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Long-Term Modifications in Motor Cortical Dynamics
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The planning of goal-directed movements requires sensory, temporal, and contextual information to be combined. Sensorimotor func-
tions are embedded in large neuronal networks, but it is unclear how networks organize their activity in space and time to optimize
behavior. Temporal coordination of activity in many neurons within a network, e.g., spike synchrony, might be complementary to a firing
rate code, allowing efficient computation with overall less population activity. Here we asked the question whether intensive practice
induces long-term modifications in the temporal structure of synchrony and firing rate at the population level. Three monkeys were
trained in a delayed pointing task in which the selection of movement direction depended on correct time estimation. The synchronous
firing among pairs of simultaneously recorded neurons in motor cortex was analyzed using the “unitary event” technique. The evolution
of synchrony in both time, within the trial, and temporal precision was then quantified at the level of an entire population of neurons by
using two different quantification techniques and compared with the population firing rate. We find that the task timing was represented
in the temporal structure of significant spike synchronization at the population level. During practice, the temporal structure of syn-
chrony was shaped, with synchrony becoming stronger and more localized in time during late experimental sessions, in parallel with an
improvement in behavioral performance. Concurrently, the average population firing rate mainly decreased. Performance optimization
through practice might therefore be achieved by boosting the computational contribution of spike synchrony, allowing an overall

reduction in population activity.

Introduction

The brain processes in parallel sensory, temporal, and contextual
information, which has to be combined appropriately to or-
ganize a movement. With advance information about move-
ment parameters, such as direction or the moment when to
move, movement initiation is faster (Riehle, 2005). Cortical neu-
rons selectively change their activity in relation to advance infor-
mation about not only spatial (Weinrich et al., 1984; Riehle and
Requin, 1989; Riehle, 2005) but also temporal parameters (Lucchetti
and Bon, 2001; Leon and Shadlen, 2003; Roux et al., 2003; Janssen
and Shadlen, 2005; Genovesio et al., 2006; Renoult et al., 2006). It
is widely accepted that sensorimotor functions are based on ac-
tivity modulations in neuronal networks distributed over various
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brain structures (Wise, 1984; Tanji and Kurata, 1989; Riehle,
2005). However, it is much less clear how these networks organize
dynamically their activity in space and time. The concept of cell
assemblies (Hebb, 1949; Aertsen et al., 1986; Gerstein et al., 1989;
Abeles, 1991) uses synchrony as an additional dimension to the
rate code, suggesting that the system may retrieve much more
information from a given neuronal activity pattern (Riehle et al.,
1997; Hatsopoulos et al., 1998; Baker et al., 2001; Maldonado et
al., 2008; Sakamoto et al., 2008). We have shown that the strength
of precise spike synchrony modulates in time, independent of
rate modulations (Riehle et al., 1997). Furthermore, the timing of
modulation of synchrony and firing rate at the population level in
motor cortex suggests that synchrony may be preferentially in-
volved in early preparatory and cognitive processes, whereas rate
modulation may rather control movement initiation and execu-
tion (Riehle et al., 2000; Grammont and Riehle, 2003).

Several experimental and theoretical studies point to the im-
portance of synchronous spiking activity, in particular in a low
firing rate regime (Rudolph and Destexhe, 2003). If spike syn-
chrony and firing rate are independent coding strategies at the
population level, can their interplay be altered? In particular, here
we ask the question whether the structure of synchrony and rate
can be significantly modulated by intensive practice. We trained
three monkeys in a task in which the selection of movement
direction depended on correct time estimation (Roux et al., 2003,
2006). The activity of simultaneously recorded single neurons in
motor cortex was analyzed with the “unitary event” technique
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(Griin et al., 1999, 2002a,b, 2003). This allows one to determine
spike coincidences that violate the assumption of independence
of the neurons and insofar are expressions of the activation of a
functional cell assembly (Aertsen and Gerstein, 1991). The out-
comes were quantified using two different techniques to describe
the evolution in both time, within the trial, and temporal preci-
sion of significant synchrony.

We found that the timing of the task is represented in the
temporal structure of significant spike synchronization at the
population level. By practice, the temporal structure of syn-
chrony was shaped. Synchrony became stronger and more local-
ized in time during late experimental sessions, in parallel with a
behavioral improvement, whereas the firing rate in the same neu-
rons mainly decreased.

Materials and Methods

Experimental procedures

Behavioral task. The task was explained in detail in two previous studies
(Rouxetal., 2003, 2006). Three male rhesus monkeys participated in this
study [data from monkey R are partly described by Roux et al. (2003),
and single-neuron spiking data from monkeys O and K were recorded on
the same electrodes as the local field potentials described by Roux et al.
(2006)]. Care and treatment of the animals during all stages of the exper-
iments conformed to the European and French government regulations.
The animals were trained to execute movements in two opposite direc-
tions from a common center position. On a vertical panel, three touch-
sensitive targets with light emitting diodes (diameter of 3 cm) were
mounted in a horizontal line, 10 cm apart. The animal self-initiated each
trial by touching the center target with the active hand. After a fixed delay
(600 ms in monkey O and 500 ms in monkeys K and R), a preparatory
signal (PS) was presented.

Both peripheral targets were presented simultaneously as PS, one in
red and the other in green. The animal learned to attribute to each color
one of two possible delay durations. If the (directionally non-informative)
auditory “go” signal occurred after a short delay, the monkey had to
select the red target, and after a long delay the green one. Both the later-
ality of the colored targets and the presentation of the two durations were
varied at random with equal probability. In other words, the probability
for the go signal to occur after the short delay was 0.5. Once this moment
passed and the go signal did not occur, the probability for its occurrence
after the long delay turned to 1. The animals learned to discriminate
between two delay durations. For monkeys O and R, it was 600 and 1200
ms, and, for monkey K, it was 500 and 1200 ms. Monkey O additionally
learned to estimate another pair of durations, 1000 and 1400 ms, after the
start of the recording sessions. We call data recorded using the first pat-
tern O1 and the second pattern O2.

Reaction times (RTs) and movement times were limited each to 400
ms in monkey R, 300 ms in monkey O, and 500 ms in monkey K. Move-
ment initiations outside these limits were considered as errors.

Recording techniques. After learning the task, the animals were pre-
pared for multielectrode recordings in motor cortex of the left hemi-
sphere in monkeys O and R and of the right hemisphere in monkey K,
in an area between central sulcus, arcuate sulcus, and precentral dim-
ple covering the hand/arm areas of the primary motor cortex and
dorsal premotor cortex. A cylindrical stainless steel recording cham-
ber (inner diameter of 15 mm) was implanted under aseptic condi-
tions and general isoflurane anesthesia (<2.5% in air). A stainless
steel T-bar was cemented to the skull to fixate the animal’s head
during recording sessions. Before and after surgery, antibiotics and
analgesics were administered.

To record extracellularly multiple single-neuron activities, a multi-
electrode, computer-controlled microdrive [monkey R: Reitboeck sys-
tem (Thomas Recording); monkeys O and K: MT-EPS (Alpha Omega)]
was used to transdurally insert up to seven microelectrodes [monkey R:
quartz insulated platinum-tungsten electrodes, outer diameter of 80 wm,
impedance at 2-5 M() at 1000 Hz; monkeys O and K: epoxy-insulated
tungsten electrodes (FHC), 0.5-1.2 M{) at 1000 Hz]. The inter-electrode
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distance was between 230 and 700 wm; however, because the electrodes
were driven independently from each other, their distance in depth var-
ied for each recording. From each electrode, electrical signals were am-
plified with a gain 0of 5000-10,000 (MCP+; Alpha Omega) and high-pass
filtered, using in-house hardware (active filtering; cutoft frequency of
300 Hz) for selecting action potentials (spikes). Spikes of only one single
neuron per electrode were then isolated by using a window discriminator
in monkey R or between one and three neurons per electrode (although
rarely more than two were discriminated in practice) by using online
spike sorting with a template-matching algorithm (MSD; Alpha Omega)
(Worgotter et al., 1986) in monkeys O and K. Sorted spike data along
with behavioral events (occurrences of signals and performance of the
animal) were stored for offline analysis with a time resolution of 1 kHz.

Data analysis

Unitary event analysis. Dynamic changes in the temporal relations be-
tween the occurrences of spikes in simultaneously recorded pairs of
neurons were analyzed offline with Matlab (MathWorks) by an ex-
tended version of the unitary event method (Griin, 1996; Griin et al.,
2002a). It enables to capture the temporal precision of spike synchro-
nization and does not require cross-trial stationarity (for a detailed
description, see Maldonado et al., 2008; Griin, 2009). The unitary
event method allows us to detect spike synchronization that occurs in
excess compared with a chance synchronization given by the firing
rates. The basic operation is to compare the detected coincidence
counts [empirical coincidences (Fig. 1C, blue curve)] with the ex-
pected number given by the product of the firing probabilities of the
involved neurons [predicted coincidences (Fig. 1C, green curve)].
Significance of the empirical coincidence counts is evaluated by cal-
culating the probability of getting such an amount or an even larger one ( p
value, P), assuming a Poisson distribution with the mean being the predicted
number. The larger the number of excess coincidences, the closer P is to 0,
and, conversely, the larger the number of lacking coincidences, the closer its
complement, 1 — P, is to 0, while P approaches 1. Coincidences that com-
pose an empirical number that surpasses the significance level ( p < 0.05 or
0.01) are called unitary events. For a better visualization (compare Fig. 1 D),
we use a logarithmic function log,,[(1 — P)/P] [joint-surprise measure
(Griin et al,, 2002a) (Fig. 1 D)].

By evaluating the significance of the empirical number of coinci-
dences relative to the expected number, the method properly ac-
counts for chance coincidences based on the firing rates of
the neurons. However, if a certain number of excess coincidences, i.e.,
the difference of the empirical minus the expected number, becomes
significant depends not only on its absolute amount but also on the
width of the distribution. Because the width of the Poisson distribu-
tion, which is used here, becomes larger with its mean, the same
amount of excess coincidences may be significant for a small number
of expected coincidences but not for a larger number. Thus, in case of
large firing rates of both neurons, an even larger amount of excess
coincidences is required to become unitary events.

To account for nonstationarity of the firing rates in time, the evalua-
tion of unitary events is performed in a sliding window of 100 ms dura-
tion that is shifted along the data (Griin et al., 2002b), here in steps of 5
ms. Within each window, the expected number of coincidences is calcu-
lated as the sum of the trial-by-trial expectancies each as the product of
the marginal probabilities of firing (Griin et al., 2003). This procedure
considers differences in firing rates across trials and therefore accounts
for nonstationarities across trials. A window identified to contain signif-
icantly more coincidences than expected by chance contains a combina-
tion of chance coincidences and the excess coincidences. Unfortunately,
there is no way to distinguish individual excess coincident events from
chance coincidences.

Coincidences of different temporal widths are accounted for by the
“multiple shift” approach (Griin et al., 1999). It treats the data in their
(original) high time resolution (1 ms) but allows one to search for coin-
cidences with various coincidence widths. Technically, coincident spikes
are detected (see Fig. 1 B) by shifting the spike trains against each other in
steps of the time resolution (here 1 ms) over the range of the maximal
coincidence width of interest (here from 1 to 10 ms). The numbers of



Kilavik et al. @ Motor Cortical Dynamics Modified by Practice

exact coincidences (i.e., within a time bin of the time resolution of the
data, here 1 ms) are then summed over all shifts (and trials) and are
compared with the appropriate expected number, which is corrected for
the number of shifts taken.

To obtain the significance (joint-surprise) for a certain range of coin-
cidence widths only, we restrict the evaluation of empirical coincidences
that result from a specific range of shifts between spike trains, i.e., from *
the smallest to = the largest selected coincidence width. For example, if
we are interested in the coincidences of a temporal width of a minimum
of 3 ms and a maximum of 6 ms, we sum the results of the shifts from *+3
to =6 ms and compare the result with the predicted number for a zero
shift multiplied by the respective number of shifts (here 8) (Griin et al.,
1999, their Eq. 15).

Only neurons were selected for analysis that reached the following
criteria: (1) a lowest firing rate of more than seven spikes per second (cf.
Roy et al., 2000), (2) neurons that constitute pairs that were recorded
from different electrodes, (3) a minimum of 20 trials per condition (usu-
ally between 40 and 55 trials), and (4) neurons whose coefficient of
variation (CV) did not fall below 0.2, i.e., neurons that fire very regularly
were discarded from the analysis because they run the risk to produce
false positives (Griin, 2009, their Fig. 7C). All these criteria were applied
to each behavioral condition. As a consequence, for one single pair of
neurons, not all criteria were necessarily reached in all behavioral condi-
tions so that the sample size is smaller than the number of selected pairs
times the number of behavioral conditions.

Quantification of spike synchrony at the population level. To quantify
significant synchronous spiking activity at the population level, we use
two methods. One extracts the strength of the significance of spike cor-
relation of the whole population of pairs, whereas the other extracts the
percentage of pairs that yield significant synchronization on the level of
the individual pairs.

To extract the strength of the significance of the synchronization of all
pairs in one particular behavioral condition, we determine the trial-by-
trial empirical and predicted numbers of coincidences in each sliding
window for each neuron pair as described in the preceding section. In-
stead of calculating the significance of the difference of empirical and
predicted numbers on a pair-by-pair level, we here first sum the respective
numbers from all pairs and then evaluate the significance. Specifically, for
each sliding window, we sum the trial-by-trial empirical numbers of all
neuron pairs yielding a total empirical number. Similarly, we sum the
calculated trial-by-trial expectancies across all pairs of neurons yielding a
total predicted number. The significance of the difference of these two
measures is then evaluated by calculating the joint-surprise measure as
described for a single pair. Performing this at each position of the sliding
window, we get a time-dependent joint-surprise function of the whole
population of pairs (see Figs. 7, 8).

To quantify the percentage of pairs of neurons that exhibit statis-
tically significant synchronous activity, we perform the unitary event
analysis for each neuron pair before pooling across the population for
each behavioral condition. For each pair, the content of the joint-
surprise vector is reduced to a binary vector by assigning a 1 to the
center bin of the analysis window if the data within the window are
significantly correlated ( p < 0.05) or a 0 if not. The bin width of the
resulting vector is 5 ms, corresponding to the offset shift of the sliding
analysis window.

Our interest is to quantify the fraction of neuron pairs exhibiting a
co-occurrence of significant correlation in certain time periods, in which
we do not require the significant correlation to occur in the very same
time bins. Therefore, we integrate the information about the presence of
significant correlation in a sliding (5 ms shifts) time window (“integra-
tion window”) corresponding to the typical jitter in the time of occur-
rence of unitary event periods across neuron pairs typically observed
(50-200 ms) (Riehle et al., 2000). Within each window, we count the
number of 1 values, indicating a significant window (in short: significant
bins), and test whether the count is significant compared with the distri-
bution of counts obtained for spike trains without spike correlation. We
construct the distribution for each neuron pair, for each position of the
sliding integration window, from 1000 surrogate datasets obtained by
dithering the original spike times by 40 ms (Date et al., 1999; Pazienti et
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Table 1. Behavioral results during the selected recording sessions

Monkey
R 01 02 K
Selected (recorded) 26 (75) 18 (42) 19(31) 14 (38)
sessions
% errors 6.7 7.8 17.2 45
RT (ms) long trials 167 135 188 248
RT (ms) short trials 266 185 227 275
r (p) of errors —022(0.28)  —0.49(0.03)  —0.48(0.05  —0.51(0.02)
r(p)RT —0.5(0.008)  —0.19(0.4) —0.47(0.05)  —0.55(0.01)
r(p) SDRT —0.49 (0.009) 0.071(0.77) 0.018(0.94)  —0.56(0.01)

al., 2008). Again, the window position is marked by 1 if the outcome is
significant and by 0 otherwise. Finally, averaging this measure bin by bin
over all neuron pairs yields the time-resolved percentage of significantly
correlated pairs. The analysis is performed separately for different al-
lowed coincidence widths, resulting in a two-dimensional simultaneous
display of the time dependence (horizontal axis) and the precision
(vertical axis) of correlation in the population [see Figs. 3A-C, 5A,
smoothed with a Savitzky—Golay filter (second-order polynomial) of
a width of 19 bins].

Results

Behavioral performance

We recorded the activity of multiple single neurons in the arm/
hand areas of the primary motor and dorsal premotor cortex of
three monkeys, monkeys R, O, and K. In monkey O, two behav-
ioral timing conditions (O1 and O2) were presented at random in
separate sessions (see Materials and Methods). In this study, we
analyzed exclusively the data recorded in long delay trials, be-
cause this allowed us to test synchronous spiking activity and
firing rate in relation to both movement preparation and signal
expectancy. In long trials, a signal was expected at the end of the
short delay [expected signal (ES)], which might have occurred
with a probability of 0.5 (Roux et al., 2003, 2006). Once the signal
did not occur, the conditional probability that a go signal will
occur at the end of the long delay switched to 1.

Behavioral results are presented in Table 1. Percentages of
error trials and mean RTs were averaged across all selected re-
cording sessions. RTs in long trials were much shorter than those
in short trials ( p << 0.0001, ¢ test), as expected by the higher
probability for the go signal to occur (for details, see Roux et al.,
2003, 2006). We determined the percentage of errors in each
recording session. Three main types of errors could be distin-
guished: anticipations (movement onset before the go signal),
directional errors (going to the wrong target but after go signal),
and starting the movement later than the allowed epoch after the
go signal (see Materials and Methods). Distributions of single
trial RTs are presented by Roux et al. (2006). We established a
systematic decrease of errors through the recording sessions by
means of a linear regression and obtained correlation coeffi-
cients, which were statistically significant ( p < 0.05) in monkeys
01, 02, and K. The error rate of monkey R was very low already
during the initial sessions, and no improvement could be de-
tected. We also found a systematic reduction of mean RT's across
all selected recording sessions in monkeys R, 02, and K, as well as
a decrease in RT variability determined by the SD of RTs, in
monkeys R and K. In conclusion, all monkeys improved signifi-
cantly their performance during the recording sessions.

Detection of precise spike synchrony in pairs of
simultaneously recorded neurons

To describe the dynamics of synchronous spiking activity and its
statistical significance, we made use of the unitary event analysis
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Table 2. Dataset

Monkey

R 01 02 K
Selected (recorded) neurons 66 (209) 53 (138) 56 (120) 36 (131)

Datasets (“pairs”) 87 88 104 51
Selected (recorded) sessions 26 (75) 19 (31) 14 (38)

(see Materials and Methods). The method is applied with two
important additions compared with the original unitary event
version described by Griin (1996) (see also Griin at al., 2002a).
First, coincidences of a certain temporal jitter are evaluated not
by exclusive binning but by the “multiple shift” approach, which
has a higher sensitivity (Griin et al., 1999). Second, the predicted
number of coincident spikes is determined on a trial-by-trial
basis, which takes into account nonstationarity of firing across
trials (Griin et al., 2003). Still some criteria (described in Materi-
als and Methods) have to be fulfilled by the datasets to enable
reliable estimation of the significance of the synchrony. Table 2
shows the numbers of neurons, the number of datasets, and the
number of sessions included in the analysis after the selection
process. The number of datasets is larger than the number of pairs
of neurons, because each pair is analyzed separately in each be-
havioral condition (i.e., movement direction). Because we ana-
lyze only the data recorded in long trials, only two conditions are
considered for each neuron pair, i.e., rightward and leftward
movements. However, for some pairs of neurons, only one move-
ment direction is taken into account, because, for instance, too
few spikes occur in one or both neurons in the other direction.
Each pair of neurons analyzed during a particular behavioral
condition is considered as an individual dataset and called “pair”
in the following.

Figure 1 illustrates the unitary event technique on the basis of
an example of two simultaneously recorded neurons in long trials
in one behavioral condition. Figure 1 A shows the mean firing
rates of the two neurons, averaged across 47 correctly performed
trials. In Figure 1B, the spiking activity is shown for each neuron
in each behavioral trial, trials being arranged according to in-
creasing reaction times (large black dots after go signal). Coinci-
dent spikes are marked by blue squares detected in each trial with
an allowed temporal precision of up to 3 ms. Many such precise
synchronous spike events occur during the entire length of the
trial. Figure 1C indicates the coincidence rates in coincidences
per second for the empirical coincidences (in blue), correspond-
ing to the rate of the blue squares in B, and the predicted coinci-
dences (in green) by taking into account the trial-by-trial
instantaneous firing rates of the two neurons (see Materials and
Methods). The joint-surprise illustrates the time-resolved signif-
icance of the comparisons of the empirical number of coinci-
dences given their predicted numbers performed in sliding
windows of 100 ms width (Fig. 1 D). Positive values of the joint-
surprise indicate more coincidences than expected and negative
values less than expected, whereas values at zero indicate as many
coincidences as expected. Coincident spikes are marked as uni-
tary events (Fig. 1 E, red squares) if they occur within a window
containing significantly ( p < 0.05, top dashed line in D) more
coincidences than expected by chance. The example shown in
Figure 1 illustrates the presence of significantly more coinci-
dences just after the moment when a go signal was expected to
occur at the end of a short delay (i.e., ES, expected go signal).
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Figure 1. Precise spike synchrony between two simultaneously recorded neurons. 4,
Firing rate profiles of the two neurons averaged across trials. B, Raster displays and
synchronous spikes detected with a precision of 3 ms (blue squares). First range of black
large dots after go indicate movement onset, and the second range indicates the end of
movement. Trials were arranged according to increasing reaction times from top to bot-
tom. C, Empirical (blue) and predicted (green) coincidence rates. D, Time-resolved statis-
tical significance expressed by the joint-surprise measure. The horizontal dashed lines
correspond to a statistical significance of p = 0.05. E, Unitary events (red squares). Time
is in milliseconds, starting at PS.

Controls concerning the significance of synchrony

We performed a control analysis to rule out that specific features
in the trial-by-trial firing rate profiles of the neurons or the spike
train structures would induce by chance the dynamically modu-
lated synchrony as illustrated in Figure 1. To test this, we generated
artificial independent spike trains with the same trial-by-trial firing
rate profiles as the original neuronal data and analyzed them in
the same way as done with the original data. We first estimated
trial by trial the instantaneous firing rate profiles of both neurons
shown in Figure 1 using the convolution technique proposed by
Nawrot et al. (1999) with a triangular kernel of a width of 50 ms.
Based on these rate profiles, we simulated inhomogeneous
point processes to generate the parallel but independent spike
trains. The processes are chosen as rate-modulated gamma pro-
cesses with different constant shape parameters (Fig. 2A: k, and
K, = 1, Poisson; Fig. 2B: k, and k, = 4; Fig. 2C: k; = 3and k, =
5, chosen according to the CV, calculated from the data pre-
sented in Fig. 1; see Fig. 2 D). On sets of simulated parallel spike
trains for all the trials, we again applied the unitary event analysis
with the same parameters as chosen for the analysis of the original
neuronal data (100 ms sliding window, shifts of 5 ms, coincidence
width of 3 ms). For each shape parameter, this procedure is re-
peated 1000 times yielding as many joint-surprise curves. Their
mean per bin * the 95% confidence limits are illustrated in Fig-
ure 2A—C (red solid and dashed curves, respectively) and com-
pared with the joint-surprise of original data (black curves).
Clearly, the artificial independent data of the same firing rate
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Figure3. A-C, Time-resolved quantification of statistically significant synchronous activity for each monkey. Data are quantified for
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analyzed for synchrony in A-C. Time is in milliseconds, starting at PS.

profiles as the original data do not show a systematic deviation of
the joint-surprise from statistical independence. Processes with a
coefficient of variation measured from the data as the local mea-
sure CV, averaged over the preparatory period (Holt et al., 1996;

K (Fig. 3A-C).
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Ponce-Alvarez et al., 2009) do not indicate
any systematic deviation from statistical
independence and, in particular, do not
explain the time course of the original
joint-surprise (Fig. 2C). We repeated
these controls for all neuron pairs in the
four datasets included in this study (coin-
cidence width of 3 ms) and found only 6 of
393 periods with significant synchrony ac-
cording to the unitary event analysis,
across all pairs, that could be explained by
the simulated, independent data. This re-
sult is consistent with our former studies
in which we found that the unitary event
analysis behaves rather conservative for
non-Poisson spike trains (Pipa et al,
2007; Griin, 2009). To show the range of
the variability of spike timing of all 290
neurons, we calculated their CV, during
the delay period from PS to go and plotted
a distribution of all average CV, measures
in Figure 2E.

Task timing and synchrony

In a first step of our analysis, we quantified
the percentages of pairs containing statis-
tically significant synchronous spiking ac-
tivity for each of the three monkeys. For
each coincidence width between 1 and 10
ms, the percentage of pairs of neurons
having significantly (p < 0.05) more
spike coincidences than expected by
chance was determined in a time-resolved
manner. Note, for simplicity, we will use
the term “synchrony” for the occurrence
of statistically significant synchronous
spikes (unitary events). As can be seen in
Figure 1B, coincident spikes were de-
tected throughout the entire trial, and
their number depends on the instanta-
neous firing rate of the evaluated neu-
rons. However, the moments in time in
which significantly more coincidences
occurred than expected were strongly
task related and varied from pair to pair.
To analyze neuronal activity during the
instructed delay, trials were aligned to
go signal occurrence.

Figure 3A—C shows that the percentage
of neuron pairs being significantly syn-
chronized increased systematically at par-
ticular moments in time as a function of
the task requirements, and this in a similar
way for the three monkeys. A first peak is
visible around the occurrence of the PS,
and a second one at the beginning of the
second half of the long delay after the ES
did not occur. The main difference be-
tween the monkeys is that the delay of the

increase in spike synchrony after ES increased from monkeys R to

In monkeys R and K, synchrony increased strongly around the
PS, partially preceding the signal. This possibly reflects the ani-
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mals’ capacity to anticipate its occurrence (the delay preceding PS
was of a fixed duration). Interestingly, the epochs of increased
synchrony in monkey K after PS and the ES is of longer duration
than in the two other monkeys. This could be linked to the more
ample response time tolerated for this monkey (500 ms com-
pared with 300 and 400 in monkeys O and R, respectively),
requiring less timing accuracy for preparing and executing the
movements (i.e., by using an adaptive strategy to the temporal
requirements concerning movement execution). In corre-
spondence with this idea, in monkeys R and O1, a narrower
integration window (50 ms) was optimal for the time-resolved
quantification of the amount of synchrony across pairs re-
corded in the different sessions, at different moments in time,
compared with monkey K, in which a 200 ms integration win-
dow was optimal.

Synchrony and firing rate
Next we asked whether there is a relationship between the mod-
ulations of the firing rate and the significant synchrony of the
same neurons at the population level. Note that, for calculating
unitary events, the instantaneous firing
rate of each of the two neurons is taken
into account and thus modulation of the
firing rates is not expected to have any in-
fluence on statistically significant syn-
chrony (see Materials and Methods). The
fact that the predicted and the empirical
coincidence rates differ (Fig. 1C) clearly
shows the different nature of these two
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Figure 4.  Correlation of firing rate profiles and the time-dependent strength of neuronal
interaction expressed by the joint-surprise. From each pair of neurons, we calculate for each
coincidence width two correlation coefficients, by pairing the firing rate of each neuron of a pair
with the joint-surprise resulting from the pair. The distribution results from all correlation
coefficients of all pairs and of the various coincidence widths (1-10 ms). Additional evaluation
based on the significance ( p << 0.01) of the correlation coefficients yields three populations:
33% of the neurons are negatively correlated, 22% are positively correlated, and 45% were not
correlated.
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was similar for all three monkeys, the
mean population firing rate modulated
differently.

This observation is also verified by di-
rectly correlating the time courses of the
joint-surprise function (Fig. 1 D) and the
firing rate of the neurons of the pair (Fig.
1A) by calculating a correlation coefficient between the two. The
distribution of correlation coefficients calculated in the same way
for all neuron pairs of the three monkeys (n = 226) and for all
coincidence widths is shown in Figure 4. Correlation coefficients
are broadly distributed around 0, indicating no overall prefer-
ence of positive or negative correlations between firing rate
and significant spike synchrony. The majority (45%) of the
neurons show no correlation between firing rate and spike
synchrony, 33% of the neurons show a statistically significant
(p <0.01) negative correlation, and 22% a significant positive
correlation. There is therefore no systematic relation between
the modulation of the firing rate and the modulation of the
strength of neuronal interaction.

Figure 5.

recording session.

Learning to estimate new delay durations

We trained each monkey in a particular temporal pattern to
estimate the duration of each of the two possible delays. In
monkeys R and O, this pattern was 600 and 1200 ms, whereas

Learning a new temporal pattern. A4, Time-resolved quantification of statistically significant synchronous
activity in all sessions recorded in monkey 02, sliding integration window of 100 ms. For details, see Figure 3A—C. B, Mean
firing rate of the neurons presented in A. C, D, Improvement of behavioral performance through recording sessions that
were analyzed in A and B. (, Mean reaction times obtained in individual recording sessions. D, Percentages of errors per

in monkey K, it was 500 and 1200 ms. Note that the precise
estimation of the delay duration was necessary to correctly
select the target and thus movement direction. After learning
the first pattern (600—1200 ms, O1), monkey O was trained to
learn a second pattern (1000-1400 ms, O2). During learning,
monkey O had to continue to perform in the first pattern (O1)
so that, during each recording day, both temporal patterns
were presented in separate sessions, the order of sessions being
randomly selected each day.

Learning to estimate two delay durations to discriminate
them from each other takes a long time, at least several weeks
of daily training (Roux et al., 2006). The good performance in
discriminating the original two delays was a result of an inten-
sive daily practice long before the neuronal recording sessions
started. In monkey O, however, we introduced the second
temporal pattern only after the start of the recording sessions,
to study the neuronal activity involved in learning processes.
Was there any trace in neuronal activity related to the original
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around 600 ms after PS, at the moment at
which a go signal was expected in the old
temporal pattern, with a maximum for
coincidence widths between 3 and 6 ms, in
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addition to increases in synchrony around
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from PS to movement onset without any
particular dynamics (Fig. 5B). Further-
more, we observed an important im-
provement of behavioral performance
throughout the recording sessions. First,
reaction times decreased significantly by
~40 ms from the first to the last recording
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more details, see Figure 1.
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Figure 7.  Quantification of population synchrony. A, Average firing rate profiles ob-
tained during the first (black line) and second (red line) halves of recording sessions in
monkey 02. B, Numbers of empirical (dark lines) and predicted (light lines) coincidences
determined as the sum of the trial-by-trial numbers in each sliding window and for each
pair of neurons for coincidence widths between 2 and 6 ms, during the first (black lines)
and second (red lines) halves of sessions. €, Joint-surprise function calculated for the
difference between the total empirical and predicted numbers of coincidences in each
sliding window. The horizontal dotted lines correspond to a significance level of p = 0.01.

temporal pattern (O1) in the O2 sessions? If yes, was it mod-
ified or did it disappear with time, indicating the progress in
learning the new pair of durations and larger flexibility in
switching between the duration pairs? Figure 5A shows the
percentage of significant synchrony for coincidence widths of
1-10 ms of 104 pairs of neurons recorded in monkey O2. There is
again a clear temporal structure of synchrony. However, it is
particularly intriguing to see that an increase in synchrony occurs

Two examples of significant synchrony between the spiking activities of two neurons with a coincidence precision of
4 ms at the beginning of training in the new temporal pattern (A) and a precision of 2 ms a few weeks later (B) for monkey 02. For

session (Fig. 5C) (r = —0.47; p < 0.05),
and second, the percentage of errors de-
creased from ~25 to <10% (Fig. 5D) (r =
—0.48; p < 0.05). Figure 6 shows two ex-
amples of individual recording sessions:
one while starting to learn pattern O2
(Fig. 6A) and another a few weeks later
(Fig. 6 B). In Figure 6 A, there was a strong increase in significant
synchrony around 600 ms, the moment in which a go signal
might have occurred if the monkey would perform in the old
temporal pattern (O1), although the monkey performed cor-
rectly the new task (note that only correct trials were analyzed). In
Figure 6 B, however, the two neurons synchronized significantly
their activity around the new ES.

ES GO

We then searched for neuronal correlates of learning by split-
ting the population data into two subpopulations, each one con-
taining 52 pairs of neurons and being recorded during 3
consecutive weeks of performance in temporal pattern O2. In-
stead of quantifying the percentage of pairs of neurons synchro-
nizing significantly their activity at a given moment in time, we
here describe the dynamics of the strength of synchronous spik-
ing activity for the entire population of neurons. This is done by
summing the empirical coincidence counts, on the one hand, and
the predicted number of coincidences, on the other hand, from
the single trials and all neuron pairs window by window and
evaluating the joint-surprise of these two measures (see Materials
and Methods). This way of quantifying synchrony captures the
strength of synchrony across the entire population of pairs of
neurons and not only the percentage of significantly synchro-
nized pairs of neurons in which a fixed significance level was
applied. For this quantification, we only considered coinci-
dences of a temporal precision between 2 and 6 ms at which we
find the main contribution of spike synchrony (compare Fig.
5A) and therefore included in the sums all coincidences de-
tected at the various coincidence widths. The resulting empir-
ical and predicted number of coincidences are shown in Figure
7B for each subpopulation of pairs. The shape of the resulting
curves follows approximately that of the mean firing rates
(Fig. 7A). Both firing rate and the number of coincidences are
typically lower for the population recorded during the second
half of the sessions than those recorded during the first half.
The significance of the empirical coincidence counts, as indi-
cated by the joint-surprise (Fig. 7C), clearly indicates that,
during the first half of the sessions (black), there were signif-
icantly more coincidences than expected by chance at the mo-
ment of the expected occurrence of the go signal in the old
temporal pattern. The joint-surprise exceeds by far the 1%
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Same analysis as in Figure 7 for all three monkeys (R, 01, and K, left, middle, and right columns, respectively) showing the average firing rates (4), the total counts of empirical and

predicted coincidences (B), and the synchrony (C) expressed by the joint-surprise. For monkey R, synchrony was analyzed for coincidence widths between 2 and 3 ms, for monkey 01 between 2 and
6 ms, and for monkey K between 2 and 8 ms. Black lines, First half of recording sessions; red lines, second half of sessions.

significance level (dotted line) around 600 ms after PS. How-
ever, in the second half of the sessions (red), synchrony is now
at the very same moment in time at chance level but reaches
the significance level later during the delay, after the time of
the expected signal in the new temporal pattern.

Long-term effects of practice on synchrony

As described above, all monkeys improved their task perfor-
mance by practice, reducing reaction times and/or error rates
across sessions (see Table 1). We were now interested in how
these behavioral improvements may be reflected in the neuro-
nal activity and, in particular, in the interaction between neu-
rons. We therefore studied the effect of practice in all three
monkeys. For this purpose, we split the sessions in population
data containing either the first and or the second halves of the
recordings sessions of each monkey, as done for monkey O in
pattern O2. Figure 8 A shows the mean firing rates separately
for the first (black) and second (red) halves of the sessions for
monkeys R, O1, and K, in the left, middle, and right columns,
respectively. Figure 8 B indicates, for the respective two pop-
ulations, the empirical (dark) and predicted (light) number of
coincidences, and finally Figure 8C illustrates, for each mon-
key, the strength of synchrony (joint-surprise) for the two
populations. The striking result is that synchrony increased
and became more structured with practice (Fig. 8C), whereas
the firing rates mainly decreased (Fig. 8 A). In particular, syn-
chrony increases strongly in relation to signal expectancy. In-
deed, in the first half of the sessions, synchrony never reaches
the significance level of p < 0.01 (dotted lines), whereas dur-
ing the second half, it largely exceeds this level. In addition, in
monkey R (Fig. 8, left column), we find a total inversion of the
resulting synchrony around ES: in the first half of the sessions,
there was less synchrony than expected by chance (although
not reaching the significance level), whereas in the second half,
a high amount of excess synchrony is found at this particular
moment in time. During the remaining time in the delay pe-

riod, the joint-surprise is close to zero in both populations,
reflecting that coincidences are occurring at chance level.
Thus, our results reveal an increase of spike synchrony with
task practice at behaviorally relevant moments in time.

Discussion

The reflection of task timing in synchrony

Our data clearly demonstrate that the timing of a delayed reach-
ing task is represented in the temporal structure of significant
spike synchronization at the population level, similarly for the
three monkeys. Note that the criteria for selecting neurons for
our analysis did not include any task-related properties, such as
timing, directional, or motor selectivity.

What does it mean that there is temporal structure in syn-
chrony? We used two different methods for quantifying the data.
First, we calculated for each monkey in a time-resolved manner
the percentage of pairs of neurons whose spiking activity was
significantly synchronized. Second, we calculated the significance
of the difference between the total numbers of empirical and
predicted coincidences, as determined in single trials for all pairs
of neurons. Both methods allowed us to describe the dynamics of
synchrony and their significance. However, the two methods
provide different information about population synchrony.

The first method reports the percentage of significant pairs of
neurons at any time during the trial but does not indicate the
strength of synchrony as revealed in individual pairs of neurons
(compare Fig. 1D). Each pair of neurons contributes with the
same weight in this quantification, independent of the total
amount of synchronous events and its strength of synchrony.
Significant synchrony is detected by evaluating for each position
of the sliding window whether or not the number of empirical
coincidences exceeds significantly ( p < 0.05) the predicted num-
ber. Although the unitary event method is quite strict in the
avoidance of false positives that may be induced as a result of
nonstationarities of the firing rates in time and across trials or
other features of the spike trains (cf. Griin, 2009), we still may get
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anumber of windows being falsely assigned as significant simply
attributable to the chosen significance level of 5%. However, our
population results of significant synchrony argue strongly against
a mere false-positive result. If the latter would be true, significant
synchrony should be detected anywhere in time and across the
population with equal probability. However, we find an increase
in the number of pairs that exhibit significant synchrony at a level
that is beyond the level expected by chance only at specific mo-
ments in time during the task.

The alternative measure that evaluates rather the strength of
synchrony of the entire population of pairs are in accordance
with the former results. Here, the statistics was not performed on
individual pairs of neurons, but the empirical coincidence counts
were first summed across all pairs and then compared with the
sum of the pair-by-pair and trial-by-trial numbers predicted. It
provides a measure for the dynamics of neuronal interaction
within the entire population of neurons. The result of this anal-
ysis clearly shows a relation to the behavioral context of the task.

Both quantification methods consistently lead to the striking
result that the peak of population synchrony appeared in all mon-
keys at approximately the same moment in time (Figs. 3A-C, 8),
i.e,, ~100-200 ms after the expected occurrence of a go signal
(ES). This systematic increase in synchrony is not related to an
external signal but must be internally driven by the estimation of
the elapsed time during the trial. Because the behavioral output in
this task was strictly tied to the task timing, the improved perfor-
mance by practice suggests an improved estimation of the mo-
ment in time of signal occurrence (Riehle et al., 1997, 2000;
Grammont and Riehle, 2003). It is thus tempting to speculate
that the increase in synchrony related to this specific moment
reflects a cognitive state, an internal representation of (the non-
appearance of) an expected event. Alternatively, it could be re-
lated to a shift in the cognitive state necessary for movement
reprogramming, because the time of go signal also indicates
movement direction in this task (Sakamoto et al., 2008).

Synchrony, behavioral performance, and learning

Learning effects in motor cortical areas have mainly been studied
on short timescales ranging over tens of trials within a behavioral
session (Mitz et al., 1991; Hund-Georgiadis and von Cramon,
1999; Li et al., 2001; Paz et al., 2003, 2005) or a few consecutive
daily sessions (Laubach et al., 2000; Cohen and Nicolelis, 2004)
by analyzing the firing rate of single neurons or populations of
neurons (for long-term studies, see Schieber, 2002; Matsuzaka et
al., 2007). Here we study precise synchrony in relation to the slow
continuous improvement in performance during several months
of daily recordings. Our data clearly show that the dynamics of
synchrony is shaped during learning of a new temporal pattern of
the task (Fig. 7). The time of occurrence of spike synchrony shifts
during practice to the new time of the expected signal. Further-
more, synchrony generally became more structured with practice
(Fig. 8), increasing locally in time in relation to the expected go
signal during late sessions, exceeding by far the significance level
of 1% in the second half of sessions (Fig. 8C). Our findings sug-
gest a clear relationship between the increase of population syn-
chrony in relation to ES and the improvement in behavioral
performance.

Synchrony and firing rate

It has been proposed that synchrony and firing rate may be in-
volved in different processing types (Riehle et al., 1997; Gram-
mont and Riehle, 1999, 2003; Baker et al., 2001; Sakamoto et al.,
2008; Tsujimoto et al., 2008). Transient synchrony, strengthened
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by learning, has been suggested to facilitate interstructural com-
munication (Paz et al., 2007) or to promote the transition be-
tween different cognitive states determined by firing rate
modulations (Grammont and Riehle, 1999). Our results show
that synchrony changes across sessions in two ways: its strength
increases and it becomes more structured in time within the trial.
Concurrently, the mean firing rate of the whole population of
neurons decreases, particularly in epochs of increased synchrony
after the expected signal (Fig. 8). This leaves us with the question
of whether these opposing changes of the population firing rate
and population synchrony is also present in a pair-by-pair basis.
Our results, however, reveal that correlation of the time courses
of the firing rate of the individual neurons of a pair and their
strength of synchrony do not show any systematic relationship
(Fig. 4). The relationship between the numbers of positively,
negatively, and not correlated neurons remains constant
across sessions and is almost identical in all three monkeys
(data not shown here).

The learning process may potentiate specific connections
within the network and depress others. One can speculate that,
because of these long-term modifications of the network, the
processing of information could be achieved with an overall
lower network activity, resulting in a global decrease in firing rate,
as observed here. It has been shown in an in vivo study that
hundreds of highly correlated inputs are required to discharge a
pyramidal neuron reliably (Destexhe and Paré, 1999) as proposed
by Abeles (1982a) in a theoretical study. The spiking threshold of
a cortical pyramidal neuron is highly dynamic and inversely cor-
related with the precision of synaptic input correlation (Azouz
and Gray, 2000). Similarly, Softky and Koch (1993) (see also
Salinas and Sejnowski, 2002) noticed that synchronized inputs
produced higher firing rates than uncorrelated inputs. Further-
more, modeling studies showed that coincidence detection ap-
pears to be a highly efficient operating mode during low input
activity (Rudolph and Destexhe, 2003) (see also Abeles, 1982b;
Aertsen et al., 1996; Bernander et al., 1991; Softky, 1995). In this
context, Destexhe and Paré (1999) suggest that intense network
activity maintains pyramidal cells in an idle state during which
they are ready to respond to brief changes in correlation within
hundreds of their inputs. A change of correlation, or synchrony,
seems thus to be the most efficient manner to carry information
in these conditions (Destexhe and Paré, 1999; Ho et al., 2000).
These findings (along with others) demonstrate the importance
of synchronous spiking activity, particularly in a low firing rate
regime.

In summary, we recorded the activity of motor cortical neu-
rons of three monkeys during the performance of a delayed
reaching task. All neurons that satisfied the selection criteria for
our analysis were included in the analysis, regardless of any ap-
parent involvement in the task. We thus assume that our samples
are representative of the overall motor cortical activity during
task performance. By separating the data of each monkey into sets
of early and late recording session, we observe systematic changes
in synchrony and firing rate in the neuronal populations, which
are similar for all monkeys. In particular, as behavioral perfor-
mance improved with practice, the temporal profile of precise
synchrony was shaped, closely tied to the task context, along with
areduction in the overall firing rate. Improved efficacy in neuro-
nal networks, leading to optimized behavioral performance,
might therefore be achieved by improving precise spike syn-
chrony, allowing an overall reduction in network activity. Alto-
gether, our results provide a unique behavioral and neuronal
correlate gathering the different functional properties one might
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attribute to synchrony as an independent coding strategy and
provide strong evidence for a complementarity of synchrony and
firing rate at the level of neuronal populations.
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