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Animals use information from multiple sensory organs to generate appropriate behavior. Exactly how these different sensory inputs are
fused at the motor system is not well understood. Here we study how fly neck motor neurons integrate information from two well
characterized sensory systems: visual information from the compound eye and gyroscopic information from the mechanosensory
halteres. Extracellular recordings reveal that a subpopulation of neck motor neurons display “gating-like” behavior: they do not fire
action potentials in response to visual stimuli alone but will do so if the halteres are coactivated. Intracellular recordings show that these
motor neurons receive small, sustained subthreshold visual inputs in addition to larger inputs that are phase locked to haltere move-
ments. Our results suggest that the nonlinear gating-like effect results from summation of these two inputs with the action potential
threshold providing the nonlinearity. As a result of this summation, the sustained visual depolarization is transformed into a temporally
structured train of action potentials synchronized to the haltere beating movements. This simple mechanism efficiently fuses two
different sensory signals and may also explain the context-dependent effects of visual inputs on fly behavior.

Introduction
Animals often combine information from multiple sensory or-
gans to provide a more robust estimate of a behaviorally relevant
variable. The neural signals generated by different sensory sys-
tems are diverse in structure and bandwidth which makes it chal-
lenging to understand how they are fused. One experimentally
amenable example of such sensor fusion is the gaze stabilization
pathway of the fly. Like in vertebrates, in which neurons integrate
both visual and vestibular inputs to estimate self-motion (Gu et
al., 2008), flies monitor self-motions using several visual and
mechanosensory systems (Hengstenberg, 1991). A subset of vi-
sual interneurons, the horizontal and vertical system (HS and VS)
lobula plate tangential cells (LPTCs) respond to panoramic reti-
nal image shifts or “optic flow fields” generated during rotations
of the fly about different body axes (Hausen, 1993; Krapp, 2000;
Egelhaaf et al., 2002; Taylor and Krapp, 2007; Elyada et al., 2009).
These LPTCs project directly, and also indirectly via descending
neurons, to neck motor neurons (NMNs) responsible for gaze-
stabilizing head movements (Strausfeld et al., 1987; Strausfeld
and Gronenberg, 1990). Fast self-rotations are also detected by
the halteres (Fig. 1a). Halteres are mechanosensory organs of
equilibrium, functionally equivalent to the vertebrate vestibular

system. They consist of club-like anatomical structures that beat
up and down at the same frequency, but antiphase, to the wings
and detect the Coriolis forces imposed upon them by rotations of
the fly (Pringle, 1948; Nalbach, 1994; Nalbach and Hengstenberg,
1994;Dickinson,1999;FoxandDaniel,2008). Inadditiontomeasuring
self-rotations, the halteres also have sensory hair fields that can monitor
theirownoscillatorymotionduringstraightflight(Nalbach,1994;Dick-
inson, 1999).

Both the visual system and the halteres detect self-rotations of the
fly, but in very different ways. The VS and HS cells of the visual
system are more sensitive to comparatively slow rotations of the fly,
whereas the halteres are more sensitive to faster rotations (Hengsten-
berg, 1991; Sherman and Dickinson, 2003). The haltere primary
sensory neurons fire in phase with the fast haltere oscillations (Prin-
gle, 1948; Fox and Daniel, 2008) whereas, over short time intervals,
VS and HS cells respond to self-rotation with a sustained change in
membrane potential (Hausen, 1982; Hengstenberg, 1982).

How is information from both the fast, oscillatory haltere system
and the slower, nonoscillatory visual system integrated in the gaze
stabilization pathway? To answer this question we recorded from
NMNs that integrate both visual LPTC and haltere inputs (Sande-
man and Markl, 1980; Strausfeld and Seyan, 1985; Milde et al., 1987;
Huston and Krapp, 2008) to control compensatory head move-
ments (Hengstenberg, 1991). We found that, in some NMNs, visual
stimuli will only produce action potentials in the presence of a simul-
taneous haltere input. In addition, we describe and analyze the sub-
threshold events underlying this “gating-like” effect.

Materials and Methods
Electrophysiology
All experiments were performed on female, 1- to 3-d-old blowflies
(Calliphora vicina) from the Cambridge Department of Zoology colony.
The fly’s legs and wings were removed and it was mounted ventral side up
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upon a custom made holder. The ocelli were obscured using black paint.
The head was aligned with the visual stimulus using the pseudopupil
(Franceschini, 1975) and fixed with beeswax. The neck sclerites were
waxed to reduce movement. A small window was cut in the cuticle and
the air sacs teased aside, exposing the fly’s frontal nerve (FN) and the
extreme anterior portion of the prothoracic ganglion (Fig. 1b). Large
neck muscles not innervated by the FN were cut to reduce movement.
For the intracellular recordings, a 0.025-mm-diameter silver wire hook
was placed under the FN to add support and act as an indifferent elec-
trode. To further reduce movement, fine cactus spines were used to
support the frontal nerve root and anterior portion of the prothoracic
ganglion; insect pins were not used to avoid any interaction with the
haltere stimulus’ magnetic field. The preparation was kept moist with fly
Ringer solution (Hausen, 1982). Thick-walled borosilicate glass micropi-
pettes (resistance 70 –120 M�) filled with 2 M potassium acetate were
used to record from frontal nerve motor neuron axons within either the
left or right FN at a distance of �0.3 mm along the nerve from the
prothoracic ganglion. A recording was accepted only if the recorded
resting membrane potential was stable and within the range from �55 to
�75 mV. Stable recordings lasted for 10 – 60 min. Occasionally the NMN
would fire a burst of action potentials (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material); these bursts were corre-
lated with haltere beating and contraction of the leg muscles and have

been described previously (Sandeman and Markl, 1980; Milde et al.,
1987). Any data taken during these bursts were discarded and the exper-
imental trial was repeated. The neural signals were amplified 10-fold,
low-pass filtered at 6 kHz by an NPI SEC-10L amplifier operating in
bridge balance mode, and then amplified 5-fold by a custom-made
direct-current amplifier. Data were acquired at 20 kHz through a Na-
tional Instruments PCI-6025E board on a computer running Matlab
(Mathworks). The methodology for the extracellular recordings was sim-
ilar except that we recorded from the other neck nerves in addition to the
FN. Differential hook electrode recordings were made from the NMNs at
their neck muscle arborizations; see the study by Huston and Krapp
(2008) for more details.

Stimulus generation and presentation
Visual stimuli. Visual stimuli were presented on green cathode ray tube
(CRT, P31 phosphor) driven by an Innisfree Picasso Image generator at
a refresh rate of 182 Hz. The CRT was mounted on a separate platform to
the preparation in an attempt to mechanically isolate the two. A trans-
parent electrical shield was placed in front of the CRT to reduce electrical
noise. The CRT was placed directly in front of the fly (Fig. 1b) at a
distance of 7.4 cm so that the circular screen aperture subtended a visual
angle 62.6° in diameter. Square wave gratings of 96% contrast and 10°
spatial wavelength were moved with a temporal frequency of 5 Hz in 1 of
16 different directions. Between grating presentations, the fly was shown
a 6 s blank screen with the same mean luminance as the grating (18
cd/m2) to allow for recovery from any possible adaptation. When the
haltere stimulus was used in conjunction with the visual stimulus, the
haltere stimulus was started 2 s before the visual stimulus. This delay
ensured that the visual stimulus occurred well after the bursting activity
that often accompanied haltere stimulus onset.

Haltere stimuli. While recording from a NMN, both halteres were
touched in succession with a fine plastic tube. In all cases, touching
one haltere would elicit many more action potentials than touching
the other. This difference was clear-cut and enabled the unambiguous
identification of the “preferred haltere” of the NMN, which was de-
fined as the haltere whose movement would elicit the most action
potentials. The haltere stimulator was aligned with the fly’s left hal-
tere. Thus, in the case of recordings from the left FN, the stimulated
left haltere was the ipsilateral haltere, and in the case of right FN re-
cordings, the contralateral haltere. By recording from left and right
nerves in different experiments, recordings were obtained both when the
haltere stimulus was on the preferred haltere and when the stimulus was
on the “nonpreferred” haltere.

The calypter covering the haltere to be studied was removed. To con-
trol haltere movement in the extracellular experiments, a Ling Vibrator
(model 101, Ling Dynamic Systems, Royston) was attached directly to
the fly’s haltere using solvent-free adhesive (Bostik). In the intracellular
experiments the tip of the fly’s left haltere was coated in solvent-free
adhesive and iron powder (�212 �m particles, Sigma-Aldrich) and then
moved magnetically via a 4 � 3 mm neodymium magnet attached to a
Ling Vibrator (Fig. 1b). The posterior portion of the eye on the same side
as the stimulated haltere was painted black to block any visual input from
the moving haltere stimulus. The haltere was held at an azimuth angle
approximately equal to that of the resting haltere (30° posterior from the
mediolateral axis when viewed from above) and oscillated vertically with
an amplitude of �50°. The haltere was oscillated vertically at frequencies
ranging from 10.5–105 Hz in either a square-wave or triangular-wave
pattern. A triangular waveform is closer to the fly’s natural haltere beat-
ing movements than a square or sine wave (Nalbach, 1993; Fayyazuddin
and Dickinson, 1996). Nonoscillating “ramp-and-hold” stimuli (Mathe-
son and Ditz, 1991) were also applied to the haltere. In this case, the
haltere was held in its lowest position for 200 ms, raised at constant
velocity to its highest position (equivalent to half a triangle wave, or
“ramp”), and then held there for another 200 ms. The speed of move-
ment during the ramp transitions between the low and high positions
was such that it was identical to the speed of movement in either the 10.5
Hz or 105 Hz triangle-waveform stimuli. At the end of each experiment
the haltere stimulus was run while decoupled from the haltere to check
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Figure 1. Experimental configuration. a, Diagram of a blowfly showing the anatomical
location of the sensory organs stimulated in this study. b, Intracellular recordings were
made from the FN axons through a small hole cut in the cuticle of the fly’s ventral side. The
movement of one of the halteres was controlled magnetically by attaching a small iron
particle (shown larger than actual size) to the haltere and then vertically oscillating a
magnet close to the haltere. Visual stimuli were presented on a CRT in the fly’s frontal
visual field. c, A sample trace of a right FN NMN intracellular response to oscillating the
contralateral haltere through its stroke plain. The stimulus elicited action potentials phase
locked to the haltere oscillation cycle. Calibration, 250 ms.
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that no response to general vibration or magnetic artifact was present in
our recordings.

Data analysis
Extracellular signals were spike sorted using template-matching software
custom written in Matlab (Mathworks). For both the extracellular and
intracellular experiments, the action potential response to visual motion
was defined as the difference between the number of action potentials
during a 1 s grating presentation and the number of action potentials
during the preceding 1 s in which only the blank screen was presented.
The action potential response to visual stimuli during simultaneous hal-
tere stimulation was similarly defined as the difference between the num-
ber of action potentials during 1 s of concurrent visual and haltere
stimulation and the number of action potentials during the preceding 1 s
time interval of just haltere stimulation. By comparing the responses of
one unit to 16 different, equally spaced directions of visual motion, a
directional tuning curve was constructed. The tuning curve peak was
estimated by finding the phase of the first harmonic in a Fourier trans-
formation of the tuning curve. The peak of the tuning curve gives the
direction of visual motion to which the cell responds most strongly,
referred to here as the cell’s “preferred direction.” In those intracellular
experiments in which there were no action potentials in response to
visual motion, the subthreshold response was defined as the difference
between the mean membrane potential during 1 s of grating motion and
the mean membrane potential during the preceding second while pre-
senting the blank screen. Using this response, a tuning curve and estimate
of the preferred direction were produced in the same manner as for the
action potential responses. Membrane potential variance was calculated
only using the second half of a visual response to ensure the response had
reached steady state and avoid any onset transients. Some intracellular
recordings were taken from the fly’s right FN, whereas others were taken
from the fly’s left FN. To allow the comparison of these results, the
directional tuning curves acquired from units in the right FN were mirror
transformed horizontally over the vertical axis so as to be the same as
those of the equivalent units in the left FN. Circular statistics were per-
formed in custom written Matlab programs, and all noncircular statistics
were performed in SPSS (SPSS).

The phases of postsynaptic potentials (PSPs) relative to the haltere
stimulus were determined from the time at which the membrane poten-

tial increase was steepest. We estimated this
time point by low-pass filtering the subthresh-
old waveform at 100 Hz with a linear phase
filter and then finding the peak in the deriva-
tive of the filtered signal.

Results
To characterize how motor neurons inte-
grate inputs from two different sensory
organs, we recorded the extracellular re-
sponses of NMNs while presenting haltere
and visual stimuli, both individually and
in combination. Then, to reveal the sub-
threshold events underlying the NMN
multisensory integration, we performed
intracellular recordings from the NMNs
of the FN.

The visual responses of NMNs have
been studied previously (Milde et al.,
1987; Huston and Krapp, 2008); it was
shown that only a subset of NMNs pro-
duce action potentials in response to vi-
sual stimuli. For convenience we refer to
those NMNs that respond to visual stim-
uli with action potentials as exhibiting
“type I behavior” [“visual” NMNs in the
terminology of Milde et al. (1987)] and
those that do not as exhibiting “type II
behavior” [“nonvisual” NMNs in the ter-

minology of Milde et al. (1987)]. This terminology is not meant
to imply that there are two distinct classes of NMN but instead is
used for convenience to distinguish between NMN responses
based upon just one particular criterion: the action potential re-
sponse to visual stimuli. We obtained intracellular recordings
from 10 type I FN NMNs and 27 type II FN NMNs; in addition,
we also obtained extracellular recordings from 4 type I NMNs
and 6 type II NMNs.

Type II NMNs respond to visual stimuli only during
haltere stimulation
Response to haltere stimuli
We gently touched both of the halteres with a fine plastic tube. All
NMNs fired action potentials when one of the halteres was
touched. In all cases, the response to touching one haltere was
much stronger than to touching the other; this effect was robust
and unambiguous. We refer to the haltere that the neuron was
most sensitive to as the preferred haltere. For some NMNs the
preferred haltere was ipsilateral; for others, it was contralateral.
The NMNs fired action potentials in response to both vertical and
horizontal displacements of the preferred haltere.

Using a controlled haltere stimulus, we induced vertical oscil-
lations in the preferred haltere; this resulted in action potentials
phase locked to the stimulus (Fig. 1c). We measured how accurate
this phase locking was by finding the haltere stimulus phase of the
first action potential in each haltere stimulus cycle. For each cell
we determined the smallest time window that, when centered on
a cell’s mean firing phase, could encompass 90% of these action
potentials. The median window width was 3.6 � 7.9 ms (me-
dian � interquartile range, n � 12 cells). Thus, 90% of these
action potentials occurred within 4% of the haltere stimulus pe-
riod. In 9 of those 10 experiments in which the stimulus was
applied to the nonpreferred haltere, the stimulus did not elicit
action potentials (although in intracellular experiments it did
result in PSPs), regardless of the oscillation amplitude. All haltere

-180 -90 0 90 180
-5

0

5

10

Grating Orientation ( )°

1 s

Hal + Vis Hal + Vis

Vis Vis

Hal + Vis
Vis

a b

c d

e

Hal
Vis

Vis
Hal

R
es

po
ns

e
∆

S
pi

ke
s/

s)
(

Figure 2. Extracellular responses of a right ventral cervical nerve NMN to combined ipsilateral haltere and visual stimulation. a,
b, Extracellular responses to visual motion stimuli. The direction of visual motion is indicated by arrows. c, d, Responses to the same
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stimulation data presented in this study were taken from experi-
ments in which the haltere stimulus was applied to the preferred
haltere.

Response to combined visual and haltere stimuli
When the halteres were not moving, type II NMNs did not pro-
duce action potentials in response to any of the directions of
visual motion stimuli we presented (Fig. 2a,b). However, when
the haltere stimulus was applied concurrently with visual stimuli,
certain directions of visual motion could elicit additional action
potentials from type II NMNs (Fig. 2c). In some NMNs, the
neuron would not fire action potentials in response to the haltere
stimulus alone but would in response to the combined visual and
haltere stimulus (Fig. 2). Other NMNs would fire action poten-
tials in response to the haltere stimulus alone and the addition of
the visual stimulus could modulate this baseline rate of action

potentials (Fig. 3d; supplemental Figs. 2 and 3, available at www.
jneurosci.org as supplemental material).

The additional action potentials induced by a visual stimulus
during haltere stimulation were compared across 16 different
directions of visual motion. When the responses to the visual
stimulus were plotted against direction of motion, they formed a
single peaked tuning curve (Fig. 2e). In all six type II units re-
corded from extracellularly, the number of extra action potentials
induced by a visual stimulus during haltere stimulation was sig-
nificantly modulated by the direction of visual motion (visual
tuning curves subjected to a nonlinear regression to a cosine, p �
0.05 for all six units). In the majority of recordings the directional
tuning was the result of stimulation in the preferred direction
increasing the action potential rate. However, in at least one ex-
ample the directional tuning was due to visual motion in the
antipreferred direction reducing the action potential rate (sup-
plemental Fig. 2, available at www.jneurosci.org as supplemental
material), suggesting the possibility of an inhibitory visual input.
By combining haltere and visual stimuli it was possible to map the
visual receptive fields of those NMNs that do not normally re-
spond to visual stimuli (supplemental Fig. 4, available at www.
jneurosci.org as supplemental material). This was done in a
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potential tuning curves obtained during combined visual and haltere stimulation. Different
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each individual experiment. The data points fall around a line of slope of 	1, suggesting that
for all tested NMNs (n � 21) the subthreshold and action potential visual tunings were virtually
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similar manner to previous studies of type I NMNs (Huston and
Krapp, 2008).

Subthreshold visual and haltere inputs to type II NMNs
To elucidate the subthreshold mechanism underlying the nonlin-
ear integration of haltere and visual inputs, we performed intra-
cellular recordings from the axons of type II NMNs in the FN. As
all recordings were taken from axons of the NMNs within the
nerve itself (at least 200 �m from the dendrites), all subthreshold
events observed were small, but consistent and well above the
noise level.

Visual stimulation in the cell’s preferred direction resulted in
a small, but significant, sustained depolarization of the mem-
brane potential (Fig. 3a) (median depolarization � 0.5 mV,
Wilcoxon signed-rank test, p �� 0.0001, n � 27). Consistent with an
excitatory synaptic input, the variance of the membrane potential
also increased during visual stimulation in the preferred direction
(Fig. 3a) (median increase in SD of membrane potential � 0.04
mV, Wilcoxon signed-rank test, p �� 0.0001, n � 27). The depo-
larization due to visual motion was highly dependent on the di-
rection of visual motion, resulting in single peaked tuning curves
(Fig. 4a). This directionality of the subthreshold visual response
was statistically significant for all 27 type II units (visual tuning

curves subjected to a nonlinear regression
to a cosine, p � 0.05 for all units). In all
but 2 of the 27 type II units studied, the
directional tuning was due to depolariza-
tion during motion in the units’ preferred
direction with only slight hyperpolariza-
tion in the units’ antipreferred direction
(Fig. 4a). The hyperpolarization during
motion in the antipreferred direction was
statistically significant, with a median value
of �0.1 mV (Wilcoxon signed-rank test,
p �� 0.0001, n � 27). There was no statis-
tically significant change in the membrane
potential variance during antipreferred
motion (median change in SD of mem-
brane potential � 0.004 mV, Wilcoxon
signed-rank test p � 0.26, n � 27).

Haltere stimulation resulted in com-
pound PSPs and, in some cases, action po-
tentials that were phase locked to the
haltere stimulus waveform (Fig. 3b, inset).
When we presented a visual stimulus in
addition to the haltere stimulus, the NMN
responded with additional phase-locked
action potentials (Fig. 3b; supplemental
Fig. 3, available at www.jneurosci.org as
supplemental material).

Visual tunings of subthreshold and action
potential responses are similar
For 21 type II units, we obtained visual
directional tuning curves from both the
subthreshold response during only visual
stimulation and the suprathreshold action
potential response during combined vi-
sual and haltere stimulation. For each
unit, the two directional tuning curves
were very similar (Fig. 4). The peaks of the
subthreshold and suprathreshold tuning
curves were strongly correlated (ranked
nonparametric circular correlation, � �

0.98, p �� 0.0001, n � 21) (Rao Jammalamadaka and Sengupta,
2001), falling upon a straight line with a slope close to 1 (slope of
linear regression � 1.1) (Fig. 4b). This correlation between the
visual tuning of the subthreshold and suprathreshold responses is
consistent with the hypothesis that the subthreshold visual input
is responsible for the visual modulation of the action potential
output seen during combined haltere and visual stimulation.

Timings of subthreshold and action potential responses are similar
The compound PSPs elicited by the haltere stimulus occurred at
discrete points within the haltere oscillation cycle (Fig. 5a,b). In
most NMNs only one compound PSP occurred per haltere stim-
ulus cycle (Fig. 5a); however, in some NMNs the PSPs occurred at
two different phases of the haltere stimulus (Fig. 5b). The action
potentials induced by combined visual and haltere stimulation
occurred at a similar phase to the compound PSPs elicited by
haltere stimulation alone (Fig. 5c,d). This is true for all NMNs
studied; when the phases of the PSPs and the action potential
phases are plotted against each other they fall upon a straight line
with a slope close to 1 (Fig. 5e) (circular correlation, � � 0.99, p �
0.002, n � 10, slope of linear regression � 0.9). More NMNs
responded during the midpoint of the haltere upstroke than at
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any other phase, but additional NMNs fired at many other phases
(Fig. 5e, inset).

Although type I NMNs produce action potentials in response
to visual stimuli alone, we found that simultaneous haltere stim-
ulation could entrain the visually induced action potentials so
they became phase locked to the haltere stimulus oscillation (sup-
plemental Fig. 5, available at www.jneurosci.org as supplemental
material). Haltere stimulation did not change type I NMNs’ pre-
ferred direction of visual motion (supplemental Fig. 5, available
at www.jneurosci.org as supplemental material), although in
some units it did increase the response gain (data not shown). In
the flight steering motor neuron MNB1, haltere and nonhaltere
stimuli have been found to interact, shifting the phase of action
potentials with functionally important consequences (Fayyazud-
din and Dickinson, 1996, 1999). We tested whether visual stimuli
induced any similar phase change in the NMN action potentials.
No consistent action potential phase shift with the addition of
visual stimuli was seen across the sampled NMN population
(mean change in action potential phase with a visual stimulus in
preferred direction: �0.2 � 4.0 ms SD, n � 18). However, such
visually induced phase shifting was observed in a minority of
units (data not shown).

Effects persist at naturalistic haltere beating frequencies
The majority of experiments described so far have used a haltere
stimulus that oscillated vertically at a frequency of 10.5 Hz, �10
times slower than the frequency at which female blowflies beat
their halteres during flight (105–120 Hz) (Pringle, 1948). We
performed additional experiments using a haltere stimulus oscil-
lating at a frequency of 105 Hz to determine if the effects observed
at lower frequencies are still present with haltere oscillations in
the frequency range seen during flight. These experiments showed
that all the effects seen with a 10.5 Hz haltere stimulus were also
present with a 105 Hz haltere stimulus. As with the slower stim-
ulus, 105 Hz haltere stimulation resulted in phase-locked com-
pound PSPs and action potentials in the NMNs (Fig. 6a,b), and
the rate of these action potentials could be modulated with visual
stimuli (Fig. 3d,e).

As before, we measured the phase of the first action potential
occurring within each haltere stimulus cycle. For each cell we
determined how large a time window was needed to encompass
90% of these action potentials. The median window width was
2.1 � 1.1 ms (median � interquartile range, n � 6 cells). Thus,
90% of these action potentials occurred within 22% of the haltere
stimulus period. To compare the action potential timing preci-
sion to that of the haltere sensory neurons, we measured the
maximum vector strength and jitter of the action potential phases
in the same way as previously obtained for haltere primary afferents
(Fox and Daniel, 2008). The maximum vector strength (0 � no
phase locking, 1 � perfect phase locking) for 105 Hz stimulation
was 0.97 (Rayleigh test for nonuniformity, p �� 0.0001), close to
the value of 0.99 found for the haltere primary afferents (Fox and
Daniel, 2008). The motor neurons had an average 0.6 ms jitter
(measured as the SD in action potential timing), larger than the
0.2 ms value found for the primary afferents but still submillisec-
ond (Fox and Daniel, 2008).

We investigated how the NMN responses could remain phase
locked to the haltere stimulus even though the compound PSPs
elicited by the 10.5 Hz stimulus were wide enough to summate if
elicited at 10 times the frequency (Fig. 6a). To separate the veloc-
ity of haltere motion from the stimulus oscillation frequency, we
subjected the halteres to ramp-and-hold stimuli. We moved the
haltere of interest between a low and high position at two differ-

ent velocities. The two velocities of haltere motion were chosen to
match the haltere velocities seen during either the 10.5 Hz or the
105 Hz haltere oscillatory stimulus. When we moved the haltere
at the slow speed the NMN produced a compound PSP (Fig. 6c,e)
that was wide enough to summate and produce a tonic response
if repeatedly elicited at 105 Hz. However, when we moved the
haltere at the speed experienced during 105 Hz stimulation, an
additional sharp component was added to the compound PSP
(Fig. 6d,e), possibly accounting for the response remaining phase
locked at higher oscillation frequencies.

Discussion
To investigate how motor systems integrate inputs from different
sense organs, we studied the responses of fly neck motor neurons
to haltere and visual inputs both individually and in combination.
Extracellular and intracellular recordings revealed that some NMNs
do not produce action potentials in response to visual stimuli
alone, but the same NMNs will produce action potentials in re-
sponse to visual stimuli if the halteres are concurrently beating.
Our evidence suggests that this gating-like effect is due to a small,
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Figure 6. Phase locking persists at naturalistic haltere beating frequencies. a, One FN NMN�s
response to haltere stimulation at a frequency of 10.5 Hz. b, The same NMN�s response to 105 Hz
haltere stimulation. The small horizontal line gives the resting potential of the neuron. Note
that in both cases the PSPs and action potentials are phase locked to the stimulus, even though
the compound PSPs occurring at 10.5 Hz are wide enough to summate if they were elicited at
10� the stimulation frequency. Action potentials have been clipped for display purposes. c– e,
A different FN NMN�s response to nonoscillatory ramp-and-hold stimuli in which the haltere
was transiently moved from a low to high position at a speed equivalent to that occurring during
a 10.5 Hz oscillation (c) or a 105 Hz oscillation (d). e, Averages of the waveforms in c and d: the
gray line results from the slow haltere movement in c and the black line from the fast movement
in d. A sharpening of the compound PSP is evident during faster movements of the haltere.
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subthreshold visual input modulating the probability that haltere-
induced PSPs become suprathreshold action potentials.

The action potential nonlinearity results in a gating-like effect
The term “gating” is used in different ways by different authors.
At the level of neurons, the term is either used to refer to a class of
mechanisms that determine whether or not a synaptic input is
effective (Katz, 2003) or as a phenomenological description of the
way a neuron’s action potential output behaves (Reichert et al.,
1985; Reichert and Rowell, 1986). Here we use the term gating in
the phenomenological sense of Reichert et al. (1985). We define
gating as one sensory input influencing the action potential out-
put of a neuron only if a certain condition is met, such as the
presence of a specific motor pattern or a different sensory input
(Reichert et al., 1985; Sillar and Roberts, 1988; Staudacher and
Schildberger, 1998). In our experiments the responses of type II

NMNs meet this definition of gating in
that visual inputs could affect the neu-
ron’s action potential rate, and thus the
muscle activity, only if the haltere input
was also present. In other words, the vi-
sual input is permissively gated by the hal-
tere input as was previously hypothesized
to occur in the NMNs for visual (Sandeman,
1980) and prosternal organ (Gilbert and
Bauer, 1998) inputs. Conversely, the re-
sults can be equally well thought of as a
visual modulation of the NMNs’ responses
to the haltere input, as the haltere-driven ac-
tion potentials may provide necessary tonic
muscle tension, which is then modulated by
visual input.

The results of our intracellular record-
ings suggest that the gating-like effect is
mediated by the threshold nonlinearity
inherent to the generation of action po-
tentials. We hypothesize that the descend-
ing visual inputs to FN type II NMNs
(Haag et al., 2007; Wertz et al., 2008) are
too small to generate action potentials on
their own but can affect the probability
that the haltere-induced PSPs become su-
prathreshold. Thus, the visual input can
affect the neuron’s action potential out-
put only in the presence of another input,
such as that from the halteres (Fig. 7). This
simple mechanism suggests a way in which
two very different sensory inputs may be
combined. As a result of neural summa-
tion, the oscillatory haltere input trans-
forms the sustained visual depolarization
into a temporally structured train of ac-
tion potentials that are phase locked to the
haltere/wing beat cycle. The strength of
the combined visual and haltere inputs is
sampled with each stroke of the halteres
and represented by the number of action
potentials elicited by each haltere-synch-
ronous PSP. In this way the haltere and
visual inputs are effectively “spliced” to-
gether in a manner similar to that hypoth-
esized to occur in the flight steering
system (Heide, 1983; Dickinson, 2005).

An alternative explanation of our results comes from the find-
ing that the haltere steering muscles receive visual inputs, and
thus NMNs may receive visual information indirectly via reaffer-
ent inputs from the halteres (Chan et al., 1998). This hypothesis is
consistent with our extracellular results but cannot alone explain
our finding of a subthreshold visual input to the NMNs that is
present even in the absence of haltere movements. However, our
results do not discount the possibility that NMNs receive indirect
visual inputs via the halteres in addition to the direct subthresh-
old visual input we have identified.

It is probable that the visual responses of type II NMNs are
gated not exclusively by the halteres but also by other sensory
inputs such as those from the proprioceptive prosternal organ
(Preuss and Hengstenberg, 1992; Paulk and Gilbert, 2006), the
wind-sensitive antennae, the ocelli (Parsons et al., 2006), or pos-
sibly by a central state-dependent signal (Rosner et al., 2009)

Visual system

Haltere

Neck muscle

NMN

Visual system

Haltere

NMN ∑ ∑
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∑ ∑

Figure 7. Nonlinear multisensory integration at motor neurons may explain behavioral results. A simple schematic illustrates the
agreement between our electrophysiological results and previous behavioral findings. Visually induced head movements are seen only
during flight and walking, not when the fly is at rest (Hengstenberg, 1991). a, During flight or walking blowflies move their halteres
(Sandeman and Markl, 1980). Visual inputs summate with those from the halteres and cross the action potential threshold (dotted line in
NMNtrace).Thisresults inhalterephase-lockedactionpotentialswhichactivateneckmusclesandinitiatecompensatoryheadmovements.
b, When the fly is at rest, its halteres do not move. Our results suggest that under these conditions, the visual inputs to type II NMNs are
subthreshold and thus cannot affect neck muscle activity, resulting in reduced head movements.
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potentially similar to the depolarization seen when the fly spon-
taneously tried to move during our experiments (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).
In addition, a strong-enough visual stimulus might be able to
elicit action potentials without nonvisual inputs. However, the
well characterized adaptation and gain control mechanisms op-
erating in the LPTCs may attenuate any such effect (for review,
see Borst and Haag, 2002).

Phase locking of NMNs
The visually induced action potentials of all NMNs were found to
be phase locked to the haltere oscillation cycle. This is a possible
explanation for head oscillations that have been observed at
the haltere/wing beating frequency both during free flight (van
Hateren and Schilstra, 1999) and in tethered preparations (Rosner et
al., 2009). It remains to be seen whether the phase locking has
functionally important consequences as in the flight motor sys-
tem (Heide, 1983; Fayyazuddin and Dickinson, 1996, 1999).

The NMN action potentials remain phase locked to the haltere
oscillation even at the high frequencies seen during flight. It ap-
pears that this is possible because the haltere-induced PSP sharp-
ens at faster beating frequencies (Fig. 6), preventing the PSPs
from completely summating to produce a tonic response. The
mechanism underlying the sharpening of the compound PSP
is not clear. Possible, nonexclusive, explanations include (i)
the addition of an input from an electrically coupled neuron
(Fayyazuddin and Dickinson, 1999), (ii) sharpening due to non-
linear conductances (Laurent et al., 1993), or (iii) the individual
haltere-driven PSPs arriving more synchronously due to the faster
haltere motion.

Different NMN recordings displayed a different baseline re-
sponse to the haltere stimulus alone, with some neurons not fir-
ing at all and some producing up to three phase-locked action
potentials per haltere cycle (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material). It is not clear
whether this difference was due to an intrinsic difference between
neurons or due to subtle differences in the haltere stimulus. San-
deman and Markl (1980) used compound action potential re-
cordings to show that the FN NMN population responds most
strongly to forward deflections of the ipsilateral haltere. In con-
trast, our intracellular recordings suggest that FN NMNs can
respond to both vertical and horizontal haltere displacements,
with each haltere driving a different subset of the NMNs. Such
bilateral responses are consistent with the known NMN and hal-
tere neuroanatomy (Sandeman and Markl, 1980; Strausfeld and
Seyan, 1985; Chan and Dickinson, 1996; Trimarchi and Murphey,
1997). Our haltere stimulus attempted to replicate the sensory input
occurring during straight flight. How the NMNs integrate informa-
tion from the halteres during rotations of the fly remains to be inves-
tigated. The haltere inputs during rotations are likely to also be phase
locked to the haltere beating cycle (Pringle, 1948; Nalbach, 1993) and
thus may be integrated with the visual inputs in a manner similar to
that seen in this study.

Behavioral significance
Behavioral experiments have shown that blowflies make visually
induced gaze-stabilizing head movements only when walking or
flying, not when standing still (Hengstenberg, 1991). One possi-
ble explanation is that flies may clamp their head to the body
when inactive (Gilbert and Bauer, 1998). However, our results
are also sufficient to explain this behavioral observation. Blow-
flies do not beat their halteres when standing, but they do when
flying or walking (Sandeman and Markl, 1980). We found that

visual inputs affect the action potential responses of type II
NMNs, and thus the activity of the innervated neck muscles,
only when a nonvisual input such as that from the halteres is
present. This may explain why visually induced head move-
ments are seen only during behaviors in which the fly beats its
halteres (Hengstenberg, 1991). If this were true, an apparently
complex behavioral gating phenomenon (Hengstenberg, 1991)
would be explained by a comparatively simple feature of neurons:
the action potential threshold nonlinearity.

The gating-like effect we observed may not completely explain
the behavioral findings. Tethered flies still make visually induced
head movements even when the halteres have been removed
(Rosner et al., 2009). This may be due to type I NMNs that re-
spond to visual input even in the absence of haltere input (Milde
et al., 1987; Huston and Krapp, 2008). Type I NMNs have smaller
extracellular action potential waveforms and higher spontaneous
action potential rates (Milde et al., 1987; Huston and Krapp,
2008), features typically associated with smaller-diameter motor
neurons that innervate slow muscles. Type II NMNs have the
large extracellular waveforms and low spontaneous rates typically
associated with larger motor neurons that innervate faster mus-
cles (Henneman et al., 1965; Davis, 1971). Thus, it is possible that
haltere movements gate fast, but not slow, visually induced head
movements. In agreement with this interpretation, recent behav-
ioral measurements have shown that high-frequency head move-
ments, but not slow ones, are reduced when the halteres are
removed (Rosner et al., 2009).

In summary, we have shown that a subpopulation of fly neck
motor neurons integrates multisensory inputs in a nonlinear
manner. Visual inputs can affect the NMN action potential out-
puts only if the halteres are simultaneously activated. This gating-
like effect may help explain previous behavioral observations on
the context dependence of visually induced head movements. In
addition, the results from our intracellular recordings suggest
that the action potential threshold is the main cause of the NMN
nonlinear integration.
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