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Abstract

Next to cancer, Alzheimer’s disease (AD) and dementia is probably the most worrying health 

problem facing the Western world today. A large number of clinical trials have failed to show any 

benefit of the tested drugs in stabilizing or reversing the steady decline in cognitive function that is 

suffered by dementia patients. Although the pathological features of AD consisting of beta-

amyloid plaques and tau tangles are well established, considerable debate exists concerning the 

genetic or lifestyle factors that predispose individuals to developing dementia. 

Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to stimulate 

healing, relieve pain and inflammation, and prevent tissue from dying. In recent years PBM has 

been applied for a diverse range of brain disorders, frequently applied in a non-invasive manner by 

shining light on the head (transcranial PBM). The present review discusses the mechanisms of 

action of tPBM in the brain, and summarizes studies that have used tPBM to treat animal models 

of AD. The results of a limited number of clinical trials that have used tPBM to treat patients with 

AD and dementia are discussed.
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1. Introduction

1.1. Introduction to Photobiomodulation

Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to 

stimulate healing, relieve pain and inflammation, and prevent tissue from dying. PBM used 

to be called “low-level laser (or light) therapy” (LLLT) but the name was changed to reflect 

the fact that the term “low” was undefined, lasers were not absolutely required, and 

inhibition of some processes was beneficial [1,2]. Photobiomodulation therapy (PBMT) 

describes the use of PBM as a treatment for various diseases or disorders. PBM was 

discovered over 50 years ago by Endre Mester in Hungary working with hair regrowth and 

wound healing in mice [3]. Since then, PBM has gradually become more accepted by the 

medical profession, physical therapists, and the general public. This increase in acceptance 

is partly due to the increased availability of light-emitting diodes (LEDs) with wavelengths 

in the red and NIR regions and substantial levels of power density (up to 100 mW/cm2 over 

fairly large areas). Most available evidence suggests that LEDs perform equally well 

compared to lasers of similar wavelengths and power density [4]. However, LEDs have the 

advantages of more safety, lower cost, and better suitability for home use.

1.2. Mechanisms of PBM

It is the first law of photobiology that a photon must be absorbed by a specific molecular 

chromophore in order to have any biological effect. The chromophores that have been 

postulated to be useful in PBM, absorb at different wavelength regions of the 

electromagnetic spectrum (blue, green, red, NIR), and are shown in Figure 1 and discussed 

below.

Cytochrome C oxidase (CCO) is the terminal enzyme (unit IV) in the electron transport 

chain situated in the outer mitochondrial membrane. The electron transport chain, through a 

series of redox reactions, facilitates the transfer of electrons across the inner membrane of 

the mitochondria. The net result of these electron transfer steps is to produce a proton 

gradient across the mitochondrial membrane that drives the activity of ATP synthase 

(sometimes called unit V) that produces the high-energy adenosine triphosphate (ATP) from 

ADP. CCO mediates the transfer of electrons from cytochrome C to molecular oxygen. CCO 

is a complex protein, composed of thirteen different polypeptide sub-units, and also contains 

two heme centers and two copper centers. Each of these heme and copper centers can be 

either oxidized or reduced, giving sixteen different oxidation states. Each of these oxidation 

states has a slightly different absorption spectrum, but CCO is almost unique amongst 

biological molecules in having a significant absorption in the near-infrared spectrum. In fact, 

Britton Chance estimated that over 50% of the absorption of NIR light by biological tissue 

could be attributed to this single enzyme as a chromophore [5].

In many publications, CCO has been shown to be a biological photoacceptor and transducer 

of signals activated by light in the red and NIR regions of the spectrum [6,7]. Specifically, 

absorption of the photons delivered in PBM, seems to promote an increase in the availability 

of electrons for the reduction of molecular oxygen in the catalytic center of CCO, increasing 

mitochondrial membrane potential (MMP), and increasing levels of ATP, cyclic adenosine 
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monophosphate (cAMP), and reactive oxygen species (ROS), all of which indicate increased 

mitochondrial function, and can trigger initiation of cellular signaling pathways [8]. 

However recently, the CCO hypothesis has been brought into question. Lima et al. [9] 

genetically engineered two different kinds of cells to not express any active CCO, and found 

they responded equally well to 660 nm light, compared to wild type cells. Although other 

units in the electron transfer chain, such as complexes I-IV and succinate dehydrogenase 

also show increased activity as a result of PBM, CCO is still believed to be one of the 

primary photoacceptors. This notion is supported by the fact that low-level light irradiation 

such as PBM causes increased oxygen consumption, and is bolstered by the fact that the 

majority of oxygen consumption occurs at complex IV, and moreover that the addition of 

sodium azide, a CCO inhibitor, abrogates the effects of PBM [10,11]. Moreover, rho-zero 

cells that lack functional mitochondria do not respond to PBM, in the same way as their 

wild-type counterparts [12].

Nevertheless, despite the amount of évidence in favor of CCO being a major chromophore 

for red and NIR light, mounting evidence is suggesting that this is not the whole story. Lima 

et al. [9] investigated two cell lines lacking CCO, one mouse line with the Cox10 knocked 

out (that could not synthesise the heme a cofactor) and a second human line with a mutation 

in the mtDNA gene coding for tRNA lysine (that lacked three critical CCO subunits). PBM 

(660 nm) caused increased cell proliferation in both wild type and CCO knock out cells, 

together with increased ATP and citrate synthase levels. These results showed that functional 

CCO was not required for its ability to enhance metabolism and cell proliferation.

A recent editorial [13] from Sommer in Ulm, Germany suggested that the effects of red and 

NIR light (especially pulsed at low frequency such as 1 Hz) on the interfacial water layers 

(IWL) inside cells could be an alternative explanation. If these IWL were inside the 

mitochondria, then the lowering of viscosity as a result of the energy absorption, could allow 

the molecular rotor, which is ATP synthase, to rotate faster and produce more ATP. On the 

other hand if the IWL were localized within the plasma membrane, light absorption could 

increase the uptake of nutrients accounting for increased proliferation.

Regardless of the actual chromophore, PBM can trigger retrograde mitochondrial signaling 

[14]. This refers to signals and communications passing from the mitochondria to the 

nucleus of a cell, rather than vice versa. The aforementioned mitochondrial changes result in 

an altered mitochondrial ultrastructure, and triggering of mitochondrial biogenesis [15]. As a 

result, membrane permeability and ion flux at the cell membrane are altered, in turn leading 

to the altered activity of activator protein-1 (AP1) and NFκB [16].

There is emerging evidence that other primary chromophores such as opsins, flavins and 

cryptochomes, may mediate the biological absorption of light, particularly at shorter 

wavelengths (blue and green). Opsins contain a cis-retinaldehyde molecule as a 

chromophore that is photo-isomerized to the all-trans isomer, thus producing a change in 

protein conformation and initiating a signaling cascade [17]. Flavins and flavoproteins 

contain a chromophore such as riboflavin, flavin mononucleotiode, or flavin adenine 

dinucleotide and can carry out redox reactions when excited by light [18]. Cryptochromes 
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are a special sub-class of flavoproteins that act as blue–light receptors in plants, animals and 

even humans [19].

Although evidence proving that light-gated ion channels can be cited as mechanisms of 

action in PBM is sparse at the present time, it is gradually increasing. PBM is most likely to 

affect transient receptor potential (TRP) channels. First discovered in a Drosophila mutant as 

the mechanism responsible for the vision of insects, they are now known to be sensitive to 

light [20], in addition to a wide variety of other stimuli. TRP channels are calcium channels, 

and are modulated by phosphoinositides [21]. Light-gated ion channels have attracted 

immense attention in the field of optogenetics [22]. However the majority of these studies 

employ ion channels similar to bacterially derived channelrhodopsin [22]. The majority of 

research relating PBM to light-gated ion channels has been done by testing the TRPV 

“Vanilloid” subfamily of TRP species. Evidence from studies done by various groups [23–

26] have led to the general consensus that TRP channels are most likely to be activated by 

green light. However, because green light lacks the same penetrating ability of infrared or 

near-infrared light, it lacks practical clinical application. However, Ryu et al. found that 

exposure to infrared (2780 nm) wavelength light attenuated TRPV1 activation, causing a 

decrease in generation of pain stimuli [24]. A similar, but far less dramatic antinociceptive 

effect was also observed when TRPV4 was exposed to light of the same wavelength. TRPV4 

was also shown to be responsive to 1875 nm pulsed light, although it cannot be ruled out 

that the results were due to thermal stimuli rather than light stimuli [25], as water is the 

primary absorber of infrared in this region.

It is clear that water must be by far the most important chromophore at infrared wavelengths 

(>900 nm), considering its molecular absorption coefficient and its relative abundance in 

cells and tissues. Nevertheless PBM as usually carried out, does not produce excessive 

heating of the tissues, especially within the brain. In fact the most noticeable heating effect 

(if any) is felt on the skin of the scalp. How then can we explain that PBM can have 

powerful effects on the brain at wavelengths as long as 1064 nm [27,28]? One answer may 

lie in the concept of ‘nanostructured water’ or ‘interfacial water’ elaborated by Pollack [29–

31]. This exclusion zone (EZ) water (which may be the same as the IWL discussed above 

[13] absorbs optical radiation which produces distinct physical changes in parameters such 

as viscosity and pH. Since the EZ water layers occur on intracellular membranes, it is 

reasonable to suggest that ion channels embedded within these membranes (for instance in 

mitochondria), may be triggered by these physical changes. Since bulk water does not 

absorb IR light to the same degree as EZ water, this would explain why biochemical changes 

can take place within the cells, while there is no detectable bulk heating of the tissue, as 

would have been expected if the IR energy was absorbed by all water molecules.

2. Alzheimer’s Disease and Dementia

Dementia is the clinical term used to describe a broad range of brain disorders that affect 

cognitive and executive functioning and memory [32]. The diagnosis of dementia requires a 

change in mental function with a more pronounced decline than one would expect due to the 

normal aging process [33]. In 2015, 46.8 million people throughout the world were 
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estimated to be suffering from dementia, with 58% living in low and middle income 

countries and this number is expected to double every 20 years [34].

Alzheimer’s disease (AD) is the most common type of dementia (60% to 70% of cases) 

followed by vascular dementia (25%), and Lewy body dementia (15%) [35]. AD was first 

described by Alois Alzheimer (1864–1915) who published his report in 1911 [36]. About 

70% of the risk is probably genetic, with many genes proposed to be involved [37]. Other 

risk factors include a history of head injury, depression, and hypertension. AD is 

characterized by diffuse atrophy of the entire brain (especially of the cortex), accompanied 

by extracellular beta-amyloid plaques and intraneuronal neurofibrillary tangles composed of 

hyperphosphorylated tau protein [38]. The precise mechanisms of AD remain a subject of 

hot debate [39]. A wide variety of other investigational drugs have been tested in clinical 

trials, but so far without much success.

The following section will summarize some of the hypotheses. The amyloid hypothesis has 

been the predominant explanation for decades. Aβ peptides (40 or 42 amino acids) are 

formed by sequential enzymatic cleavage of amyloid precursor protein (APP) by beta and 

gamma secretases. An increase in the level of Aβ 42 leads to amyloid fibril formation, which 

eventually develop into senile plaques. However the failure of several drug trials that have 

targeted the amyloid peptides (beta and gamma secretase inhibitors) and amyloid plaques 

(immunotherapy approaches using monoclonal antibodies) has led to the concept that the 

amyloid plaques may be markers rather than causes of the brain deterioration [40].

An alternative hypothesis focuses on tau [41]. Tau is a microtubule-associated protein 

involved in microtubule assembly. There are two isoforms expressed in the adult human 

brain (4R and 3R) mainly in axons of neurons. In AD brains, 3R and 4R tau is accumulated 

in a hyperphosphorylated state that forms neurofibrillary tangles (NFTs) in cell bodies, or 

threads if they are formed in dendrites or axons. Many different brain disorders are 

characterized by tau pathology and are known as “tauopathies” [42]. These include 

frontotemporal dementia, corticobasal degeneration, Richardson syndrome, Parkinson’s 

disease, chronic traumatic encephalopathy, and age-related tau astrogliopathy.

Neuroinflammation and reactive gliosis are hallmarks of AD [43]. Accumulating evidence 

suggests that that microglia with the M1 phenotype are important players in AD [44]. Not 

only do the M1 microglia pump out pro-inflammatory cytokines, but these cells down-

regulate their phagocytic functionality, and therefore fail to clear the amyloid plaques. Any 

therapy (such as PBM) that can switch the microglial phenotype from M1 to M2 may be 

helpful for AD.

The increased incidence of AD in patients suffering from hypertension and irregular 

heartbeat, gave rise to the hypothesis of “micron strokes” [45]. Micro-strokes caused by 

fibrous eythrocyte emboli or micron-sized cholesterol crystals could act as “seeding points” 

for the growth of amyloid plaques as a healing response. A related hypothesis concerns the 

influence of vascular dysfunction and micro-hemorrhages [46]. Vascular dysfunction is often 

described as causing vascular dementia, but there is increasing evidence that it plays a role in 

AD as well [47]. These micro-hemorrhages have been correlated with plaque formation [48]. 
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These micro-hemorrhages in cerebral vessels, could act as triggers to activate the innate 

immune system. They could also be indicative of sites of breakdown of the blood-brain 

barrier, which is considered as one of the early markers of cognitive dysfunction [49].

Oxidative stress has been implicated in the pathogenesis of AD [50]. The evidence includes 

increased levels of certain metals in AD brains such as iron, aluminum, and mercury that can 

generate free radicals. Increased lipid peroxidation, 4-hydroxynonenal, oxidative damage to 

protein and DNA, advanced glycation end products (AGE), malondialdehyde, carbonyls, 

peroxynitrite, heme oxygenase-1 and SOD-1 in neurofibrillary tangles and amyloid plaques. 

However although a diet high in antioxidants offers some protection, supplementation with 

antioxidants has largely failed to show any benefits [51].

Reductions in mitochondrial activity and glucose metabolism are widely seen in AD [52]. 

Changes in cytochrome c oxidase and morphological changes in mitochondria have been 

found. Activation of the integrated stress response and the transcription factor ATF4 may be 

caused by mitochondrial dysfunction.

Finally, another hypothesis implicates changes in the gut microbiome [53]. The bacteria 

themselves may secrete bacterial amyloid that may trigger cross-seeding of amyloid plaques, 

or else the bacteria may over-stimulate the innate immune response [54]. Bacteria 

themselves, such as Porphyromonas gingivalis, have been found in AD brains [55]. Other 

pathogens such as viruses and spirochetes may be involved in the brain, and Aβ peptide may 

function as an antimicrobial defense peptide [56].

3. Mechanisms of PBM in the Brain

As will be seen in the following section, a bewildering array of different mechanisms have 

been proposed to account for the benefits of transcranial PBM (tPBM) on the brain. These 

are schematically shown in Figure 2.

3.1. Metabolism

Improved metabolic functioning is one of the most easily recognizable effects of PBM, and 

increased intracellular ATP production is one the most strongly supported mechanisms of 

action [57]. Moreover, several pre-clinical studies have shown that the brain content of ATP 

was increased in experimental animals (mice or rats) subjected to tPBM for various brain 

disorders [58,59]. It is a general finding that mitochondrial dysfunction, inadequate supplies 

of ATP, and oxidative stress are contributory factors in almost all forms of brain disease [60]. 

This has been reported for neurological conditions such as major depressive disorder [61], 

traumatic brain injury [62], Parkinson’s disease [63], and for AD [64].

3.2. Blood Flow

One of the changes that is easiest to measure after tPBM, is the change in cerebral blood 

flow and oxygenation. This applies in experimental animals, and especially in human 

subjects. Near-infrared spectroscopy has been used on the forearms of human volunteers 

treated with a 1064 nm laser [65]. They found that tPBM induced significant increases of 

CCO concentration (Delta [CCO]) andoxygenated hemoglobin concentration (Delta [HbO]) 
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in the treated site as the laser energy dose accumulated over time. Schiffer et al. [66] tested 

tPBM using an 810 nm LED applied to the forehead for major depression and anxiety, and 

used an INVOS commercial system from Somanetics (Troy, MI, USA) to measure cerebral 

hemoglobin (cHb) in left and right frontal and rCBF (regional cerebral blood flow), in 

addition to the device’s usual oxygen saturation output.

It has been suggested that the release of NO as result of PBM is responsible for the increased 

cerebral blood flow [67]. NO is a major neuronal signaling molecule which, among other 

functions, possesses the ability to trigger vasodilation. To do so, it first stimulates soluble 

guanylate cyclase to form cyclic-GMP (cGMP). The cGMP then activates protein kinase G, 

leading to the reuptake of Ca2+ and the opening of calcium-activated potassium channels. 

Due to the subsequent fall in concentration of Ca2+, myosin light-chain kinase is prevented 

from phosphorylating the myosin molecule, causing the smooth muscle cells in the lining of 

blood vessels and lymphatic vessels to become relaxed [68]. This vasodilation then promotes 

improved circulation, which in turn leads to improved cerebral oxygenation in a similar 

manner to that observed with pulsed electromagnetic fields [69].

Disorders of CBF, neurovascular dysfunction, and lower brain oxygenation have been 

proposed to an important feature of AD [70].

3.3. Neuroprotection

A wide variety of evidence suggests that PBM can be utilized for neuroprotection, 

essentially, to protect cells from damage, to promote their survival and longevity, and reverse 

apoptotic signaling processes. One way it achieves this result is by inhibiting the activity of 

glycogen synthase kinase 3β (GSK3β). To do so, it activates protein kinase B (AKT), which 

increases the phosphorylation level of its Ser9 residue, which then allows the N -terminus of 

GSK3β to bind with its own binding site. One result of this is the accumulation and 

translocation to the nucleus of β-catenin, which ceases to be under-phosphorylated and 

therefore becomes more active when GSK3β activity is inhibited. Once allowed to 

accumulate in the nucleus, β-catenin relies on the increased TCF/LEF dependent 

transcriptional activity to promote cellular survival [71]. This inhibition of GSK3β also 

helps to prevent apoptosis, the normal cell death that occurs as an organism grows. GSK3β 
is believed to act as a mediator between AKT and Bax, a protein which is translocated to the 

nucleus in the presence of pro-apoptotic stimuli to trigger the beginning of the process. 

However, when GSK3β is inhibited, AKT the communication pathway between AKT and 

Bax is cut off. As a result, Bax translocation cannot be signaled for and is thus inhibited 

[72].

PBM also demonstrates neuroprotective qualities in the form of protection from senescence 

[73]. It has been shown to activate the extracellular signal-related kinase (ERK)/forkhead 

box protein M1 (FOXM1) pathway. The FOXM1 protein regulates the progression from the 

G1 to the S phase of the cell cycle, and via the activation of the ERK/FOXM1 pathway, 

PBM leads to the greater translocation of ERK to the nucleus and the greater accumulation 

of FOXM1 in the nucleus. This, in turn, causes reduced expression of the p21 protein and 

mitotic arrest in the G1 phase, therefore slowing the overall progression of cellular 

senescence.
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PBM has also been shown to be effective in protecting cells from the harmful effects of 

toxins [74]. In a study done by Eells et al. [75], irradiation with 670 nm light was successful 

in causing the recovery of retina function and the prevention of histological damage in 

rodent models exposed to methanol. This is likely due to the fact that methanol generates the 

toxic metabolite formic acid, an inhibitor of CCO, and PBM is a known stimulator of CCO. 

A study by Wong-Riley on the effects of PBM post-tetrodotoxin exposure produced 

similarly successful results, especially when models were irradiated with 670 and 830 nm 

light, the peaks of the CCO absorption spectrum [7]. This further indicates that the antitoxin 

effect of PBM can be traced to its stimulation of CCO. PBM is also effective in prevention 

of the harmful effects associated with potassium cyanide. When pretreated with 670 nm 

light, Liang et al. in 2006 found that neuronal expression of Bax induced by cyanide was 

decreased, preventing the subsequent apoptosis [76].

In addition, PBM has demonstrated the rather unique property of affecting cells in different 

states of health in different ways, essentially modifying the cell in whatever way might be 

necessary to promote its survival. For instance, in normal cells the absorption of light by 

CCO leads to an increase in MMP above baseline and a short surge in ROS production. 

However, in cells where MMP is low due to existing oxidative stress, excitotoxicity, or 

inhibition of electron transport, light absorption leads to an increase of MMP towards 

normal levels and a decrease of ROS production [77]. Similarly, the typical response to PBM 

in healthy cells is a brief increase in intracellular Ca2+ [78]. However, in cells that already 

contain excess Ca2+ (a phenomenon called excitotoxicity) PBM provokes the opposite 

reaction, in other words it lowers excessive levels of cellular calcium, thus promoting cell 

survival, lowering oxidative stress, and raising MMP back to normal [79]. A range of 

neuroprotective approaches based on natural products are under investigation for treatment 

of AD [80].

3.4. Oxidative Stress

Oxidative stress occurs when there exists an imbalance between the production of reactive 

oxygen species (ROS) and the ability of the body to counteract their effects, which become 

harmful when they are in excess, via antioxidants. Many sources have linked oxidative stress 

to various neurological conditions, such as major depressive disorder [81] and traumatic 

brain injury [82], not to mention cardiovascular [83] and Alzheimer’s diseases [84].

However, the situation is more complicated than at first appears, because large numbers of 

clinical trials of antioxidant therapy for all these diseases, have failed (sometimes dismally) 

[51,85]. Apparently some level of oxidative stress is necessary for the optimum functioning 

of human beings, and removing all oxidative stress with supplementation with anti-oxidants 

can be counterproductive [86]. An important paper showed that the health giving benefits of 

exercise were removed when humans were administered antioxidants [87].

Salehpour et al. [88] showed that sleep deprivation (SD) in mice caused oxidative stress in 

the hippocampus and subsequent memory impairment. tPBM with NIR (810 nm) was 

delivered (once a day for 3 days) transcranially to the head. Mice performed better on the 

Barnes maze and the What-Where-Which task, and hippocampal levels of antioxidant 

enzymes were increased and oxidative stress biomarkers were decreased. In studies of the 
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effect of PBM on traumatized muscle, PBM has been shown to be effective in regulating the 

amount of cytokine-inducible nitric oxide synthase (iNOS) produced by the cell. This is 

important because excessive amounts of iNOS can lead to the excessive production of NO, 

which would then signal increased production of the ROS/RNS called peroxynitrite, leading 

to an increase in oxidative stress. Specifically, PBM could reduce peroxynitrite [89], while 

still preserving the positive effects of other isoforms of NO synthase, such as endothelial 

nitric oxygen synthase (eNOS), which is the species primarily responsible for the 

vasodilating effects of PBM [90–92].

PBM has also been shown to stimulate increases in angiogenesis, leading to further 

improvements in blood flow. As demonstrated by Cury [93], PBM at 780 nm and 40 J/cm2 

triggered an increase in the expression of the protein HIF 1α and of vascular endothelial 

growth factor, and a decrease in matrix metalloproteinase 2 activity, all of which were found 

to induce angiogenesis. Additionally, in an in vitro study of the effects of red/NIR light on 

red blood cells, NIR light was found to be quite effective in protecting red blood cells from 

oxidation [94], which is a common occurrence in brains compromised by conditions such as 

MDD [95].

The widespread mitochondrial dysfunction, increased levels of aluminum and heavy metals, 

and neuroinflammation that occur in AD, produce significant levels of oxidative stress. 

Oxidative stress causes Aβ deposition, tau hyperphosphorylation, and the subsequent loss of 

synapses and neurons [96]. A variety of antioxidants (and in particular coenzyme Q10) have 

been tested for treatment of AD [97].

3.5. Anti-Inflammatory Effects

Inflammation is the one of the innate immune system’s defenses against foreign bodies such 

as bacteria and viruses. On a cellular level, it occurs when the transcription factor NF -κB is 

activated. While acute inflammation is positive, chronic inflammation can have very 

negative effects. Many diseases, including neurodegenerative diseases and mood disorders, 

can be traced at least in part to chronic inflammation.

One way PBM helps to quell inflammation is through the inhibition of the cyclo-oxygenase 

2(COX-2) enzyme. Lim et al. found [98] that 635 nm light irradiation at low power was able 

to cause COX-2 inhibition by decreasing intracellular ROS. Inhibition of COX-2 via 

pharmaceutical means is widely supported at present, with COX-2 inhibitors making up a 

significant portion of the market for non-steroidal anti-inflammatory drugs (NSAIDS [99]). 

Using PBM, essentially the same result can be accomplished, just with a different stimulus.

PBM can also modulate cellular levels of free NF κB. NF κB is found in the cytosol bound 

to IκB, an inhibitor protein. Pro-inflammatory stimuli have the ability to activate IκB kinase, 

an upstream signaling regulator that causes the degradation of IκB. Once the IκB has been 

degraded, the NF κB is free to translocate to the nucleus, where it triggers the expression of 

pro-inflammatory genes. There is evidence that PBM can have opposite effects on NF κB 

depending on the type of cells and their activation state that is studied. Chen et al. found that 

in normal fibroblasts PBM could activate NF κB via generation of low amounts of ROS 

from mitochondria that had been stimulated [100]. The same group however, found that in 
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dendritic cells (another type of macrophage cell) that had been activated towards a M1 

phenotype by toll like receptor agonists, that PBM could reduce pro-inflammatory cytokines 

[101]. Likewise, Yamaura et al. found that the level of NF-kB was reduced in activated 

rheumatoid arthritis-derived synoviocytes that received PBM [102].

Additionally, PBM possesses the ability to modulate levels of cytokines, proteins that act as 

important signaling molecules for the immune system. PBM has been shown to modulate 

levels of both pro and anti- inflammatory cytokines, though for the reduction of 

inflammation, its ability to modulate levels of tumor necrosis factor (TNF) and other pro-

inflammatory cytokines is especially useful.

It should be noted that inflammation within the brain has distinct differences compared to 

inflammation in other parts of the body. In fact, the term ‘neuroinflammation’ is commonly 

applied to the activation of microglia. Microglia are cells of the monocyte/macrophage 

lineage that act as the immune defense system in the central nervous system [103]. 

Microglia are constantly scavenging the CNS for plaques, damaged neurons and synapses, 

and infectious agents. Microglia are extremely sensitive to even small pathological changes 

in the CNS [104].

In common with other cells in the macrophage lineage, microglia can assume a diversity of 

phenotypes, and retain the capability to shift their function to maintain tissue homeostasis. 

Microglia can be activated by LPS or IFN-γ to an M1 phenotype that expresses pro-

inflammatory cytokines and is able to kill microbial cells. On the other hand microglia can 

be activated by IL-4/IL-13 to an M2 phenotype for phagocytosis of debris, resolution of 

inflammation and tissue repair. Increasing evidence suggests a role of metabolic 

reprogramming in the regulation of the innate inflammatory response [105]. Studies have 

demonstrated that the M1 phenotype is often accompanied by a shift from oxidative 

phosphorylation to aerobic glycolysis for energy production [106]. Under these conditions, 

energy demands would be associated with functional activities and cell survival and thus, 

may serve to influence the contribution of microglia activation to various neurodegenerative 

conditions.

Since there is considerable evidence that PBM can activate the mitochondrial metabolism 

towards oxidative phosphorylation, and away from aerobic glycolysis this is a plausible 

reason why PBM may change the microglial phenotype from M1 towards M2 [107]. The 

consequences of this shift would be that instead of M1 microglia that cannot dispose of 

substances such as beta-amyloid plaques in AD, and therefore generate ROS and 

inflammatory cytokines, PBM-induced M2 microglia could clear the plaques, exert anti-

inflammatory and anti-oxidant effects and encourage tissue healing [108].

3.6. Neurogenesis

For many years, it was thought that the adult brain was incapable of growing new brain cells. 

Although it was realized that growing and developing brains in embryos, young animals and 

children must be capable of neurogenesis mediated by neural stem cells (NSCs) and 

neuroprogenitor cells, it was though that this process had ceased in adulthood. The turning 

point in our perception was the discovery of adult neurogenesis and identification of cells 
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that both in vitro and in vivo can function as NSCs, generating new neurons, glial cells, or 

both [109]. The paradigm shift regarding the nature of NSCs and the potential of the post-

natal brain to regenerate opened the gates for new studies with a new outlook [110]. Now the 

scientific community is engaged in not only in depth understanding of the adult brain 

neurogenesis and NSC functions but also how they may be encouraged with novel treatment 

modalities [111]. Experimentally NSCs/NPs are detected by the incorporation of 

bromodeoxyuridine (BrdU) into the nuclei of dividing cells after infection into the animal at 

various times before sacrifice, that can be subsequently measured by an antibody [112]. 

However it has been established that there are only a few well-defined areas of the brain in 

which this neurogenesis is observed which are known as “neurogenic niches” [113]. The 

most well accepted neurogenic niches are the sub-granular layer of the dentate gyrus of the 

hippocampus [114], and the subventricular zone (SVZ) of the lateral ventricles [115]. In 

order to be assured the BrdU positive cells are actually neurons, rather than glia or some 

other cell type, it is usual to stain them with a second antibody to NeuN (marker of mature 

neurons) or to Tuj-1 (beta tubulin class III) [116].

The first report of neurogenesis being stimulated by tPBM delivered to the brain came from 

a study by Oron et al. in 2006, who induced a stroke in rats, and treated them with tPBM. 

The number of newly formed neuronal cells (BrdU-Tuj-1 double-positive) as well as 

migrating cells (doublecortin positive), was significantly elevated in the subventricular zone 

of the hemisphere ipsilateral to the induction of stroke when treated with PBM [117]. A 

similar result was reported by Xuan et al., who treated mice that had suffered a TBI using 

tPBM [118]. They found that there was a significant increase in double-stained BrdU-NeuN 

(neuroprogenitor cells) in the dentate gyrus and in the SVZ at 1-week post TBI but not at 4-

weeks post-TBI. Increases in double-cortin (DCX) and TUJ-1 were also seen. A recent 

report [119] showed that there was a sharp drop in hippocampal neurogenesis in subjects 

with AD, and this reduction increased along with disease progession.

3.7. Synaptogenesis

One of the most notable and potentially significant effects of tPBM on the brain discovered 

to date, is its ability to promote synaptogenesis, also called neuroplasticity. This process is 

vitally important, as many brain conditions, including TBI, stroke, neurodegenerative 

diseases, and mood disorders can be traced, either partially or in full, to poor or aberrant 

neuronal connections in certain regions of the brain. If tPBM possesses the ability to counter 

these effects by facilitating neural organization or reorganization, it could prove to be 

extremely promising as a novel method of treating such brain disorders.

One manner in which tPBM promotes neuronal connectivity could be by up-regulation of 

BDNF (brain derived neurotrophic factor). It is a member of the class of ‘neurotrophins’ 

which also includes nerve growth factor (NGF), NT3, NT4 and GDNF [120]. BDNF is a 

protein found in the nervous system, which helps to maintain existing neurons and to 

encourage the growth of new neurons and new synapses. Specifically, it is believed to 

modulate dendritic structure to facilitate improved synaptic transmission [121]. PBM has 

been shown to slow attenuation of BDNF via the ERK/CREB pathway, thus positively 

affecting dendritic morphogenesis and improved neuronal connectivity [122]. BDNF is also 
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a mediator of the protein synapsin-1, which improves synaptogenesis by accelerating the 

development of neuronal fibers and maintaining synaptic contacts [123]. In a study carried 

out by Meng et al [124], denser branches and increased interconnectivity between fibers 

were observed in neural tissue of embryonic rats following irradiation with 780 nm light, 

indicating increased activity of these proteins. BDNF has also been linked to improvements 

in neuroplastic adaptation, which is especially important in cases of traumatic brain injury 

and stroke [125].

If it can be conclusively shown that tPBM stimulates neuroplasticity and synaptogenesis in 

humans as well as mice, then this opens the door to a wide range of clinical applications 

[126]. Impaired or aberrant neuroplasticity has been implicated in a wide range of brain 

disorders such as Alzheimer’s [127], psychiatric disorders [128], stroke [129], TBI [130], 

and addiction [131].

3.8. Stem Cells

It should not be forgotten that when any kind of PBM light is shone onto a living animal, it 

is inevitable that some stem cells will be exposed to light. It is known that stem cells respond 

well to PBM in terms of proliferation and differentiation [132,133]. The stem cells may be 

located in the bone marrow underlying the tissue, and in the bones, which are in the 

illuminated area. Oron et al. [134] showed that applying PBM to the bone marrow in the legs 

had a therapeutic effect in a mouse model of Alzheimer’s disease. The same procedure had 

major therapeutic benefits for reducing the infarct area in heart attack models [135,136], and 

in ameliorating ischemic kidney injury [137]. Recently, clinical trials using mesenchymal 

stem cells and neural stem cells have been carried out for AD, although as yet no efficacy 

has been observed [138].

3.9. Gamma Rhythms

In 2016 an important study from Iaccarino et al., working at MIT, reported that 40 Hz pulsed 

blue light could reduce the load of amyloid-β (Aβ)1–40 and Aβ 1–42 peptides and lessen 

the amyloid plaque burden in the visual cortex of the brain in a mouse model of AD [139]. 

This effect was originally discovered using an optogenetic technique to stimulate fast-

spiking parvalbumin-positive (FS-PV)-interneurons. The hypothesis was that the microglia 

in the brain were transformed to an “engulfing state” by the gamma entrainment. A 

subsequent study from the same group showed that 40 Hz pulsed light was neuroprotective, 

and improved cognitive performance in the Tau P301S and CK-p25 mouse models of 

neurodegeneration [140]. They found improved synaptic function, enhanced neuroprotective 

factors, and reduced DNA damage in neurons, while the inflammatory response in microglia 

was reduced. This group went on to test a combination of 40 Hz blue light with 40 Hz 

auditory stimulation to produce “gamma entrainment using sensory stimulus” (GENUS) 

[141]. This combined approach produced reduction of amyloid plaques in much wider areas 

of the mouse brain and improved cognitive function.
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4. tPBM for AD in Animal Models

One of the most convincing reports of the benefits of PBM in animal models of AD was 

carried out by De Taboada et al. in 2011 [142]. They delivered 810 nm laser (3×/week for 6 

months) to the heads of amyloid-β protein precursor (AβPP) transgenic mice. The numbers 

of Aβ plaques were significantly reduced in the brain by administration of PBM in a dose-

dependent manner. Administration of PBM produced a dose-dependent reduction in amyloid 

load, soluble AβPPα, and brain inflammatory markers. ATP levels, mitochondrial function, 

and c-fos were all increased. Cognitive function as measured by the Morris water maze was 

improved by PBM.

Purushothuman et al. [143] reported the beneficial effects of PBM in two separate mouse 

models of AD, each designed to display relevant pathological changes in the brain. These 

were the K369I tau transgenic model (engineered to develop neurofibrillary tangles), and the 

APPswe/PSEN1dE9 transgenic model (engineered to develop amyloid plaques). Mice were 

treated for 90 s with 670 nm LEDs 5×/week for 4 weeks. In the tau mice, tPBM produced a 

reduction in hyperphosphorylated tau, neurofibrillary tangles and oxidative stress markers 

(4-hydroxynonenal and 8-hydroxy-2’-deoxyguanosine) to near control levels in the 

neocortex and hippocampus, and restored expression of mitochondrial cytochrome c oxidase 

in surviving neurons. In the amyloid-β mice, PBM reduced the size and number of amyloid-

β plaques in the neocortex and hippocampus. A follow up report from the same group 

extended these observations to the cerebellum region of the mouse brain [144].

Farfara et al. [134] used a different transgenic mouse model, 5XFAD transgenic male mice 

(Tg6799) that co-overexpress familial AD (FAD) mutant forms of human APP (the Swedish 

mutation, K670N/M671L; the Florida mutation, I716V; and the London mutation, V717I) 

and PS1 (M146L/L286V) trans-genes, under transcriptional control of the neuron-specific 

mouse Thy-1promoter [145]. Moreover, these investigators treated the bone marrow in the 

mouse leg, instead of the head. An 810 nm laser connected to a fiber optic cable was used in 

contact with the tibia after making a small incision in the skin to deliver 1 J/cm2. Mice were 

treated with PBM six times (at 10-day intervals, for 2 months) starting at the age of 4 

months. Treated mice showed improved cognitive performance as measured by the object 

recognition test and the fear conditioning test. Immunohistochemical analysis of brain slices 

showed the PBM-treated mice had a 68% reduction in amyloid plaque burden.

Some investigators have taken a different approach to developing rodent models of AD, by 

directly injecting different kinds of Aβ peptides into the hippocampus. Lu et al. [146] used 

rats injected with Aβ 1–42 and applied 808 nm light to the head for 2 min/day for 5 days. 

tPBM ameliorated the neurodegeneration in the hippocampus and improved long-term 

spatial and recognition memory. Molecular studies showed that PBM: (1) improved 

mitochondrial dynamics; (2) raised mitochondrial membrane potential; (3) reduced oxidized 

mitochondrial DNA and mitophagy; (4) inhibited apoptosis as shown by the Bcl-2-

associated X protein/B-cell lymphoma 2 ratio; (5) increased mitochondrial antioxidant 

expression; (6) raised cytochrome c oxidase activity and ATP levels; (7) suppressed Aβ-

induced reactive gliosis, inflammation, and tau hyperphosphorylation.
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da Luz Eltchechem et al. [147] also used rats but injected the hippocampus with Aβ25–35 

peptide and treated them daily with 627 nm laser for 100 s, 7 J/cm2 for 21 days. The use of 

tPBM significantly reduced the Aβ plaques, and improved spatial memory and behavioral 

and motor skills in treated animals on day 21. Blivet et al. [148] used male Swiss mice and 

also injected Aβ 25–35 peptide into the hippocampus. tPBM used a RGn500 device that 

emitted 850 nm laser and LED and 625 nm LED all pulsed at 10 Hz and surrounded with a 

ring-shaped magnet creating a 200 mT static magnetic field. The device delivered 8.4 J/cm2 

over 10 min, and was applied once a day for 7 days either on the top of the head or the 

center of the abdomen or both. Protection from neurotoxicity was seen whether the PBM 

was applied to the head and the abdomen together, but not to either alone. Mice showed 

improved memory (by Y maze and passive avoidance test), while Aβ 1–42, pTau, oxidative 

stress (lipid peroxidation), apoptosis (Bax/Bcl2) and neuroinflammation were all reduced.

5. Clinical Trials of PBM in AD and Dementia

One of the first human trials of tPBM for AD to be reported, was reported by Saltmarche et 

al. [149] who treated a case series of five patients diagnosed with mild to moderately severe 

dementia (Mini-Mental State Exam, MMSE, scores of 10–24). The study used the Vielight 

alpha (810 nm, 10 Hz pulsed, LEDs) that combines transcranial plus intranasal PBM to treat 

the cortical nodes of the default mode network (bilateral mesial prefrontal cortex, precuneus/

posterior cingulate cortex, angular gyrus, and hippocampus). There was 12 weeks of active 

treatment consisting of weekly in office transcranial/intranasal, and daily home-based 

intranasal, plus a 4-week no-treatment follow up. At 12 weeks, cognitive function was 

significantly increased (MMSE and ADAS-cog), sleep was improved, fewer angry outbursts, 

less anxiety, and wandering were reported post-PBM. There were no negative side effects. 

Precipitous declines were observed during the 4-week follow-up no-treatment period.

Recently Chao published [150] a second pilot trial testing the effects of home PBM on 

cognitive and behavioral function, cerebral perfusion, and resting-state functional 

connectivity in eight patients (four tPBM and four usual care) diagnosed with dementia. The 

PBM treatments were administered at home three times per week with the Vielight Neuro 

Gamma device. The participants were assessed with the Alzheimer’s Disease Assessment 

Scale-cognitive (ADAS-cog) subscale and the Neuropsychiatric Inventory (NPI) at baseline 

and 6 and 12 weeks, and with arterial spin-labeled perfusion magnetic resonance imaging 

(MRI) and resting-state functional MRI at baseline and 12 weeks. After 12 weeks, there 

were improvements in ADAS-cog (p = 0.007) and NPI (p = 0.03), increased cerebral 

perfusion (p < 0.03), and increased connectivity between the posterior cingulate cortex and 

lateral parietal nodes within the default-mode network in the tPBM group.

Berman et al. [151] carried out a small pilot double blind, placebo-controlled trial in subjects 

diagnosed with dementia (n = 11, including six active, three controls and two dropouts) to 

assess the effect of 28 consecutive, six-minute transcranial sessions of NIR PBM using 

1060–1080 nm LEDs embedded in a helmet. The results showed improvement in executive 

function, clock drawing, immediate recall, praxis memory, visual attention and task 

switching (Trails A&B) as well as a trend for improved EEG amplitude and connectivity 

measures.
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Salehpour et al. [152] reported the treatment of a single case, who had been diagnosed with 

cognitive decline and olfactory dysfunction. The patient received twice-daily PBM therapy 

at home using three different wearable LED devices. For the first week a prototype 

transcranial light helmet and a body pad were used containing a mixture of CW 635 nm and 

810 nm LEDs. The body pad was placed on various areas on the lower back and the helmet 

was worn while seated. After the first week of treatment, an intranasal LED device, 10-Hz 

810 nm, was initiated in the left nostril twice daily. All three devices were applied 

simultaneously for an irradiation time of 25 min per session. The patient showed a 

significant improvement in the Montreal Cognitive Assessment score from 18 to 24 and in 

the Working Memory Questionnaire score from 53 to 10. The olfactory dysfunction was 

reversed as measured by the Alberta Smell Test and peanut butter odor detection test. 

Quality-of-life measures improved and caregiver stress was reduced.

Ivan Maksimovich working in Moscow, Russia has treated a large number of patients with 

AD using an intravascular catheter approach to deliver 632-nm light (25 mW HeNe laser) 

into the brain [153]. Under local anesthesia, the common femoral artery was catheterized 

and a thin, flexible, fiber-optic (25 to 100 μm) was advanced to the distal sections of the 

anterior and middle cerebral arteries where PBM was performed taking 20–40 min [154]. 93 

patients aged 34–80 (32 men, 61 women) with AD severity stages, TDR-0 (preclinical stage)

—10 patients; TDR-1 (early stage)—26 patients; TDR-2 (middle stage)—40 patients; 

TDR-3 (late stage)—17 patients. Of these 48 patients received transcatheter intracerebral 

PBM, while 45 patients in the control group received conservative treatment with memantine 

and rivastigmine. PBM treated patients showed improvement of cerebral microcirculation, 

reduction of dementia and restoration of cognitive functions. The control group did not show 

and significant changes. The mechanisms were proposed to involve increased capillary 

blood supply, improved tissue metabolism, stimulation of neurogenesis, and the clearance of 

amyloid beta.

6. Devices and Parameters for Brain tPBM

There exists a wide range of devices and parameters that have been used for PBMT for AD 

in humans. Both lasers and LEDs have historically been used on the head, but as time goes 

on, LED arrays are becoming increasingly the most popular method of delivering PBM to 

the head. NIR wavelengths in the 800–900 nm range are the most popular choice, but 1064 

nm or 1080 nm has also been used. Some investigators combine a red wavelength such as 

660 nm with the NIR. The precise placement of the LEDs on the head also varies. Since the 

forehead is without hair, which can block the light, it is a popular choice for tPBM. Some 

helmets and hoods are designed to deliver light covering the entire head. Figure 3 shows a 

selection of devices that have been used for tPBM.

The dosimetry for tPBM is measured as energy density in J/cm2 and in total energy (J). 

Values of energy density range from 10–60 J/cm2, but in my opinion the most useful 

measure of dose is total energy in Joules, which can be as large as several thousand J when 

fairly large arrays are used. For instance if a 500 cm2 area of the head is exposed for 10 min 

to 20 mW/cm2 then a total dose of 6000 J is delivered. Whole body light beds will deliver 

hundreds of thousands of J, but as yet there is no research on this method of PBM for AD or 
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brain disorders. Pulsing of the light is increasingly being focused upon, particularly at 10 Hz 

to stimulate alpha rhythms or 40 Hz to stimulate gamma rhythms. Intranasal light delivery is 

often used either on its own or to boost tPBM, but here the doses are much lower since 

typically a single 10 mW LED is clipped into the nostril. Finally the intravascular approach 

of Maksimovich must be remembered [153,154]. The preliminary report from Oron who 

obtained good results in a mouse AD model by applying PBM to stimulate autologous stem 

cells in the bone marrow of the tibia [134], suggests that this approach may be worth trying 

in humans.

As yet there have been no studies on combination therapies including PBM for AD. 

However preliminary animal studies suggest that tPBM would work well when combined 

with coenzyme Q10 [155–157]. There has been considerable interest in the use of coenzyme 

Q10 supplements in AD and other neurodegenerative diseases [158].

7. Future Perspectives

The fact that PBMT may produce a large range of beneficial changes in the brain, and is 

without any major side-effects, suggests it should be more widely tested for AD and 

dementia in large controlled trials. Exposing the head to light at power levels less than that 

received in direct sunlight (but without harmful ultraviolet wavelengths) is intrinsically safe. 

Any side-effects reported have been rare, mild and transient, consisting of slight headache, 

difficult sleeping and mild itching on the scalp. It is likely that tPBM for AD will need to be 

continued indefinitely, as regressions have been observed when PBM treatments have 

ceased. Moreover, unrelated health problems such as urinary tract infections or falls can lead 

to loss of the benefits achieved with tPBM. Home use tPBM devices can be applied by the 

caregivers, who consistently report improvements in their own quality of life.
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Figure 1. 
Proposed chromophores for PBM that can absorb different wavelengths of light. It should be 

noted that there is considerable overlap between the chromophores, and that the NIR 

absorbed by structured water is likely to be longer wavelength (>950 nm).
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Figure 2. 
There are a large number of mechanisms for tPBM in the brain that have been proposed 

(discussed below).
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Figure 3. 
Selection of tPBM devices that have been clinically tested in AD and other brain disorders. 

(A) Helmet from Photomedex Inc. (Philadelphia, PA, USA); (B) Helmet from THOR 

Photomedicine (Chesham, UK); (C) Lumiwave LED clusters from BioCare Systems 

(Parker, CO, USA); (D) Helmet from Cognitolite (Dublin, Ireland); (E) Neuro-alpha LED 

device from Vielight (Toronto, ON, Canada); (F) Device from ProNeuroLIGHT LLC 

(Phoenix, AZ, USA).
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