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In causal analyses, conditioning on a collider generally results in selection bias. Conditioning on a prognostic fac-
tor that is independent of the exposure—and therefore is not a collider—can also result in selection bias when 1)
the exposure has a non-null effect on the outcome and 2) the association between the noncollider and the outcome
is heterogenous across levels of the exposure. This result was empirically demonstrated by Greenland in 1977
(Am J Epidemiol. 1977;106(3):184–187).
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Forty years ago, Sander Greenland was busy describing the
conditions under which selection bias may arise in follow-up
studies (1). As someone who has more recently engaged in
similar undertakings, I am honored by the invitation to com-
ment on the article published by Greenland in 1977. I am also
humbled: I could not read the article at the time of its publica-
tion because I was 6 years old and had yet to take my first
English lesson. When I first met Sander at a meeting of the
Society for Epidemiologic Research, he had already been
thinking about selection bias for more than 2 decades. Also,
he was about to publish, together with Judea Pearl and Jamie
Robins, the first description of causal diagrams for epidemio-
logic research (2). Below I map the ideas described by Green-
land in 1977 to structural representations of selection bias
using causal diagrams.

An initial clarification: I use the term selection bias to refer
to the bias that arises when the parameter of interest in a pop-
ulation differs from the parameter in the subset of individuals
from the population that is available for analysis (3). For
example, we can have selection bias for descriptive measures
(e.g., prevalence) because of nonrandom sampling or for
effect measures (e.g., causal risk ratio) because of differential
loss to follow-up. In this commentary, I discuss selection
bias for causal effect measures. Note that some scientific dis-
ciplines (e.g., econometrics, statistics) have historically used
a different definition of selection bias that is essentially
equivalent to the epidemiologic term confounding: bias due
to the way in which individuals in the population are selected
or select themselves into each treatment or exposure level.

Here I will assume, like Greenland did in 1977, that no con-
founding for the effect of treatment or exposure exists.

Greenland presented a hypothetical example in which the
causal risk ratio of disease for the exposed versus the unexposed
was 1.69 in the entire population of interest. This risk ratio,
however, was unknown to the investigators because approxi-
mately 28% of the individuals in the population refused to
participate in the study or were lost to follow-up and therefore
had an unknown (censored) outcome. The risk ratio in the
uncensored individuals was 2.05; that is, selection resulted in
selection bias, which in this case manifested itself as an over-
estimation of the population risk ratio. (Incidentally, there is a
typo in Table 3 of the article: The risk ratio in the censored in-
dividuals was 0.70, not 70.)

What makes this example interesting is that the proportions
of exposed and unexposed who were censored were approxi-
mately the same (≈28%). That is, selection was independent of
the exposure and yet the effect measure was biased. Greenland
was arguing that the old adage that there is only bias when cen-
soring is associated with both exposure and outcome was false.
In his example, censoring was nondifferential because it was
associated with the outcome (the risk ratio was 1.36) but not
with the exposure (the risk ratio was 1.02).

Let us draw a causal diagram that represents Greenland’s
example. We have 3 variables: a randomly assigned expo-
sure E, censoring (or, more generally, selection) C, and the
disease D that would have been observed in the absence of
censoring. There is an arrow from E to D because the causal
risk ratio is 1.69. There is no arrow from E to C because the
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causal risk ratio is effectively 1. Also, unknown to the inves-
tigators, there is an association between C and D within at
least 1 level of E (risk ratio = 2.93 in the exposed and 0.99 in
the unexposed). This association can be represented by an
unmeasured common cause U of both C and D, because we
usually expect that censoring will be a marker of prognostic
factors U rather than having a direct causal effect on the
value of the outcome that would have been observed under
no censoring. Figure 1 depicts the causal diagram. The box
around C indicates that the analysis is conditional on being
uncensored.

Greenland’s example demonstrates that selection bias may
arise when conditioning on a variable C that is not a collider.
The inescapable conclusion is that collider stratification is
not a necessary condition for selection bias. Yet, in the
absence of collider stratification, selection bias is not guaran-
teed to arise. To see why, let us consider 2 settings: Figure 1,
in which the exposure E has a non-null causal effect on dis-
ease D for some individuals in the population (and therefore
the causal risk ratio is different from 1), and Figure 2, in
which the exposure E has a null causal effect on the disease
D of all individuals in the population (and therefore the
causal risk ratio equals 1). In both figures, censoring is inde-
pendent of the exposure.

The application of the rules of d-separation (4) to Figure 2
shows that E and D are independent whether the analysis in-
cludes all individuals in the population (no box around C) or
is restricted to the uncensored individuals (box around C);
that is, no selection bias arises when the sharp null hypothe-
sis holds—the exposure has no effect on the outcome of any
individuals—and censoring is independent of the exposure.
We say that conditioning on the non-collider C does not
induce selection bias under the null. Table 1 provides a
numerical example so that interested readers can check that
indeed no selection bias is introduced by censoring in this
setting. Unlike in Greenland’s 1977 example, the causal risk
ratio of disease for exposure versus no exposure is 1 in the
population of Table 1.

In contrast, applying d-separation to Figure 1 shows that E
and D are associated whether the analysis includes all indivi-
duals in the population (no box aroundC) or is restricted to the
uncensored individuals (box around C). We will say that there
is selection bias for the population parameter whenever the
association in the uncensored individuals is different from the
association in the entire population. In that case, we will say
that conditioning on the noncollider C induces selection bias
under the alternative hypothesis of a non-null effect of the

exposure on the outcome, or selection bias off the null. In fact,
as Greenland explained in 1977 and again in 2011 with Judea
Pearl (5), selection bias off the null further requires that the
association between C and D varies across levels of E on the
scale (e.g., risk ratio, risk difference) used to measure the pop-
ulation effect of E on D. That is precisely what happened in
the 1977 example: the risk ratio of D for censoring versus no
censoring varies by levels of E. This heterogeneity of the C-D
association across levels of E can be attributed to an interaction
between E andU on the risk ratio scale.

Importantly, were there no such heterogeneity on the risk
ratio scale, there would have been no selection bias for the
population risk ratio, but there would have been selection
bias for the population risk difference (because, off the null,
no heterogeneity for the causal risk ratio implies heterogene-
ity for the causal risk difference). This dependence of the
bias on the parameter used to quantify the effect explains
why causal diagrams fail to depict selection bias off the null:
Causal directed acyclic graphs are nonparametric and thus
cannot generally encode biases that depend on a particular
parameterization of the effect. This is also the reason why the
distinction between bias under the null and bias off the null is
important for selection bias but not for confounding. The
presence of common causes of exposure and outcome is ex-
pected to induce an association (confounding bias) between
treatment and outcome on all scales (risk ratio, risk differ-
ence, etc.), regardless of whether the exposure does or does
not have an effect on the outcome.

In 2004, my colleagues and I described the structure of
selection bias and equated it to conditioning on a common
effect of (a cause of) the exposure and (a cause of the) outcome,
that is, to conditioning on a collider (6). Although we were
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Figure 1. Causal directed acyclic graph off the null where E is expo-
sure, D is disease, C is censoring, and U is the unmeasured common
causes of C and D. The box around C indicates that the analysis is
conditional on being uncensored.
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Figure 2. Causal directed acyclic graph under the null where E is ex-
posure, D is disease, C is censoring, and U is the unmeasured com-
mon causes of C and D. The box around C indicates that the analysis
is conditional on being uncensored.

Table 1. Data From a Hypothetical Cohort StudyWith No
Confounders of the Effect of E onD

C
D

1 0

0

E= 1 40 160

E= 0 120 480

1

E= 1 5 45

E= 0 15 135

Abbreviations: E, exposure;D, disease;C, censoring status.
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only considering selection bias under the null (none of the
causal diagrams in the article included an arrow from E to D),
we did not explicitly say so. As a result, our equating col-
lider stratification and selection bias (under the null) was
construed by some readers as meaning that collider stratifi-
cation is needed for all forms of selection bias in causal infer-
ence. Clearly, collider stratification is not needed for selection
bias to arise when the treatment has a non-null effect on the
outcome. Sander Greenland had already proved it with an
example in 1977.

This discussion has thus far revolved around studies in which
investigators aimed at estimating the causal effect of E on D in
the entire study population. As we have discussed, when C is a
collider, restriction to uncensored individuals yields an associa-
tion measure that is biased for both the effect in the entire popu-
lation and the effect in uncensored individuals (6). On the other
hand, when C is not a collider, as in Figure 1, restriction to
uncensored individuals yields an association measure that is
biased for the effect in the entire population but unbiased for
the effect in uncensored individuals. Under Figure 1, we say
that there is selection bias (off the null) because our target pop-
ulation for causal inference was the entire study population
(3), but the association measure from an analysis restricted to
uncensored individuals is a valid estimate of the effect in the
subset of uncensored individuals. See the Appendix of the arti-
cle by Murray et al. (7) for a systematic exploration of the set-
tings under which selection will induce bias.

In summary, conditioning on a collider will induce a non-
causal association between exposure and outcome, even if no
causal association existed at the start (selection bias under the
null), whereas conditioning on a noncollider may at most
alter an existing association between exposure and outcome
(selection bias off the null). Thus, the selection bias induced
by conditioning on a prognostic factor that is not an effect of
exposure, as represented in Figure 1, resembles selection bias
for descriptive measures such as prevalence. The question is
not whether a nonrandom selection mechanism would create a
noncausal association between exposure and outcome even if
the exposure had no effect on the outcome, but rather whether

a nonrandom selection mechanism prevents the generalizabil-
ity or transportability of the effect measure in a subset of the
population to the entire target population.

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology,
Harvard T.H. Chan School of Public Health, Boston,
Massachusetts (Miguel A. Hernán); Department of
Biostatistics, Harvard T.H. Chan School of Public Health,
Boston, Massachusetts (Miguel A. Hernán); and Harvard-
MIT Division of Health Sciences and Technology, Boston,
Massachusetts (Miguel A. Hernán).

This work was funded by National Institutes of Health
grant NIH R01 AI102634.

I thank Sander Greenland for his helpful comments on an
earlier version of this manuscript.

Conflict of interest: none declared.

REFERENCES

1. Greenland S. Response and follow-up bias in cohort studies. Am
J Epidemiol. 1977;106(3):184–187.

2. Greenland S, Pearl J, Robins JM. Causal diagrams for
epidemiologic research. Epidemiology. 1999;10(1):37–48.

3. HernánMA. Discussion on the paper by Keiding and Louis. J R
Stat Soc Ser A Stat Soc. 2016;179(part 2):346–347.

4. Pearl J. Causal diagrams for empirical research. Biometrika.
1995;82(4):669–688.

5. Greenland S, Pearl J. Adjustments and their consequences-
collapsibility analysis using graphical models. Int Stat Rev.
2011;79(3):401–426.

6. HernánMA, Hernández-Díaz S, Robins JM. A structural
approach to selection bias. Epidemiology. 2004;15(5):615–625.

7. Murray EJ, Robins JM, Seage GR 3rd, et al. A comparison of
agent-based models and the parametric g-formula for causal
inference. Am J Epidemiol. In press.

Am J Epidemiol. 2017;185(11):1048–1050

1050 Hernán


	Invited Commentary: Selection Bias Without Colliders
	ACKNOWLEDGMENTS
	REFERENCES


