally active (D- and L-enantiomers) nonhydrolyzable analogs
of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC). sn-1
acyltransferase activity in murine liver microsomes stereospe-
cifically and preferentially utilized the naturally occurring
L-enantiomer of the ether analog of lysophosphatidylcholine.
Next, we demonstrated the high selectivity of the sn-1 acyltrans-
ferase activity for saturated acyl-CoA species. Importantly, we
established that 2–15-hydroxyeicosatetraenoic acid (HETE)
ether-LPC sn-1 esterification is markedly activated by thrombin
treatment of murine platelets to generate oxidized PC. Collec-
tively, these findings demonstrate the enantiomeric specificity
and saturated acyl-CoA selectivity of microsomal sn-1 acyl-
transferase(s) and reveal its participation in a previously
uncharacterized pathway for the synthesis of oxidized phospho-
lipids with cell-signaling properties.

Phospholipids are of critical importance in eukaryotic cell
biology through their propensity to form membrane bilayers
that serve as a permeability barrier separating intracellular
compartments, solvate transmembrane proteins, and function
as cryptic reservoirs for the release of lipid second messengers
after cellular stimulation. Moreover, oxidized phospholipids,
predominantly oxidized phosphatidylcholines and oxidized
phosphatidylethanolamines, are produced in immune cells and
platelets following activation by agonists (1–4). Many studies
have shown that the presence of oxidized phospholipids in
membrane bilayers results in changes in membrane molecular
dynamics that modulate the activity of transmembrane pro-
teins (5, 6). Furthermore, oxidized phospholipids have impor-
tant signaling functions in diverse biological processes such as
inflammation, adaptive immunity, proliferation, ferroptosis,
necroptosis, and pyroptosis (7–12).

Multiple studies have examined the biosynthetic pathway of
oxidized phospholipid production (1, 2, 13, 14). The canonical
pathway comprises four sequential steps. The first step is the
hydrolysis of a nonoxidized phospholipid by cytosolic phos-
pholipase A2� (cPLA2�),2 resulting in the release of polyunsat-
urated fatty acids (e.g. arachidonic acid) from the sn-2 position
of the phospholipid. The second step is the oxidation of the
released arachidonic acid (or other polyunsaturated fatty acids)
by cyclooxygenases, lipoxygenases, or cytochromes P450 to
form nonesterified eicosanoids. The third step is the thioesteri-
fication of the carboxylate anion by acyl-CoA synthetases. The
final step in the canonical pathway is acylation of the eico-
sanoid-CoAs to the sn-2 position of 1-acyl-lysophospholipids
(Fig. 1, top pathway).

Previously, we identified calcium-independent phospho-
lipase A2� (iPLA2�; also known as patatin-like phospholipase
domain– containing 8 (PNPLA8)) that contained dual mito-
chondrial and peroxisomal localization sites (15, 16). Intrigu-
ingly, iPLA2� possessed a heretofore unprecedented regio-
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specificity of hydrolysis (17). Specifically, when the sn-2
position of phosphatidylcholine (PC) or phosphatidylethanol-
amine (PE) is polyunsaturated, then iPLA2� acts nearly exclu-
sively as an sn-1 phospholipase (17) that is activated by divalent
cations (18), resulting in the production of 2-arachidonoyl-
lysophosphatidylcholine (2-AA-LPC) or 2-arachidonoyl-
lysophosphatidylethanolamine (2-AA-LPE). Because iPLA2� is
the predominant phospholipase in cardiac mitochondria and
presumably peroxisomes, the generation of 2-AA-LPC was rec-
ognized as a metabolic node integrating the actions of multiple
enzymes. Thus potentially generate a plethora of signaling mol-
ecules comprising different oxidized aliphatic chains covalently
bound to lysolipids. For example, we demonstrated that
2-arachidonoyl-lysophospholipids are excellent substrates for
direct oxidation by cyclooxygenase-2 (COX-2) and lipoxyge-
nases (e.g. 15-lipoxygenase (15-LOX)) (19). Thus 2-eicosanoid
lysophospholipids could serve as lipid second messengers
directly, be further hydrolyzed to release nonesterified eico-
sanoids for downstream signaling, or reacylated by sn-1 acyl-
transferase(s) to form the corresponding oxidized phospholip-
ids. Thus, we postulated that a previously undescribed pathway
of oxidized phospholipid synthesis was present in mammalian
cells.

Initial studies with isotope-labeled 1-hydroxy-2–15(S)-
hydroxyeicosatetraenoic acid-sn-glycero-3-phosphocholine
(2–15-HETE-LPC) and 2–15(S)-hydroxyeicosatetraenoic acid-
sn-glycero-3-phosphoethanolamine (2–15-HETE-LPE) demon-
strated that this novel pathway was active in hepatic micro-
somes. However, the robust amounts of lysophospholipase
activity in mammalian cells preclude definitive mechanistic
identification of the pathway involved. In fact, the lysophospho-
lipase activity of cPLA2� for 2-arachidonoyl-lysolipids is over
50-fold higher than that of its phospholipase A2 activity for
arachidonate-containing phospholipids when measured in

vitro (20). To remove mechanistic ambiguities resulting from
the potential hydrolysis of 2-acyl-LPCs, �-hydroxy migration,
and/or transacylation reactions, we endeavored to synthesize
optically active nonhydrolyzable ether analogs of 2-arachi-
donoyl-lysophosphatidylcholine (2-AA-ether-LPC) to delin-
eate the different possible metabolic pathways involved in
oxidized phospholipid synthesis. Unfortunately, traditional
chemical approaches to synthesize 2-AA-ether-LPC were pre-
cluded by the instability of the polyunsaturated arachidonoyl
acyl chain in most protection/deprotection reactions such as
H2/Pd and 2,3-dichloro-5,6-dicyano-p-benzoquinone. More-
over, we found that the arachidonoyl acyl chain readily under-
goes isomerization reactions when treated with Lewis acids
such as BF3 and p-toluenesulfinic acid as reported previously
(21). Therefore, these challenges needed to be traversed to ste-
reospecifically synthesize 2-AA-ether-LPC and determine its
metabolic fate in mammalian cells.

In this work, we demonstrate 1) the robust activity of sn-1
acyltransferase activity for oxidized lysolipids, 2) the first
reported enantiomerically specific synthesis of nonhydrolyz-
able L- and D-forms of 2-arachidonyl-ether-LPC, and 3) the
utilization of sn-2 oxidized lysolipids to generate oxidized phos-
pholipids both in subcellular fractions and in activated plate-
lets. Importantly, comparisons of the L- versus D-isomers of
2-arachidonyl-ether-LPC identified the stereospecific produc-
tion of phospholipids from L-lysophosphatidylcholine but only
modestly when D-lysophosphatidylcholine was used as sub-
strate. Furthermore, detailed characterization of the acyl-chain
specificity of the microsomal sn-1 acyltransferase activity dem-
onstrated that it was highly selective for saturated acyl-CoAs.
Finally, we demonstrated that this pathway is activated in plate-
lets by thrombin to produce the stereospecific synthesis of
enzymatically generated stereospecific oxidized phospholipids.

Figure 1. A novel enzyme-catalyzed pathway for oxidized phospholipid synthesis. The canonical pathway (top) of oxidized phospholipid synthesis is a
four-step process composed of the sn-2 hydrolysis of phospholipid by a PLA2, the oxidization of the released nonesterified arachidonic acid by LOX or COX,
activation of the oxidized arachidonic acid (oxAA) by acyl-CoA synthetase (ACS), and finally acylation of eicosanoid-CoA to the sn-2 position of 1-palmitoyl (or
1-stearoyl)-LPC. In this study, we have described a novel pathway (bottom) initiated by an sn-1 phospholipase activity that generates 2-AA-LPC, which can be
directly oxidized to 2–15-HETE-LPC followed by the acylation of 2–15-HETE-LPC by palmitoyl-CoA or stearoyl-CoA catalyzed by sn-1 LPC acyltransferase
activity. FA, fatty acid.
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Results

Synthesis of oxidized phosphatidylcholine and oxidized
phosphatidylethanolamine by sn-1 acyltransferase using
2-eicosanoid lysophosphatidylcholine and 2-eicosanoid
lysophosphatidylethanolamine as substrates

To determine the potential presence of this pathway in mam-
malian cells, we used a stable isotope labeling approach to
determine the metabolic fate of 2-AA-LPC-d9 or 2–15-HETE-
LPC-d9 incubated with murine hepatic microsomes in the pres-
ence of stearoyl-CoA. The resulting lipids were extracted and
analyzed by LC-MS. The results showed that 1-stearoyl-2-
arachidonoyl-sn-PC-d9 (18:0/20:4-PC-d9) was synthesized
from 2-AA-LPC-d9 by hepatic microsomal sn-1 acyltransferase
activity, whereas 18:0/15-HETE-PC-d9 was synthesized from
2–15-HETE-LPC-d9 (Fig. 2A). The specific activities of the initial
rates for these two reactions were 0.5 and 0.4 nmol�mg�1�min�1,
respectively (Fig. 2, I and J). Similarly, 18:0/15-HETE-PE (hydroxy
18O) was synthesized from 2–15-HETE-LPE (hydroxy 18O) ( Fig.
2B), and the specific activity of the acyltransferase reaction was 1.2
nmol�mg�1�min�1 (Fig. 2K). Accurate mass analysis revealed the
m/z of 18:0/20:4-PC-d9 was 819.6547 (calculated m/z is 819.6565,
� � 2 ppm), the m/z of 18:0/15-HETE-PC-d9 was 835.6525
(calculated m/z � 835.6514, � � 1 ppm), and the m/z of
18:0/15-HETE-PE (hydroxy 18O) was 786.5538 (calculated
m/z � 786.5530, � � 1 ppm) (Fig. 2, C, E, and G, respec-
tively). To substantiate the identities of these three reaction
products, MS2 analysis was performed. The predominant
fragment ion of 18:0/20:4-PC-d9 was 193.1292, which is
d9-phosphocholine ([C5H15NO4P-d9]� calculated m/z �
193.1296, � � 2 ppm) (Fig. 2D). In contrast, the predominant
fragment ion of 18:0/15-HETE-PC-d9 was 817.6399, which
results from the neutral loss of water from the parent ion
(calculated m/z � 817.6409, � � 1 ppm) (Fig. 2F). The pre-
dominant fragment ion of 18:0/15-HETE-PE (hydroxy 18O)
was 766.5383, which results from the neutral loss of H2

18O
from the parent ion (calculated m/z � 766.5389, � � 1 ppm)
(Fig. 2H).

Stereoselective synthesis of the nonhydrolyzable ether analog
of 2-AA-LPC

To unambiguously establish the importance of this putative
pathway and the stereospecificity of sn-1 acyltransferase activ-
ity in mammalian tissues, we developed a chemical synthesis for
nonhydrolyzable 2-AA-ether-LPC (Fig. 3). Starting with com-
mercially available 2-AA-glyceryl ether, we stereoselectively
acetylated the sn-1 position in methyl acetate using porcine
pancreatic lipase absorbed on Celite as described previously
(22). This afforded the L-conformation at the sn-2 carbon
because this transacylase reaction highly selectively acetylates
the hydroxy group on the sn-1 carbon. To synthesize the
D-enantiomer, we protected the sn-3 hydroxyl with a trityl
group and subsequently hydrolyzed the more labile acetyl
group using tetrabutylammonium hydroxide. Thus, two differ-
ent protected chiral intermediates were obtained.

To validate the optical purity of these critical intermediates,
both were transformed to their respective diastereomers by
derivatization with (R)-(�)-�-methylbenzyl isocyanate. The

carbamates produced from the two chiral intermediates were
analyzed by straight-phase HPLC, and their chromatograms
were compared with racemic standards. As shown in Fig. 4A,
derivatized 1-Ac-2-AA-ether-rac-glycerol has two resolv-
able chromatographic peaks of similar heights at 31.5 and
33.5 min, which were the two predicted (R)-(�)-�-methyl-
benzyl isocyanate– derivatized enantiomers (D- and L-) of
1-Ac-2-AA-ether-rac-glycerol. In contrast, the derivatized
1-Ac-2-AA-ether-sn-glycerol from the enzymatic reaction
with pancreatic lipase has only one major peak at 33.5 min,
which suggests that the product is optically active. By com-
paring the area of the peaks at 31.5 and 33.5 min in Fig. 1B,
the optical purity of 1-Ac-2-AA-ether-sn-glycerol obtained
from the lipase-catalyzed acetylation reaction was calculated
to be 92%. Similarly, the optical purity of 2-AA-ether-3-tri-
tyl-sn-glycerol was 91% as calculated by comparison of the
areas of the two peaks of the (R)-(�)-�-methylbenzyl–
derivatized enantiomers at 18.5 and 20.0 min in Fig. 4B.

Next, a phosphocholine group was attached to each interme-
diate by sequential reactions with POCl3 and choline tosylate as
described (23). After attachment of the phosphocholine group,
the acetyl group of 1-Ac-2-AA-ether-sn-glycerol-3-phospho-
choline was removed by tetrabutylammonium hydroxide,
yielding L-2-AA-ether-LPC. The polar headgroup phospho-
choline was attached to 2-AA-ether-3-trityl-sn-glycerol by the
same series of reactions. Next, the trityl group was subsequently
removed by TFA, yielding D-2-AA-ether-LPC. The structural
identities of both final products and all intermediates were con-
firmed by multistage high-resolution MS and proton NMR as
described in Figs. S1–S5.

Tandem mass spectrometric analyses of L-2-AA-ether-LPC
and D-2-AA-ether-LPC demonstrated the anticipated m/z of
L-2-AA-ether-LPC as 552.3420 ([C28H52NO6P � Na]� calcu-
lated m/z � 552.3424, � � 0.7 ppm) (Fig. 5). Similarly, the m/z
of D-2-AA-ether-LPC was 552.3416 ([C28H52NO6P � Na]� cal-
culated m/z � 552.3424, � � 1.4 ppm) (Fig. 5). The MS2 and
MS3 spectra of L-2-AA-ether-LPC and D-2-AA-ether-LPC are
indistinguishable. In MS2 spectra, the fragmentation of the
sodium adducts of L- and D-2-AA-ether-LPC produce a frag-
ment ion with an m/z of 493.2677 that is due to the neutral loss
of trimethylamine (m/z 59) from each precursor ion. In MS3

spectra, fragmentation of the ion at m/z 493.2677 produces two
major product ions with m/z 449.2416 and m/z 369.2752 that
result from the neutral loss of CH2CH2O and the neutral loss of
CH2CH2PO4H, respectively. The MS1, MS2, and MS3 spectra
unambiguously prove the structure of the desired optically
active intermediates.

Tandem mass spectrometric analysis of the 2-AA-LPC stan-
dard demonstrated fragmentation of the sodium adduct, gen-
erating a product ion with neutral loss of m/z 59. However, in
contrast to the ether analogs, MS3 fragmentation of the ion at
m/z 507.2462 produced only a fragment ion with an m/z of
383.2538 that results from the neutral loss of CH2CH2PO4H.
The product ion resulting from the neutral loss of CH2CH2O is
not present in the MS3 spectrum of 2-AA-LPC, further sub-
stantiating the differences between lysolipids and their nonhy-
drolyzable ether analogs.
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Acylation of L-2-AA-ether-LPC by different subcellular fractions
from murine liver

To determine whether L-2-AA-ether-LPC could be acylated
by an acyl-CoA– dependent sn-1 acyltransferase in different
subcellular fractions of liver, 10 �M L-2-AA-ether-LPC was
incubated with sonicated mitochondria, cytosol, or micro-

somes in the presence or absence of 10 �M stearoyl-CoA. The
results demonstrate that highest specific activity for acylation
of L-2-AA-ether-LPC is present in the microsomal fraction
(Table 1). The formation of 1-stearoyl-2-arachidonyl-ether-
sn-PC from L-2-AA-ether-LPC is minimal in the cytosolic frac-
tion and highest in microsomes. Because preparations of mito-
chondria inevitably contain some microsomal components, the
sn-1 acylation activity within the mitochondrial fraction is
likely due to a small amount of microsomal contamination in
the mitochondrial fraction. For the microsomal fraction, the
formation of 1-stearoyl-2-arachidonyl-ether-sn-PC with 10 �M

stearoyl-CoA is �4-fold higher than in the absence of fatty
acyl-CoA. These results highlight the requirement of acyl-CoA
for PC synthesis from L-2-AA-ether-LPC and rule out signifi-
cant transacylation effects.

The acyl-CoA dependence of the sn-1 acyltransferase reaction
is enantioselective for the L configuration

To determine whether the sn-1 acyltransferase activity was
enantioselective, we compared the initial rates of acyl-CoA– de-
pendent acylation of D- and L-2-AA-ether-LPCs. Incubation of
10 �M L- or D-2-AA-ether-LPC with murine hepatic micro-
somes in the presence of 10 �M stearoyl-CoA demonstrated
that the formation of PC from L-2-AA-ether-LPC was approx-
imately 3 times higher than that from D-2-AA-ether-LPC (Fig.
6). These results demonstrate that the acyl-CoA– dependent
sn-1 acyltransferase reaction catalyzed by hepatic microsomal
acyltransferase(s) is stereoselective for the naturally occurring
form of lysophospholipids (i.e. L-lysophosphatidylcholine).

Figure 2. Synthesis of phospholipid/oxidized phospholipid from 2-arachidonoyl-lysophospholipid or 2-eicosanoid lysophospholipid by sn-1 acyl-
transferase. A, extracted ion chromatograms of PC/oxidized PC synthesized by murine hepatic microsomal sn-1 acyltransferase activity(ies) utilizing 2-AA-LPC
or 2–15-HETE-LPC as substrate. Microsomal homogenates isolated from mouse liver were incubated with the indicated substrates for 5 min at 37 °C in 75 mM

sodium phosphate buffer (pH 7.4). After incubation, 14:1-PC was added as an internal standard. The lipids were extracted and analyzed by LC-MS. The extracted
ion chromatograms (with a 5-ppm mass window) of the metabolic products 18:0/20:4-PC-d9 (m/z 819.6565) and 18:0/15-HETE-PC-d9 (m/z 835.6514) are shown.
B, extracted ion chromatograms of oxidized PE synthesized by murine hepatic microsomal sn-1 acyltransferase activity(ies) utilizing 2–15-HETE-LPE as
described above. After incubation, 16:1-PE was added as an internal standard. The extracted ion chromatograms (with a 5-ppm mass window) of the metabolic
product 18:0/15-HETE-PE (hydroxy 18O) (m/z 786.5530) is shown. C and D, MS1 spectrum (C) and MS2 spectrum (D) of 18:0/20:4-PC-d9. E and F, MS1 spectrum (E)
and MS2 spectrum (F) of 18:0/15-HETE-PC-d9. G and H, MS1 spectrum (G) and MS2 spectrum (H) of 18:0/15-HETE-PE (hydroxy 18O). I–K, specific activities of sn-1
acyltransferase–mediated production of 18:0/20:4-PC-d9 (I), 18:0/15-HETE-PC-d9 (J), and 18:0/15-HETE-PE (hydroxy 18O) (K) from 2-AA-LPC-d9 (10 �M), 2–15-
HETE-LPC-d9 (10 �M), and 2–15-HETE-LPE (hydroxy 18O), respectively, in the presence of 18:0-CoA (10 �M). Values are the average of four independent
preparations. Error bars represent S.D.

Figure 3. Stereoselective synthesis of L-2-AA-ether-LPC and D-2-AA-ether-LPC. a, lipase from porcine pancreas absorbed on Celite, anhydrous methyl
acetate, 3-Å molecular sieves, room temperature (rt). b, (i) Et3N, POCl3, anhydrous CH2Cl2, 0 °C to rt; (ii) choline tosylate, pyridine, anhydrous CH2Cl2, rt. c,
Bu4NOH, Et2O, rt. d, TrCl, dimethylaminopyridine, Et3N, anhydrous CH2Cl2, rt. e, Bu4NOH, Et2O, rt. f, (i) Et3N, POCl3, anhydrous CH2Cl2, 0 °C to rt; (ii) choline
tosylate, pyridine, anhydrous CH2Cl2, rt. g, TFA, anhydrous CH2Cl2, rt. Details of reactions are found under “Experimental procedures.”

Figure 4. HPLC analysis of R-MBIC– derivatized racemic standards and
optically active products from the enzymatic reaction. Chemical
derivatization of the enantiomers of diacylglycerol standards/products with
R-MBIC generates the corresponding diastereomers, which can be separated
utilizing a Si HPLC column. The resultant chromatograms show racemic stan-
dards with two peaks of equal intensity representing the two R-MBIC-diacyl-
glycerol enantiomers, whereas the products from the enzymatic reaction
have only one major peak, thereby indicating that the products are enantio-
meric products. A, chromatogram of R-MBIC– derivatized racemic 1-Ac-2-AA-
ether-glycerol (top) and R-MBIC– derivatized optically active 1-Ac-2-AA-
ether-sn-glycerol (bottom). B, chromatogram of R-MBIC– derivatized racemic
2-AA-ether-3-trityl-glycerol (top) and R-MBIC– derivatized 2-AA-ether-3-trityl-
sn-glycerol (bottom).
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The effect of 2-AA-ether-LPC and fatty acyl-CoA
concentrations on the sn-1 acyltransferase reaction

Previously, it has been shown that the acyl-CoA acyltrans-
ferase reaction at the sn-2 position of LPC depends on the
concentrations of sn-1 LPC and fatty acyl-CoA substrates.
Accordingly, we examined the concentration dependence of
each substrate on initial reaction velocity. Selected concen-
trations of these two substrates were incubated with the
microsomal fraction isolated from mouse liver. The LPC
sn-1 acyltransferase reaction increases linearly up to 50 �M

2-AA-ether-LPC in the presence of 10 �M exogenous stear-
oyl-CoA (Fig. 7A). Approximately 10 �M stearoyl-CoA satu-
rated the sn-1 acyltransferase reaction in the presence of 10
�M 2-AA-ether-LPC (Fig. 7B).

Figure 5. Tandem mass spectrometric analysis of L-2-AA-ether-LPC, D-2-AA-ether-LPC, and L-2-AA-LPC. Stereoselectively synthesized L-2-AA-ether-LPC
and D-2-AA-ether-LPC as well as L-2-AA-LPC were separated on a C18 HPLC column and analyzed by MS. Tandem MS was performed using an LTQ ion trap with
collision energy of 25 eV for MS2 and 30 eV for MS3. The resultant fragment ions were detected in an Orbitrap mass spectrometer with a mass resolution of
30,000 at m/z � 400 and a mass accuracy within 5 ppm.

Table 1
sn-1 acyltransferase activity of murine hepatic subcellular fractions
Subcellular fractions from C57 mouse liver were isolated by differential centrifuga-
tion as described under “Experimental procedures”. Cytosolic, mitochondrial, and
microsomal proteins were incubated with the indicated concentrations of L-2-AA-
ether-LPC and 18:0-CoA at 37 °C for 5 min in 75 mM sodium phosphate buffer (pH
7.4). The 1-stearoyl-2-arachidonyl-ether-sn-glycero-3-phosphocholine produced
in the reaction was extracted in the presence of dimyristoleoylphosphatidylcholine
(14:1-PC) internal standard and quantified by LC-MS. Values are the average of four
independent preparations �S.D.

1-Stearoyl-2-arachidonyl-ether-sn-PC
production

Cytosol Mitochondria Microsomes

nmol�mg�1�min�1

Control 0 � 0 0.001 � 0.001 0.002 � 0.001
10 �M L-2-AA-ether-LPC 0 � 0 0.01 � 0.01 0.01 � 0.004
10 �M L-2-AA-ether-LPC

� 10 �M 18:0-CoA
0.006 � 0.002 0.03 � 00.01 0.13 � 0.03 Figure 6. Stereoselectivity of the mouse liver microsomal sn-1 acyltrans-

ferase reaction to produce 1-stearoyl-2-AA-ether-PC. Microsomal homo-
genates isolated from mouse liver were incubated with either 10 �M L-2-AA-
ether-LPC or 10 �M D-2-AA-ether-LPC in the presence of 10 �M 18:0-CoA for 0,
2, 5, 9, or 15 min at 37 °C in 75 mM sodium phosphate buffer (pH 7.4). The
reactions were terminated by adding chloroform/methanol (1:1, v/v) and vor-
texed. The chloroform phase was isolated and dried under a nitrogen stream.
The dried residues were redissolved in water/methanol (1:4), and the sn-1
acyltransferase product, 1-stearoyl-2-AA-ether-PC, was analyzed and quanti-
tated by LC-MS in the positive ion mode. Values are the average of four inde-
pendent preparations. Error bars represent S.D.
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Acyl-CoA specificity of the microsomal sn-1 LPC
acyltransferase reaction

Years ago, Lands (24) and Lands and Merkl (25) demonstrated
that polyunsaturated fatty acids are preferentially incorporated at
the sn-2 hydroxyl of sn-1 LPC by cellular acyl-CoA–dependent
acyltransferases in a process now known as the Lands cycle.
Because naturally occurring PC predominantly contains saturated
fatty acids at the sn-1 position, we reasoned that palmitate and
stearate should be preferentially incorporated at the sn-1 hydroxyl
of sn-2 LPC by microsomal sn-1 LPC acyltransferase activity in
parallel with the regiospecificity of nearly all of the polyunsatu-
rated phospholipids in mammalian tissues. Accordingly, we com-
pared the initial reaction velocities using selected concentrations
of saturated and unsaturated fatty acyl-CoAs in the presence of
L-2-AA-ether-LPC and hepatic microsomes. Saturated fatty acids
(i.e. palmitoyl-CoA and stearoyl-CoA) were preferentially incor-
porated at the sn-1 position of sn-2-AA-LPC compared with their
unsaturated fatty acyl counterparts (Fig. 8).

Oxidation of the 2-AA-LPC ether analog by 15-LOX

Previously, we have demonstrated that 2-AA-LPC can be
directly oxidized by oxygenases such as COX-2 and 15-LOX to

produce the corresponding oxidized LPCs (19). Considering
the structural similarity between 2-AA-LPC and 2-AA-ether-
LPC, we anticipated that the 2-AA-ether-LPC would also be
oxidized by 15-LOX. To test this possibility, purified human
recombinant 15-LOX was incubated with either L-2-AA-
ether-LPC or D-2-AA-ether-LPC. The resulting products
were extracted and analyzed by LC-MS and LC-MS/MS. The
results demonstrated that both L- and D-2-AA-ether-LPC
were efficiently oxidized by 15-lipoxygenase with no signif-
icant differences in the specific activity between these ste-
reoisomers (Fig. 9).

Production of oxidized PC from oxidized 2-AA-ether-LPC by
microsomal fatty acyl-CoA– dependent sn-1 acyltransferase

Previous work has suggested that the production of oxidized
phospholipids occurs mainly through a four-step process initi-
ated by the release of AA followed by its oxidation by various
oxidases, thioesterification by acyl-CoA synthetase, and incor-
poration of the oxidized acyl-CoAs into lysophospholipids by
acyl-CoA acyltransferases. Considering our observation of the
relative abundance of oxidized lysolipids in biological systems,
we were interested in determining whether oxidized phospho-
lipids could be synthesized through the direct acylation of oxi-
dized lysophospholipids by the sn-1–selective acyl-CoA– de-
pendent acyltransferase activity we discovered. To determine
whether oxidized lysophospholipids could serve as substrates
for the sn-1 acyltransferase, 2–15-HETE-ether-LPC was pre-
pared by 15-LOX–mediated oxidation of 2-AA-ether-LPC and
incubated with hepatic microsomes in the presence of stearoyl-
CoA. The resultant reaction products were extracted and ana-
lyzed by LC-MS. Notably, 1-stearoyl-2-15-HETE-ether-PC was
rapidly generated by the microsomal sn-1 acyltransferase activ-
ity, which incorporated stearic acid from stearoyl-CoA into
2–15-HETE-ether-LPC (Fig. 10A). To substantiate the identi-
fication of 1-stearoyl-2–15-HETE-ether-PC, the accurate mass
of the predominant precursor ion in MS1 (Fig. 10B) was com-

Figure 7. Effect of LPC and acyl-CoA concentrations on microsomal sn-1
acyltransferase activity. A, microsomal homogenates isolated from mouse
liver were incubated with 10 �M 18:0-CoA in the presence of increasing con-
centrations of L-2-AA-ether-LPC for 1 min at 37 °C in 75 mM sodium phosphate
buffer (pH 7.4). The reactions were terminated by adding chloroform/meth-
anol (1:1, v/v). Di-14:1-PC was added as an internal standard, and the extrac-
tion mixture was vortexed. The chloroform layer was collected and dried
under a nitrogen stream. The dried residues were redissolved in water/meth-
anol (1:4), and the sn-1 acyltransferase product, 1-stearoyl-2-AA-ether-PC,
was analyzed and quantitated by LC-MS in the positive ion mode. B, micro-
somal homogenates isolated from mouse liver were incubated with 10 �M

L-2-AA-ether-LPC in the presence of increasing concentrations of 18:0-CoA
for 2 min at 37 °C in 75 mM sodium phosphate buffer (pH 7.4). The resulting
1-stearoyl-2-AA-ether-PC was extracted and analyzed as described above.
Values are the average of four independent preparations. Error bars represent
S.E.

Figure 8. Substrate specificities of the microsomal sn-1 acyltransferase
reaction. Microsomal homogenates isolated from mouse liver were incu-
bated with 10 �M L-2-AA-ether-LPC in the presence of selected saturated and
unsaturated molecular species of acyl-CoAs for 5 min at 37 °C in 75 mM

sodium phosphate buffer (pH 7.4). The reactions were terminated by addition
of chloroform/methanol (1:1, v/v) and vortexed. The chloroform layer was
isolated and dried under a nitrogen stream. The dried residues were redis-
solved in water/methanol (1:4), and the sn-1 acyltransferase product, 1-acyl-
2-AA-ether-PC, was analyzed and quantitated by LC-MS in the positive ion
mode. Values are the average of four independent preparations. Error bars
represent S.D.
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pared with its theoretical value (m/z 812.6165), revealing a
1-ppm difference in mass. Fragmentation of the precursor
1-stearoyl-2–15-HETE-ether-PC ion at m/z 812.6178 yielded a
product ion at m/z 794.6045 resulting from the neutral loss of
water, thereby substantiating the existence of a hydroxy group,
likely in the arachidonoyl acyl chain (Fig. 10C). Collectively,
these results demonstrate separate and distinct biochemical
pathways for the production of oxidized phospholipids in bio-
logic systems.

Synthesis of oxidized phosphatidylcholine from oxidized 2-AA-
ether-LPC by platelets and comparison with the synthesis of
oxidized phosphatidylcholine from incorporation of oxidized
nonesterified fatty acid

To estimate the relative contribution of each pathway to the
synthesis of oxidized phosphatidylcholine in murine platelets
after thrombin stimulation, we compared the initial rates of
oxidized PC synthesis from oxidized fatty acids with that of
oxidized lysophosphatidylcholine. To this end, we incubated 8
�M 2–15-HETE-ether-LPC and 8 �M 15-HETE-d8 with murine
platelets and activated the platelets with 1 unit/ml thrombin for
30 min. The lipids were extracted and analyzed by LC-MS as
described under “Experimental procedures”. Similar amounts
of oxidized PC were synthesized from both oxidized fatty acid
and oxidized LPC using palmitoyl-CoA, whereas �1⁄3 the
amount was synthesized using stearoyl-CoA (Fig. 11). Thus,
dual pathways exist for the synthesis of oxidized phospholipids
in activated platelets that are likely dependent on the spatial,
temporal, and subcellular location of the participating enzymes
and their preferred substrates.

Discussion

In this study, we describe a novel pathway for the synthesis of
enzymatically generated oxidized phospholipids resulting from
sn-1 deacylation/reacylation cycling and the direct enzymatic
oxidation of arachidonoyl-LPC and arachidonoyl-LPE. This
discovery was mechanistically substantiated by development of
a facile synthesis of enantiomerically pure nonhydrolyzable
ether analogs of 2-AA-LPC. Through the use of these enabling

reagents, this novel pathway was shown to be activated in
thrombin-stimulated platelets, contributing to the production
of oxidized phospholipids. Additionally, the stereospecificity
and substrate preferences of the major murine hepatic micro-
somal sn-1 acyltransferase activity were determined. This activ-
ity was selective for the naturally occurring lysolipid enan-

Figure 9. Oxidation of D and L stereoisomers of 2-AA-ether-LPC by 15-li-
poxygenase. Purified recombinant human 15-lipoxygenase was incubated
with either 10 �M L-2-AA-ether-LPC or 10 �M D-2-AA-ether-LPC for 0, 2.5, 5, 10,
or 15 min at 37 °C in 50 mM Tris-Cl buffer (pH 7.2). The reactions were termi-
nated by addition of 2 volumes of chloroform/methanol (1:1) containing 0.1%
acetic acid and internal standards (17:1-LPC). The chloroform phase was sep-
arated and dried by nitrogen. The resulting oxidized LPC was dissolved in
methanol and analyzed by LC-MS. Values are the average of four indepen-
dent preparations. Error bars represent S.E.

Figure 10. Synthesis of 1-stearoyl-2–15-HETE-ether-PC from stearoyl-
CoA and 2–15-HETE-ether-LPC by murine hepatic microsomal homoge-
nates. Microsomal homogenates isolated from mouse liver were incubated
with 10 �M L-2–15-HETE-ether-LPC and 10 �M stearoyl-CoA for 0, 1, 2.5, and 5
min at 37 °C in 75 mM sodium phosphate buffer (pH 7.4). The reactions were
terminated by addition of chloroform/methanol (1:1, v/v) containing di-14:
1-PC internal standard. The mixture was vortexed, and the chloroform layer
was separated and dried under a nitrogen stream. The dried residues were
redissolved in water/methanol (1:4), and the resultant 1-stearoyl-2–15-HETE-
ether-PC was chromatographed on a C18 HPLC column and analyzed by MS.
Fragmentations were performed in an LTQ ion trap with a collision energy of
35 eV, and the resultant fragment ion was detected in an Orbitrap mass spec-
trometer with a mass resolution of 30,000 at m/z � 400 and a mass accuracy
within 5 ppm. A, production of 1-stearoyl-2–15-HETE-ether-PC from stearoyl-
CoA and 2–15-HETE-ether-LPC incubated with murine hepatic microsomal
homogenates. B, MS1 spectrum and accurate mass of 1-stearoyl-2–15-HETE-
ether-PC. C, MS2 spectrum of 1-stearoyl-2–15-HETE-ether-PC. Values are the
average of three independent preparations . Error bars represent S.D.
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tiomer (L � D) as well as favoring incorporation of saturated
aliphatic chains as normally found at the sn-1 position of cellu-
lar phosphatidylcholines.

The canonical pathway of oxidized phospholipid synthesis is
a four-step process initiated by the sn-2 hydrolysis of 1-palmi-
toyl-2-arachidonoyl-sn-PC by a PLA2, the oxidization of the
released nonesterified arachidonic acid to various eicosanoids,
the activation of the resultant eicosanoid by acyl-CoA synthe-
tase, and the esterification of the eicosanoid-CoA to the sn-2
position of 1-palmitoyl (or 1-stearoyl)-LPC. In the present
study, we demonstrated the existence of a previously unknown
pathway that contributes to the enzymatic production of oxi-
dized phospholipids in platelets. This pathway uses a three-step
sequential process initiated by an sn-1 phospholipase (PLA1)
activity to generate 2-AA-LPC and direct oxidation of 2-AA-
LPC to 2–15-HETE-LPC by 15-LOX followed by the acylation
of the eicosanoid-LPC by palmitoyl-CoA or stearoyl-CoA cat-
alyzed by sn-1 LPC acyltransferase. This new pathway is sepa-
rate and distinct from the canonical pathway for oxidized phos-
pholipid synthesis in platelets and other cells.

The sn-2 lysophospholipid acyltransferase reaction has been
thoroughly characterized primarily as it relates to phospholipid
remodeling (24, 25). In this process, now known as the Lands
cycle, the sequential deacylation/reacylation is a primary deter-
minant of the fatty acyl chain composition at the sn-2 position.
De novo synthesized phospholipids are often produced with a
mixture of fatty acyl chains not typically found under steady-
state conditions. Through exchange/remodeling inherent in
the Lands cycle by the sequential actions of PLA2s and sn-2
lysophospholipid acyltransferases, the mature phospholipid
composition can be obtained. The sn-2 acyltransferase reaction
is critical to this process because it is highly selective for the use

of unsaturated fatty acyl-CoAs that are channeled into the cor-
responding sn-2 position of lysophospholipids, which typically
contain a saturated fatty acyl chain at the sn-1 position. The
importance of remodeling is underscored in several disease
states, including Barth syndrome, cardiolipin depletion in dia-
betic cardiomyopathy, and neuromuscular diseases (26 –29).
Lysophospholipid acyltransferases also play important roles in
other biological processes, including phospholipid trafficking,
cell differentiation, and cancer chemoresistance (30 –33).
Compared with the sn-2 acyltransferase, the sn-1 acyltrans-
ferase reaction has been much less thoroughly investigated
because 2-acyl-lysophospholipids readily undergo �-hydroxy
migration due to the thermodynamically favored 1-acyl-lyso-
phospholipids. Thus, discrimination of the specificity of bona
fide sn-1 versus sn-2 lysolipid acyltransferase activities has
remained difficult to precisely define. To overcome this obsta-
cle, the use of synthetic optically active nonhydrolyzable 2-AA-
ether-LPC as the acyl acceptor in this study unambiguously
defined the stereospecificity and fatty acyl selectivity of the sn-1
acyltransferase activity by preventing fatty acid �-hydroxy
migration or hydrolysis during the reaction.

Although oxidized phospholipids have many significant bio-
logical effects, the pathways through which oxidized phospho-
lipids are synthesized have not been unambiguously identified.
In human platelets and neutrophils, Thomas and co-workers (2,
34) have suggested that oxidized phospholipids are generated
through PLA2 hydrolysis of a nonoxidized phospholipid to
release a polyunsaturated fatty acid, which is then oxidized by
cyclooxygenases or lipoxygenase(s), activated by ligation to
CoASH, and finally re-esterified into acceptor lysophospholip-
ids by sn-2 acyltransferase. Maskrey et al. (35) have proposed
that, in activated human monocytes, oxidized phospholipids
are synthesized through direct oxidation of the phospholipid by
lipoxygenases.

Previously, we reported that 2-arachidonoyl-lysophospho-
lipids could be directly oxidized by both COX-1 and COX-2 as
well as by 15-LOX, leading to the formation of 2-eicosanoid
lysophospholipids (19). In addition, we have demonstrated that
2-arachidonoyl-lysophospholipids can be produced through
oxidative cleavage of the vinyl ether linkage in plasmalogens
catalyzed by cytochrome c (36) or selective sn-1 hydrolysis of
phospholipids by phospholipases such as iPLA2� (17) and
group XV phospholipase A2 among other sn-1 phospholipases
(37, 38). Using stable isotope experiments, when 15-HETE and
15-HETE-ether-LPC are present in equal concentrations, we
demonstrated that �40% of palmitate is directed to the sn-1
position to generate oxidized PC, whereas �30% of stearate is
directed to the synthesis of oxidized PC by this previously
unknown pathway. This result shows that utilization of 2-eico-
sanoid-LPC for eicosanoid-PC synthesis constitutes a substan-
tial portion of total oxidized PC synthesis. Precise determina-
tion of the relative importance of this noncanonical pathway is
difficult because the enzymes and substrate targets are not nec-
essarily present in the same subcellular compartment, and the
potential presence of metabolic channeling to generate a lipid
synthetic metabolon makes definitive relative rates of each
pathway difficult to determine.

Figure 11. Synthesis of oxidized phosphatidylcholine from oxidized
fatty acid (deuterated 15-HETE) or oxidized (15-HETE-ether–linked) sn-2
lysophosphatidylcholine by activated platelets. Murine blood in the pres-
ence of 3.8% sodium citrate was centrifuged at 150 	 g for 10 min. The plate-
let-rich plasma (upper layer) was collected and centrifuged again at 1500 	 g
for 10 min. The supernatant was discarded, and the platelet pellet was sus-
pended in 200 �l of Tyrode buffer. The protein concentration was determined
by a Bradford assay. 2–15-HETE-ether-LPC and 15-HETE-d8 were added to the
isolated platelets, each with a final concentration of 10 �M. The platelets were
activated by addition of 1 unit�ml�1 thrombin and incubated at 37 °C for 30
min. The reactions were terminated by addition of chloroform/methanol (1:1,
v/v) containing 0.1 nmol of di-14:1-PC as an internal standard and vortexed.
The chloroform layer was collected and dried under a nitrogen stream. The
dried residues were redissolved in water/methanol (1:4), and the resultant
oxidized phosphatidylcholines were analyzed and quantitated by LC-MS in
the positive ion mode. Values are the average of four independent prepara-
tions. Error bars represent S.D.
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In conclusion, the present work demonstrates a facile enan-
tiomeric synthesis of both stereoisomers of nonhydrolyzable
2-AA-ether-LPC that were employed to study their oxidation
by 15-LOX and subsequent acylation by microsomal sn-1 lyso-
phospholipid acyltransferase(s). The results establish the exist-
ence of a previously unknown pathway in platelets capable of
generating oxidized phospholipids in activated platelets and
likely by analogy in other cells. These results raise many intrigu-
ing questions for further investigation of this pathway regard-
ing the generation of other enzymatically produced oxidized
phospholipids, their mechanism of formation, and their roles in
signaling in different cell types and subcellular compartments
in a spatial and context-dependent manner.

Experimental procedures

Materials

2-Arachidonyl glycerol ether (2-AA-glycerol ether) was pur-
chased from Cayman Chemical (Ann Arbor, MI). Palmitoyl-CoA,
stearoyl-CoA, linoleoyl-CoA, oleoyl-CoA, arachidonoyl-CoA, 1-
(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanol-
amine (plasmenyl-SAPE), and 1-(1Z-octadecenyl)-2-arachi-
donoyl-sn-glycero-3-phosphocholine (plasmenyl-SAPC) were
obtained from Avanti Polar Lipids (Alabaster, AL). Kinetex 5-�m
EVO C18 column (250 	 4.6 mm) and Kinetex 2.7-�m EVO C18
column (150 	 2.1 mm) were purchased from Phenomenex (Tor-
rance, CA). Discovery DSC-NH2 SPE cartridges (500 mg/6 ml)
and C18 SPE cartridges (2 g, 12 ml) were purchased from Supelco
(Bellefonte, PA). Silica gel for column chromatography (60 Å,
35–75 �m) and high-performance TLC plates (HPTLC-HLF,
UV254, 150 �m) were purchased from Analtech (Newark, DE).
Celite Hyflo Supercel (diatomaceous earth) was purchase from
EMD Millipore (Billerica, MA). Lipase from porcine pancreas
(type II) was purchased from Sigma-Aldrich. LC-MS–grade ace-
tonitrile and water were obtained from Fisher Scientific. LC-MS–
grade methanol and isopropanol were purchased from Burdick &
Jackson (Muskegon, MI). HPLC-grade methanol and acetonitrile
were purchased from Fisher Scientific. All other chemicals were
purchased from Sigma-Aldrich.

General animal studies

Animal protocols were conducted in strict accordance with
the National Institutes of Health guidelines for humane treat-
ment of animals and were reviewed and approved by the Ani-
mal Studies Committee of Washington University.

NMR analysis
1H NMR spectra were recorded on a Varian spectrometer

(400 MHz) and are referenced relative to tetramethylsilane pro-
ton signals at � 0 ppm.

Synthesis of 1-Ac-2-AA-ether-glycerol

Lipase immobilized on Celite was prepared as described (22).
Briefly, 8 g of crude porcine pancreas lipase was dissolved in 80
ml of 18 mM sodium phosphate buffer (pH 8.0). The lipase solu-
tion was stirred for 20 min at room temperature and then cen-
trifuged at 10,000 	 g for 10 min. The supernatant was collected
and cooled to 4 °C. 20 g of Celite Hyflo Supercel was slowly

added to the supernatant to form a cloudy suspension that was
stirred for 10 min at 4 °C. Cold acetone (150 ml) was added
dropwise to the suspension over 20 min followed by 30 min of
stirring at 4 °C. The suspension was filtered by vacuum, and the
solid filtride was washed with 100 ml of cold acetone. The fil-
tride was dried by vacuum until it became a fine and loose
powder and was stored at 4 °C.

90 mg (0.25 mmol) of 2-AA-glycerol ether, 360 mg of Celite-
immobilized porcine pancreas lipase, 0.2 g of 4-Å molecular
sieve beads, and 18 ml of methyl acetate were mixed and stirred
under nitrogen at room temperature. After 4.5 h, the solid was
filtered out. The filtrate was dried by vacuum and purified by
silica-gel column chromatography (hexane/ethyl acetate, 2:1,
to ethyl acetate). Approximately 18 mg of 1-Ac-2-AA-ether-
glycerol was obtained at this step of the synthesis. The unre-
acted 2-AA-glycerol ether was eluted by ethyl acetate and
recycled.

Synthesis of 2-AA-ether-3-Tr-glycerol

9 mg (0.022 mmol) of 1-Ac-2-AA-ether-glycerol, 0.13 mg
(0.0011 mmol) of dimethylaminopyridine, and 6.6 �l (0.047
mmol) of triethylamine were dissolved in 2 ml of dichlorometh-
ane. 12 mg (0.043 mmol) of trityl chloride was then added and
stirred under nitrogen at room temperature overnight. The sol-
vent was dried by vacuum, and the product was purified by
silica-gel column chromatography (hexane to hexane/ethyl
acetate, 10:1)

The 1-Ac-2-AA-3-Tr-glycerol obtained was then dissolved
in 1 ml of ethyl ether. 30 �l of 40% tetrabutylammonium
hydroxide in methanol was added, and the solution was stirred
at room temperature for 1.5 h. The solvent was dried by vac-
uum, and the product was purified by column chromatography
(hexane/ethyl acetate, 10:1, to hexane/ethyl acetate, 2:1). The
yield of 2-AA-ether-3-Tr-glycerol was 5.5 mg.

Synthesis of L-2-AA-ether-LPC

25 �l (0.27 mmol) of POCl3 and 200 �l (1.4 mmol) of trieth-
ylamine were dissolved in 1 ml of dichloromethane at 0 °C and
placed under nitrogen. 20 mg (0.05 mmol) of 1-Ac-2-AA-ether-
glycerol was dissolved in 1 ml of anhydrous dichloromethane
and added dropwise. Next, the reaction was allowed to warm to
room temperature with continuous stirring for 1 h. Then 125
mg (0.45 mmol) of choline tosylate and 500 �l of pyridine were
added, and the reaction was stirred at room temperature under
nitrogen for 24 h. The reaction was quenched by addition of
1.08 ml of 1 M NaOH solution and stirred for 1 h followed by
addition of 1.08 ml of methanol. The dichloromethane phase
was collected, and the aqueous phase was extracted twice with
1 ml of chloroform. The organic phases were combined, dried
over Na2SO4, and loaded onto a 500-mg Discovery DSC-NH2
SPE cartridge that had been equilibrated with 6 ml of chloro-
form. The column was washed with 6 ml of chloroform, and the
1-Ac-2-AA-ether-PC was eluted in 8 ml of methanol. The
methanol eluent was dried under nitrogen and dissolved in 1 ml
of ethyl ether. 50 �l of 40% tetrabutylammonium hydroxide in
methanol was added, and the reaction was then stirred for 1 h.
The reaction was stopped by adding 0.5 ml of saturated ammo-
nium chloride solution and 0.5 ml of water. The mixture was
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vortexed, and the ether phase was collected. 1 ml of chloroform
and 1 ml of methanol were added into the aqueous phase and
vortexed. The chloroform phase was collected. The organic
phases were combined and dried by nitrogen. The dried prod-
uct was dissolved in 250 �l of methanol followed by addition of
750 �l of water after which it was loaded onto a 2-g C18 SPE
column that had been prewashed with 12 ml of methanol and
equilibrated with 12 ml of methanol/water (1:4). The column
was then washed by 12 ml of methanol/water (2:3), and the
product was eluted by 24 ml of methanol. The methanol solu-
tion was dried under a nitrogen stream for HPLC purification.

Synthesis of D-2-AA-ether-LPC

25 �l (0.27 mmol) of POCl3 and 50 �l (0.36 mmol) of trieth-
ylamine were dissolved in 1 ml of dichloromethane at 0 °C
under a nitrogen atmosphere. 3 mg (0.005 mmol) of 2-AA-
ether-3-trityl-glycerol was dissolved in 1 ml of anhydrous
dichloromethane and added dropwise to the POCl3/triethyl-
amine solution. The reaction was warmed to room temperature
and stirred for 1 h. Next, 137 mg (0.50 mmol) of choline tosylate
and 60 �l of pyridine were added. The reaction was stirred at
room temperature under nitrogen for 24 h. The reaction was
quenched by addition of 0.94 ml of 1 M NaOH solution and
stirred for 1 h followed by addition of 1.06 ml of methanol and
1 ml of chloroform. The mixture was vortexed, and the organic
phase was collected. The aqueous phase was re-extracted by 1 ml
of chloroform. The organic phases were combined and dried
under a nitrogen stream. The dried product was dissolved in 0.5 ml
of chloroform, and 0.1 ml of TFA was added. After 20 min of
stirring, the reaction was quenched by 0.65 ml of 1 M Na2CO3
followed by addition of 0.35 ml of water and 1 ml of methanol. The
mixture was vortexed, and the organic phase was collected.
The aqueous phase was re-extracted with 1 ml of chloro-
form. The organic phases were combined and dried under a
nitrogen stream. The product was purified using a C18 SPE
column as described above and was ready for HPLC
purification.

Purification of 2-AA-ether-LPC by reversed-phase HPLC

A Phenomenex Kinetex EVO C18 column (5 �m, 250 	 4.6
mm) was used for HPLC purification. Solvent A was acetoni-
trile/methanol/water (2:1:1), solvent B was methanol, and sol-
vent C was water. A linear gradient was used as follows with a
flow rate of 1 ml/min: 0 min, 70% A, 0% B, 30% C; 2 min, 70% A,
0% B, 30% C; 8 min, 100% A; 15 min, 100% A; 15.1 min, 100% B;
20 min, 100% B; 20.1 min, 70% A, 0% B, 30% C; 30 min, 70% A,
0% B, 30% C. 2-AA-ether-LPC was eluted at 14 min. The puri-
fied 2-AA-ether-LPC was extracted with chloroform/metha-
nol/water (1:1:1).

(R)-(�)-�-Methylbenzyl isocyanate derivatization and optical
purity determination of 1-Ac-2-AA-ether-glycerol and
2-AA-ether-3-Tr-glycerol

0.5 mg of 1-Ac-2-AA-ether-glycerol-lipase was dissolved in
100 �l of (R)-(�)-�-methylbenzyl isocyanate (R-MBIC) and
incubated at 37 °C under nitrogen for 24 h. After 24-h incuba-
tion, the reaction mixture was diluted with 1 ml of hexane and
loaded onto a 300-mg silica-gel column packed in hexane. The

column was washed with 2 ml of hexane, and the product was
eluted in 2 ml of ethyl acetate. The solvent was dried under
nitrogen, and the product was dissolved in heptane. The pre-
cipitate was filtered using glass wool, and the filtrate was used
for HPLC analysis. The 2-AA-ether-3-Tr-glycerol was deriva-
tized and purified in the same manner.

A Phenomenex Luna Silica column (3 �m, 250 	 4.6 mm) was
used for the analysis of (R)-(�)-�-methylbenzyl isocyanate–
derivatized product. Solvent A was heptane, and solvent B was
ethanol. For (R)-(�)-�-methylbenzyl isocyanate– derivatized
1-Ac-2-AA-ether-glycerol, a linear gradient with a flow rate of 1.5
ml/min was used as follows: 0 min, 0.2% B; 40 min, 0.2% B; 40.1
min, 20% B; 45 min, 20% B; 45.1 min, 0.2% B; 57 min, 0.2% B. For
(R)-(�)-�-methylbenzyl isocyanate–derivatized 2-AA-ether-3-
Tr-glycerol, a different linear gradient with a flow rate of 1.5
ml/min was used as follows: 0 min, 0.4% B; 30 min, 0.4% B; 30.1
min, 20% B; 35 min, 20% B; 35.1 min, 0.4% B; 47 min, 0.4% B. Blank
injections were performed before analyzing each sample.

Synthesis and purification of 2-AA-LPC-d9 and 2-AA-LPE

Plasmenyl-SAPC-d9 was synthesized from plasmenyl-SAPE
as described (39). Briefly, 5 mg of plasmenyl-SAPE and 1.6 mg
of benzyltriethylammonium chloride were dissolved in 0.2 ml
of chloroform. 125 �l of 0.6 M Na2CO3 and 80 �l of CD3I were
then added. The reaction was stirred at room temperature in
the dark overnight. 0.8 ml of chloroform, 0.5 ml of saturated
NaCl solution, 0.3 ml of water, and 1 ml of methanol were added
to the reaction mixture. The mixture was vortexed and centri-
fuged at 800 	 g for 5 min. The chloroform phase was collected
and dried under nitrogen flow. The resulting plasmenyl-
SAPC-d9 was dissolved in 0.8 ml of methanol. 0.2 ml of 0.4 M

sulfuric acid was added, and the reaction mixture was incu-
bated at 70 °C for 5 min. The reaction mixture was quickly
cooled on ice after the incubation. 0.6 ml of water and 0.8 ml of
chloroform were then added. The extraction mixture was vor-
texed and centrifuged at 800 	 g for 5 min. The chloroform
phase was collected and dried under nitrogen flow. The result-
ing 2-AA-LPC-d9 was purified by HPLC as described under
“Purification of 2-AA-ether-LPC by reversed-phase HPLC.”

2 mg of plasmenyl-SAPE was dissolved in 0.8 ml of methanol.
0.2 ml of 0.4 M sulfuric acid was added, and the reaction mixture
was incubated at 70 °C for 5 min. The resulting 2-AA-LPE was
extracted and purified in the same manner as 2-AA-LPE-d9.

Subcellular fractionation and incubation of different fractions
with lysophosphatidylcholine

C57 mice were purchased from The Jackson Laboratory. Fol-
lowing euthanasia of the mice, livers were removed and washed
in cold isolation buffer (10 mM sodium phosphate, 0.25 M

sucrose, 1 mM EDTA, 1 mM DTT (pH 7.4)) and then homoge-
nized at 4 °C with a 15-ml Teflon pestle tissue grinder (eight
strokes at a speed of 15). The homogenates were first centri-
fuged at 700 	 g for 10 min to pellet nuclei and cellular debris.
The supernatants were centrifuged at 10,000 	 g for 10 min to
pellet mitochondria. The mitochondrial pellet was resus-
pended in isolation buffer, and the supernatants were then cen-
trifuged at 100,000 	 g for 60 min to pellet the microsomal
fraction. The supernatant after ultracentrifugation was used as
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cytosol, and the pellet was resuspended in isolation buffer and
used as the microsomal fraction.

2-AA-ether-LPC or 2-AA-LPC-d9 was resuspended in 75
mM sodium phosphate buffer (pH 7.4) by vortexing and brief
sonication (15 	 1 s), with a final concentration of 10 �M. Ste-
aroyl-CoA was added into the buffer as indicated, with a final
concentration of 10 �M. 5 �g of protein from different subcel-
lular fractions was added to 200 �l of buffer containing the lipid
substrate, and the mixture was incubated at 37 °C for the indi-
cated times. The reaction was stopped by addition of 0.3 ml of
water and 1 ml of chloroform/methanol (1:1) containing 0.1%
acetic acid. 0.2 nmol of di-14:0-PC was added as internal stan-
dard. The mixture was vortexed and centrifuged at 3000 	 g for
10 min. The chloroform phase was collected, and the aqueous
phase was extracted again by 1 volume of chloroform. Chloro-
form phases were combined and dried under nitrogen stream.
The dried residue was suspended in 200 �l of methanol and
ready for LC-MS/MS analysis.

Oxidation of LPC and LPE by 15-lipoxygenase

2-AA-ether-LPC was resuspended in 50 mM Tris-HCl (pH
7.4) by vortexing, with a final concentration of 100 �M. Human
recombinant 15-lipoxygenase-2 was added at a concentration
of 5 �g/ml, and the reaction was incubated at 37 °C for the
indicated times. The reaction was quenched by addition of 2
volumes of chloroform/methanol (1:1) containing 0.1% acetic
acid. After vortexing and 10 min of centrifugation at 3000 	 g,
the chloroform phase was collected, and the aqueous phase was
re-extracted with 1 volume of chloroform. The chloroform
phases were combined and dried under a nitrogen stream. The
obtained oxidized LPC was analyzed by LC-MS as described
above. To prepare the 2–15-HETE-ether-LPC for acyltrans-
ferase activity assay, the dried residue was dissolved in 50 –100
�l of methanol containing 1 mg/ml triphenylphosphine, which
reduced the hydroperoxide to hydroxy. The methanol solution
was injected into the HPLC system, and the 2–15-HETE-ether-
LPC was purified as described under “Purification of 2-AA-
ether-LPC by reversed-phase HPLC.” The oxidized LPC was
eluted at 9 min.

2-AA-LPC-d9 was resuspended in 50 mM Tris-HCl, 100 mM

NaCl, 0.5 mM EDTA (pH 7.0) by vortexing, with a final concen-
tration of 100 �M. Then the 2-AA-LPC-d9 was oxidized and
purified in the same manner as 2-AA-ether-LPC.

200 nmol of 2-AA-LPE was dissolved in 10 �l of DMSO fol-
lowed by adding 2 ml of reaction buffer (50 mM Tris-HCl, 100
mM NaCl, 0.5 mM EDTA (pH 7.0)) that was preconditioned by
18O2. The product was extracted and reduced. The resulting
2–15-HETE-LPC (hydroxy 18O) was purified as described
above.

Synthesis of oxidized phosphatidylcholine from oxidized 2-AA-
ether-LPC by microsomal acyltransferase

2–15-HETE-ether-LPC was resuspended in 75 mM sodium
phosphate buffer (pH 7.4) by vortexing and brief sonication,
with a final concentration of 10 �M. Stearoyl-CoA was added
into the buffer to a concentration of 10 �M. 5 �g of microsomal
protein was added into 200 �l of buffer containing LPC and
acyl-CoA, and the mixture was incubated at 37 °C for the indi-

cated amount of time. The reaction was extracted as described
above and ready for LC-MS/MS analysis.

Platelet isolation and incubation with oxidized 2-AA-ether-LPC

Blood was obtained by intracardiac puncture from eutha-
nized mice. About 0.8 ml of blood was drawn into a syringe
containing 0.15 ml of 3.8% sodium citrate to prevent platelet
activation. The blood was then centrifuged at 150 	 g for 10
min, and the platelet-rich plasma was subsequently centrifuged
at 200 	 g for 5 min to remove residual red blood cells. The
purified platelet-rich plasma was spun at 1500 	 g for 10 min,
and the supernatant was discarded. The pellet was resuspended
into Tyrode buffer. The protein concentration was measured
using a Bradford protein assay (Bio-Rad).

2–15-HETE-ether-LPC (8 �M) and 15-HETE-d8 (8 �M) were
resuspended in Tyrode buffer by vortexing and brief sonication
(15 	 1 s). 30 �g of platelet protein was added into 200 �l of
buffer, and the reaction was initiated by addition of 0.2 unit of
thrombin to each sample. The mixture was incubated at 37 °C
for the indicated times. The reaction was extracted as described
above and was utilized for LC-MS/MS analyses.

LC-MS/MS analysis

LC-MS/MS analysis was performed using an LTQ Orbitrap
mass spectrometer connected to a Waters Acquity UPLC sys-
tem. Lipids were separated using a C18 reversed-phase column
(Kinetex EVO C18, 2.7 �m, 150 	 2.1 mm) at 22 °C with a flow
rate of 200 �l/min. A linear gradient of solvent A (10 mM

ammonium acetate and 0.1% acetic acid (v/v) in water and sol-
vent B (isopropanol) was used as follows: 0 min, 25% B; 5 min,
25% B; 20 min, 95% B; 25 min, 95% B; 25.1 min, 25% B; 35 min,
25% B. The autosampler tray temperature was set at 4 °C. The
spray voltage in electrospray ionization source was 4.1 kV. The
sheath gas flow rate was 40 (arbitrary unit). The capillary tem-
perature was 270 °C.

Statistical analyses

Results are expressed as averages � S.E. (or S.D.).
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