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The hypothalamus is a region of the diencephalon with particularly complex patterning. Sonic hedgehog (Shh), encoding a protein with
key developmental roles, shows a peculiar and dynamic diencephalic expression pattern. Here, we use transgenic strategies and in vitro
experiments to test the hypothesis that Shh expressed in the diencephalic neuroepithelium (neural Shh) coordinates tissue growth and
patterning in the hypothalamus. Our results show that neural Shh coordinates anteroposterior and dorsoventral patterning in the
hypothalamus and in the diencephalon–telencephalon junction. Neural Shh also coordinates mediolateral hypothalamic patterning,
since it is necessary for the lateral hypothalamus to attain proper size and is required for the specification of hypocretin/orexin cells.
Finally, neural Shh is necessary to maintain expression of differentiation markers including survival factor Foxb1.

Introduction
The hypothalamus is a ventral forebrain region regulating ho-
meostasis and reproduction. Alterations of hypothalamic devel-
opment can result in endocrine and metabolic disease (Michaud,
2001; Caqueret et al., 2005). Hypothalamic patterning, however,
is not well understood. The embryonic hypothalamus forms the
rostral–ventral part of the diencephalon. This is a complex region
that, together with the caudal– dorsal diencephalon (prethalamic
region), forms the diencephalon–telencephalon junction (DTJ).
The adult hypothalamus consists of medial and lateral zones. The
medial hypothalamus is a series of neuronal aggregates arranged
rostrocaudally into four areas called preoptic, anterior, tuberal,
and mammillary (MAM), each of them expressing specific mark-
ers. The lateral hypothalamus regulates ingestive, aggressive, and
reproductive behaviors; without recognizable neuronal nuclei, it
is anatomically and functionally very intricate (Simerly, 2004),
and information about its specification and patterning is scarce.
Specific lateral hypothalamus subpopulations expressing
melanin-concentrating hormone (Pmch) and hypocretin (Hcrt)
are essential for the coordination of sleep–wake cycles and feed-
ing behavior (Burdakov et al., 2005).

Ventral patterning of the nervous system is controlled by sig-
naling protein Shh, secreted by non-neural tissues like the pre-
chordal plate and notochord (non-neural Shh) (Ericson et al.,
1997; Gunhaga et al., 2000; Ingham and McMahon, 2001). How-
ever, Shh is also expressed by the ventral midline of the neural

tube (neural Shh). Neural Shh is essential for the coordination of
tissue growth and pattern in the midbrain– hindbrain junction
and cerebellum (Blaess et al., 2006, 2008). In the diencephalic
neuroepithelium, Shh shows an intriguing and dynamic pattern
of expression with domains in the caudal– dorsal diencephalon
[zona limitans interthalamica (ZLI)] and the rostral–ventral di-
encephalon (hypothalamic domain), which seem strategically sit-
uated to influence the formation of the DTJ. In the caudal dien-
cephalon, neural Shh from the ZLI specifies the prethalamus
(PTh) (Hashimoto-Torii et al., 2003; Kiecker and Lumsden,
2004; Vieira et al., 2005; Hirata et al., 2006; Scholpp et al., 2006;
Guinazu et al., 2007) and promotes growth and differentiation of
specific subdivisions of the thalamus (Szabó et al., 2009). The role
of neural Shh in the rostral diencephalon (hypothalamus) and
DTJ, however, is only starting to be analyzed.

We approached the role of neural Shh in hypothalamic devel-
opment through analysis of a conditional mouse mutant as well
as experiments in vitro. Our results show that neural Shh coordi-
nates tissue growth with anteroposterior (AP) and dorsoventral
(DV) patterning in the diencephalon and is essential for the for-
mation of the DTJ. In the lateral hypothalamus, neural Shh is
required for proper size of this zone and for the specification of
hypocretin/orexin cells. Finally, neural Shh is necessary to main-
tain expression of differentiation markers including survival fac-
tor Foxb1.

Materials and Methods
Mutant mouse lines
Animals were treated in ways that minimize suffering and under autho-
rization Az 32.22/Vo from the “Ordnungsamt der Stadt Göttingen,” ac-
cording to the German Law of Animal Protection.

Foxb1-Cre line. This line expresses Cre recombinase in the mouse
diencephalon (Zhao et al., 2007, 2008), and it is a knock-in– knock-out
generating Foxb1 heterozygous animals. These heterozygotes do not
show haploinsufficiency and can be considered identical with wild type
(WT) (Dou et al., 1997; Labosky et al., 1997; Alvarez-Bolado et al., 2000).
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Foxb1-Cre/ROSA26R lineage reporter line. In heterozygous Foxb1-Cre
embryos carrying ROSA26 (Soriano, 1999) or Z/AP (Lobe et al., 1999)
reporter alleles, all cells that express or have expressed Foxb1, and any
cells derived from them, permanently produce �-galactosidase
(ROSA26R) or human placental alkaline phosphatase (hPLAP; Z/AP),
labeling the Foxb1 lineage (Zhao et al., 2007).

Conditional allele of Sonic hedgehog. In this conditional allele, exon 2
of Shh is flanked by loxP sites (Dassule et al., 2000; Lewis et al., 2001).
Exon 2 encodes approximately one-half of the active N-terminal Shh
signal, essential for Shh function (Mann and Beachy, 2004).

Shh-c mutant (Foxb1-Cre/Shh-fl conditional mutant). On crossing
Foxb1-Cre and Shh-fl mice, Shh conditional mutant mice are produced.
We analyze here only mice heterozygous for Foxb1-Cre and homozygous
for Shh-floxed (Foxb1-Cre �/ � Shh-fl � / �), which we term Shh-c mu-
tants. No double homozygotes were used for the analysis.

In Shh-c mutants, exon 2 of the Shh locus has been deleted in the entire
Foxb1 lineage, including the caudal diencephalon, the posterior ventral
hypothalamus, and the diencephalic ventral midline (Zhao et al., 2007,
2008). In Shh-c mutants, whenever transcription from the Shh locus
occurs (in cells of the Foxb1 lineage), the recombined Shh locus produces
a truncated, nonfunctional mRNA lacking exon 2. An exon 2 probe
exclusively detects the functional Shh mRNA (full length).

Shh full mutants. To generate full Shh mutants (see below) (see Fig.
1 I, J), we crossed the Shh-floxed (Dassule et al., 2000) with a transgenic
mouse line carrying Cre under an ubiquitous promoter expressed in
embryonic stem cells (Schwenk et al., 1995), in this way producing full
mutant homozygous embryos (CMV-Cre/Shh-floxed).

Transfection constructs and electroporation
To test the lack of function of Shh without exon 2, we prepared constructs
expressing exon 2-deleted Shh-IRES-EGFP [green fluorescent protein
(GFP)] under the control of CAGGS promoter. We obtained a plasmid
containing the full-length Shh cDNA (from imaGenes), clone
IRAVp968F10144D, and we cloned this cDNA into pXL172 (CAGGS
promoter–multicloning site–IRES-EGFP). Next, we used PCR to synthe-
size an exon 2-deleted Shh cDNA. In a first PCR step, we used Shh cDNA
as template to amplify exon 1 and exon 3 in separate reactions. In each
reaction, we used “bridge” primers so that the 3� primer for exon 1
contained 24 nt of the 5� end of exon 3, and vice versa. We used the
product of this amplification as template in a second PCR step, which
produced a final continuous exon 1– exon 3 fragment (i.e., exon
2-deleted), which was also cloned into pXL172. The constructs were
confirmed by sequencing.

Embryonic day 10.5 (E10.5) mouse brains were harvested, injected
with 2 �g/�l DNA, and then electroporated with a CUY21EDIT
Nepagene square wave electroporator (Nepa Gene) and the “tweezer
electrodes” (22 V; 50 ms Pon, 950 ms Poff; three pulses). The brains were
then cut open and cultured for 48 h (see below, Explants), and then GFP
expression was analyzed and photographed, and the explants were fixed
and treated for whole-mount in situ hybridization (ISH).

ISH and reporter detection
Templates were PCR-amplified (primer sequence available on request)
from cDNA (from total RNA from newborn mouse brain plus E10.5–
E11.5 embryos). Probes were synthesized using the Roche RNA tran-
scription kit (DIG RNA or Fluorescein RNA Labeling Mix). ISH on
whole mount or on cryostat sections has been described often. For dou-
ble whole-mount ISH, probes were labeled with either digoxygenin or
fluorescein. Antibodies were as follows: anti-fluorescein-alkaline phos-
phatase (Fab fragment) (1:5000) and anti-digoxigenin-alkaline phospha-
tase (Fab fragment) (1:5000) (both from Roche). Color substrates were as
follows: BM Purple, Fast Red, or INT (2-[4-iodophenyl]-3-[4-
nitrophenyl]-5-phenyltetrazolium chloride)/BCIP (5-bromo-4-chloro-
3-indolyl phosphate) (Roche).

Staining for alkaline phosphatase and for �-galactosidase activity were
performed as described previously (Koenen et al., 1982; Lobe et al.,
1999).

5-Bromo-2�-deoxyuridine labeling
Pregnant mice were intraperitoneally injected with 5-bromo-2�-
deoxyuridine (BrdU) (RPN201; GE Healthcare) (50 �g/g of body
weight) either at E10.5 or at E12.5, and the embryos were collected 1 h
(E10.5) or 3 h (E12.5) later. We used anti-BrdU antibody M0744 (1:100)
(Dako) on 20 �m cryosections after epitope retrieval (2 M HCl for 30 min
at 37°C), with nuclear marker 4�,6-diamidino-2-phenylindole dihydro-
chloride (DAPI) (Invitrogen) as a counterstain. We examined and pho-
tographed the sections under confocal microscopy and counted BrdU-
labeled and -unlabeled cells in the neuroepithelium on two histological
sections (per level) at one rostral (anterior hypothalamic) and one caudal
(MAM) level in three animals per age and genotype (wild type and Shh-
c). Then we calculated the labeling index (BrdU-labeled cells as percent-
age of total cells) (Takahashi et al., 1993; Warren et al., 1999; Ishibashi
and McMahon, 2002).

Apoptosis detection
We selected cryostat sections of E10.5 and E12.5 brains at two hypotha-
lamic rostrocaudal levels (anterior hypothalamic region and MAM) in
three individuals per genotype and pretreated them with 4% paraformal-
dehyde (20 min) and proteinase K (1.5 �g/ml; 5 min) at room tempera-
ture and then labeled the apoptotic cells with the ApopTag terminal
deoxynucleotidyl transferase-mediated biotinylated UTP nick end label-
ing kit (Millipore) according to the instructions of the manufacturer. We
counted absolute number of apoptotic cells per histological section of the
hypothalamus (both sides) under high magnification with DAPI as
counterstain.

Statistical analysis
ANOVA was performed with Prism software (GraphPad Software).

Explants
E9.5 wild-type mouse brains were cut open along the ventral midline,
flattened (neuroepithelial side down) on Millicell-CM membranes (Mil-
lipore), and cultured under standard conditions in Neurobasal/glu-
tamine (2 mM)/B-27 (Invitrogen). The following experimental reagents
were added: Wnt pathway inhibitor 4-(4-(2,3-dihydrobenzo[1,4]dioxin-
6-yl)-5-pyridin-2-yl-1 H-imidazol-2-yl)benzamide (D4476) (Rena et al.,
2004; Bryja et al., 2007) (50 �M in DMSO; Calbiochem), Shh pathway
inhibitor cyclopamine (15 �M in DMSO; Sigma-Aldrich), and Wnt path-
way activator LiCl (Klein and Melton, 1996) (10 mM; Sigma-Aldrich).
Control experiments were performed in parallel with equal DMSO
(NaCl to control for LiCl) concentrations. None of the reagents increased
cell death (“Live/Dead” Viability/Cytotoxicity kit; Invitrogen) (data not
shown). After 48 h, explants were fixed (4% paraformaldehyde) and
processed for ISH. The Foxb1-expressing area of MAM neuroepithelium
was measured on photographs with the help of CellF 2.6 software (Olym-
pus Soft Imaging Solutions).

Results
Foxb1-driven Cre abolishes Shh full-length expression in the
anterior ventral neural plate and forebrain
We crossed Foxb1-Cre heterozygous mice with Shh-floxed (Das-
sule et al., 2000) mice to obtain Foxb1-Cre�/ �/Shh-floxed� / �

animals, termed Shh-conditional (Shh-c) mutants. We did not
use double homozygous animals for the analysis, because a
Foxb1� / � phenotype could alter the Shh-c phenotype. Foxb1�/ �

are normal (see Materials and Methods). Shh-c mutants die
around the time of birth. The patterning processes analyzed here
take place much earlier.

The floxed Shh mouse line that we use has previously been
used to analyze the role of Shh in the development of other organs
(Dassule et al., 2000; Lewis et al., 2001; Machold et al., 2003;
Komada et al., 2008). On Cre-mediated recombination, the
floxed Shh loses exon 2 (Dassule et al., 2000; Lewis et al., 2001),
which encodes the N terminal, required for Shh function (Fan et
al., 1995; Hynes et al., 1995; Lai et al., 1995; López-Martínez et al.,
1995; Martí et al., 1995; Roelink et al., 1995). However, we wanted
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to ascertain that this was also the case in the forebrain neuroepi-
thelium. E10.5 explants transfected with a construct expressing
full-length Shh expressed ectopic Ptch1 (diagnostic of Shh path-
way activation) (for review, see Lewis et al., 2001), whereas trans-
fection of Shh constructs in which exon 2 had been deleted did
not have any effect (Fig. 1A–E).

To analyze our mutants, we needed to know whether and
when the mutant neural plate was able to express Shh. At E8.0,
Foxb1 was expressed in the ventral midline of the wild-type ante-
rior neural plate (Fig. 1F) (Zhao et al., 2007), whereas Shh was
expressed in the prechordal mesendoderm but not yet in the
neural plate of wild type or mutant (Fig. 1G,H). Foxb1 was ex-
pressed in the neural plate of a Shh� / � embryo (full Shh knock-
out mutant), indicating that Shh is not required for initiation of
Foxb1 expression (Fig. 1 I, J).

At E8.5, both Foxb1 and Shh were expressed in the wild-type
ventral neural plate (Fig. 1K,L). In the mutant, the Shh locus was
active as revealed by ISH with a “long probe” detecting any Shh
transcripts (i.e., wild-type Shh mRNA as well as truncated Shh
mRNA, the product of a Cre-recombined Shh locus) (Fig. 1M),
but it produced nonfunctional Shh mRNA in the neural plate, as
shown by an exon 2 probe, which detects only the product of the
wild-type Shh locus (non-Cre-recombined) (see Materials and
Methods) (Fig. 1N). At the 12–14 somite stage, Foxb1 and Shh
were expressed in wild-type ventral diencephalon with a rostral
limit at the optic sulcus (Fig. 1O,P, arrowhead) (Shimamura et
al., 1995; Zhao et al., 2007). In the mutant, the Shh locus was
active in appropriate domains (Fig. 1Q), but full-length, func-
tional Shh transcripts were limited to the ventral caudal dien-
cephalon (Fig. 1R, arrow), not rostral diencephalon (hypothala-
mus) (Fig. 1R, arrowhead).

These results indicated complete elimination of functional
Shh mRNA in the Shh-c hypothalamus from E8.5 on.

Activation of Shh expression in the basal plate depends on
neural Shh
Since diencephalic Foxb1 expression is mostly transient (Zhao et
al., 2007, 2008), we used a lineage reporter mouse line to identify
the regions in which a phenotype can be expected. In these em-
bryos, cells that have expressed Foxb1, as well as cells derived from
them, express �-galactosidase permanently, allowing for the iden-
tification of the regions in which Foxb1-driven Cre recombina-
tion has taken place (see Materials and Methods).

At 21–24 somites, Foxb1-lineage cells were found in the ven-
tral part of rostral and caudal diencephalon, in the diencephalic
ventral midline up to eye levels (Fig. 1S), and in the branchial
arches (Fig. 1S, arrowheads). Shh at this age had disappeared
from the ventral side (Fig. 1, compare P, T) and was expressed in
four distinct domains: (1) suboptical, (2) a longitudinal band
representing the basal plate (bp) of the rostral diencephalon
(Puelles et al., 2004), (3) a small domain in the MAM, and (4) the
incipient ZLI in the caudal diencephalon (Fig. 1T). The ventral
portion of the tuberal area was devoid of Shh expression at this
age (Fig. 1T, arrowhead). In Shh-c mutants, Shh transcriptional
activation was abolished in the bp and ZLI domains, but main-
tained in the MAM and suboptical domains (Fig. 1U). Func-
tional Shh was expressed only in the suboptical domain, with
reduced intensity (Fig. 1V). In the ZLI domain, maintenance of
activity in the Shh locus requires Shh (feedback loop) (Kiecker
and Lumsden, 2004; Zeltser, 2005), which explains the lack of a
ZLI in this mutant, and possibly also the lack of a bp domain. In
contrast, the suboptical domain and the MAM domain can acti-
vate Shh expression independently of Shh of neural origin.

The major brain regions can be recognized by expression of
specific markers at E12.5 (Shimamura et al., 1995). At this age,
the thalamus, the MAM, and scattered cells in prethalamus and
hypothalamic floor plate were of Foxb1 lineage (Fig. 1W), indi-
cating that those regions would not be able to express functional
Shh in the mutant. In the wild-type embryo at this age, a new Shh
domain was present [medial ganglionic eminence (MGE)] and
the domains detected earlier were fully developed (Fig. 1X). The
MAM showed an Emx2-expressing subdomain corresponding to
its most prominent neuronal nucleus, the mammillary body
(MBO) (Fig. 1X, inset; supplemental Fig. 1A, available at www.
jneurosci.org as supplemental material) and a Shh-expressing
subdomain. The bp domain of Shh expression was still strong in
the tuberal area (Fig. 1X). In the Shh-c brain, the bp domain was
absent (as well as the ZLI) (Fig. 1Y), and most of the remnant Shh
transcriptional activity produced inactive Shh transcripts, except
for the MGE (Fig. 1Z).

Early abolition of the Shh pathway in the Shh-c forebrain
Non-neural sources of Shh can still activate the Shh pathway in
the mutant neuroepithelium. Therefore, we characterized the
state of the pathway in Shh-c embryos by detecting expression of
Shh receptor Ptch1 and transcription factor gene Gli1, diagnostic
markers of Shh pathway activity (for review, see Lewis et al.,
2001). At E8.5, the pathway was active in the mutant ventral
midline (Fig. 2A–D), probably because of a response to non-
neural Shh from the prechordal plate. At 14 somites, Gli1 and
Ptch1 expression in the mutant disappeared from the ventral di-
encephalon (Fig. 2E–H) but was retained in the ventral telen-
cephalon further demonstrating the specific ablation of Shh in
the diencephalon (Fig. 2H). The loss was maintained at 24
somites (Fig. 2 I–L). These results show a shift in the dependence
of the wild-type neural plate from non-neural to neural sources
of Shh and indicate that, in the Shh-c neural plate, the Shh path-
way is rendered inactive very early at diencephalic levels.

Regional hypothalamic patterning in the Shh-c embryo
Shh is essential to specify the hypothalamus (Chiang et al., 1996).
Regional specification of the hypothalamus is defined by Nkx2-1
(Titf1) expression (Kimura et al., 1996; Puelles et al., 2004). We
found Nkx2-1 expression in an appropriate (although reduced in
size) region of the Shh-c forebrain at E9.5 (Fig. 3A,B) and E11.5
(Fig. 3C,D), indicating the presence of a ventral forebrain region
fated to become hypothalamus.

The major brain regions can be recognized by specific marker
expression at E12.5 (Shimamura et al., 1995). To explore the
regionalization of the hypothalamus in the absence of neural Shh,
we detected expression of Dlx2 (Pierani et al., 2001; Petryniak et
al., 2007) and Dbx1 (Lu et al., 1992; Shoji et al., 1996), transcrip-
tion factor genes expressed in the presumptive hypothalamus and
with important developmental roles. (Nkx2-1 at E12.5 can be
seen in Fig. 4A,B.) Expression of Dlx2 (Fig. 3E,F) and Dbx1 (Fig.
3G,H) was almost completely abolished in the mutant
hypothalamus.

The MAM in the Shh-c embryo
Dlx2 expression in the mutant (Fig. 3F) suggests abolition of the
PTh. This could be expected, since neural Shh (from the ZLI) is
essential for PTh development, as has been thoroughly docu-
mented (see references in Introduction). However, the continu-
ity of dorsal and ventral diencephalon in the absence of a PTh has
not been investigated. Rostral to the ZLI, the diencephalon con-
sists of PTh and thalamic eminence [eminentia thalamica
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Figure 1. Foxb1-driven Cre abolishes Shh expression in the anterior ventral neural plate and forebrain. A–E, Explant cultures according to A of E10.5 wild-type brains (B–E) electroporated with full-length
Shh (B, C) or exon 2-deleted Shh (D, E). Transfected areas (B, D, white arrowheads) express GFP. Full-length Shh induced ectopic Ptch1 expression (C) but exon 2-deleted Shh did not (E). F–H, ISH for Foxb1 (F )
and Shh-long probe (G, H ) on E8.0 anterior neural plate in wild type (F, G) and Shh-c (H ). The ventral neural plate shows Foxb1 (F ), but not yet Shh in wild type (G) or mutant (H ). I, J, Foxb1 is expressed in the
early neural plate in wild type (I ) and Shh � / � (full mutant) (J ). The arrowhead indicates the diencephalon. The black line indicates the DTJ. K–N, At E8.5, Foxb1 and Shh are coexpressed in wild-type ventral
anterior neural plate (K, L, arrow). Shh is expressed in foregut also (K, L, arrowhead). In the mutant, Shh is expressed in the ventral rostral neural plate (M, arrow) and foregut (M, arrowhead) but lacks exon 2 in
the neural plate (N, arrow), not foregut (N, arrowhead). O–R, At 12–14 somites, Foxb1 (O) and Shh (P) overlap in ventral forebrain (O, P, arrowhead). In the Shh-c, Shh was expressed in a comparable domain
(Q, arrowhead), but lacked exon 2 (R, arrowhead). The tegmentum expressed some full-length Shh (R, arrow). S–V, �-Galactosidase shows Foxb1 lineage in Foxb1-Cre/ROSA26R mice at 21–24 somites (S)
overlappingwithShhexpression(T )(arrowheadsinSshowFoxb1-lineagecells inthebranchialarches).Shhexpression(T )wasabsentfromventral forebrain(arrowhead)andshowednoveldomains:suboptical,
basal plate (bp), ZLI, and MAM. In the mutant, Shh transcriptional activation was missing in the bp and ZLI domains (U ). Functional Shh transcripts were produced only in the sub, in reduced amounts (V ). W–Z,
At E12.5 the Foxb1 lineage covers thalamus and most of the prethalamus (Th and PTh in W ), as well as MAM (W, asterisk). Shh expression (X ) showed a telencephalic domain (MGE). Dotted line, TUB–MAM
boundary. In the MAM, the MBO (X, asterisk) does not express Shh but Emx2 (X, inset) (see also supplemental Fig. 1 A, available at www.jneurosci.org as supplemental material). In the mutant (Y ), only the MAM
and MGE domains remained. Only the MGE produced functional Shh transcripts (Z). For the abbreviations used in the figures, see Table 1.
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(EMT)]. Lhx5 labels specifically the EMT and the MBO, but
not the PTh (Bachy et al., 2001) (Fig. 3I ). In the mutant, an
abnormal Lhx5 domain encompassed a stripe of dorsal and
ventral diencephalon (Fig. 3J ), as if formed by a fusion be-
tween EMT and MAM. Colocalization of this marker with
Pitx2, a specific marker of the MAM (Skidmore et al., 2007),
showed that the MAM is not dorsally expanded in the mutant,
but the absence of PTh tissue leads to abnormal contiguity of
EMT and MAM (Fig. 3 K, L).

Wnt8b expression labels the MBO in all vertebrates (Cui et al.,
1995; Kelly et al., 1995; Lako et al., 1998; Garda et al., 2002;
Houart et al., 2002), as well as the rostral border of the dorsal
diencephalon (supplemental Fig. 1B, available at www.jneurosci.
org as supplemental material). In the Shh-c mutant, both domains
coalesce (supplemental Fig. 1C, available at www.jneurosci.org as
supplemental material) like the Lhx5 domains (Fig. 3J). Codetection
of Wnt8b with Pitx2 (supplemental Fig. 1D,E, available at www.
jneurosci.org as supplemental material) confirmed that both do-
mains become contiguous in the mutant, as opposed to a dorsal
expansion of the MAM. The fact that Lhx5 is expressed in a mutant
without PTh represents a genetic dissection of the rostral–dorsal
diencephalon. We analyzed this by colocalizing EMT marker
Tbr1 (Puelles et al., 2000) and PTh marker Arx (Kitamura et al.,
1997), which show contiguous domains in the rostral– dorsal
diencephalon (supplemental Fig. 1 F, available at www.
jneurosci.org as supplemental material). As expected, Arx was miss-
ing in the mutant, but Tbr1 also (supplemental Fig. 1G, available at
www.jneurosci.org as supplemental material). [The wild-type ex-
pression patterns of Foxg1, Foxd1, Tbr1, and Pitx2 as single

markers can be found in supplemental Fig. 1H–K (available at
www.jneurosci.org as supplemental material).]

The apparent fusion of rostral– dorsal diencephalon with the
MAM results in an alteration of the DTJ. The expression domains
of transcription factor genes Foxd1 and Foxg1 define the DTJ
(Hatini et al., 1994; Herrera et al., 2004) (Fig. 3M). Codetection
of these markers in the mutant was less informative, since Foxd1
failed to be expressed (Fig. 3N). However, careful examination of the
DTJ in our material showed that, in the mutant, it goes all the way to
the ventral side, as shown in the diagrams in Figure 3, O and P.

The DTJ in the Shh-c
To examine the DTJ more closely, we sectioned E12.5 wild-type
and mutant embryos along the horizontal plane of section (indi-
cated in Fig. 4A,B,K,L) and labeled them for hypothalamic
marker Nkx2-1 as well as MBO marker Emx2 (Fig. 4A,B,K,L).
Nkx2-1 labeling showed that the mutant tuberal area was much
shorter along the anteroposterior axis (Fig. 4E–H) and had lost
Nkx2-1 expression in a large caudal area (Fig. 4C–J).

The most dorsal expression of Nkx2-1 in the hypothalamus
(Fig. 4A, arrow) marked a depression or sulcus in the neural tube
(Fig. 4C, arrow), which could be followed to ventral levels in the wild
type (Fig. 4C,E,G, arrows) and the mutant (Fig. 4D,F,H,J, arrows).

Emx2 expression labeled the MBO very specifically in the
wild type (Fig. 4K,S; supplemental Fig. 1A, available at www.
jneurosci.org as supplemental material), and in the mutant it was
present in an abnormal caudal structure (Fig. 4L, arrowhead).
Emx2-labeled sections of the mutant showed that the sulcus men-
tioned above starts at the point (Fig. 4N, arrow) at which the

Figure 2. The Shh pathway is gradually abolished in the early Shh-c forebrain. In situ hybridization for Ptch1 and Gli1 on wild-type and Shh-c mutant embryos. A–D, At E8.5, Ptch1 and Gli1 were
expressed in the ventral rostral neural plate (arrow) in wild type (A, C) and mutant (B, D). The arrowheads indicate the foregut. E–H, At 14 –16 somites, both Ptch1 and Gli1 were expressed in the
entire ventral neural tube (E, G) but had disappeared from the mutant rostral neural tube (F, H ) except in the sub. I–L, At 21–24 somites, the domain of expression of Ptch1 and Gli1 in wild type (I,
K ) showed domains similar to Shh: bp and sub, and an incipient telencephalic domain, MGE (compare with Fig. 1T ), whereas in the mutant both markers were still absent from the forebrain (J, L)
except for low-intensity expression of Gli1 in the sub (L).
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cortex (telencephalon) meets the diencephalon, in coincidence
with the beginning of an Emx2-expressing hypothalamic region
which seems an extension of the cortex (Fig. 4N, arrowhead). The
sulcus could be followed in the ventral direction in the wild type
(Fig. 4M,O,Q) and mutant (Fig. 4N,P,R,T).

However, in the Shh-c hypothalamus, Emx2 expression la-
beled a region flattened rostrocaudally and with a convoluted
lumen (Fig. 4N,P,R,T, arrow and arrowhead) more reminiscent
of cortex than hypothalamus.

An Emx1-expressing layered structure in the ventral
diencephalon of the Shh-c embryo
Emx1 is a very specific cortical marker not expressed in any other
structure (Gulisano et al., 1996) and labels the entire cortex of the
E12.5 mouse (Fig. 5A,B). In the Shh-c mutant, intriguingly, the
Emx1-expressing cortex extended toward the midline (Fig. 5C,D,
red arrowheads). In coronal sections (Fig. 5E–H) of wild type and
mutant, we could ascertain expression of Emx1 in one layered
structure occupying the ventral side of the diencephalon (Fig.
5G,H, red arrowheads). Detection of Emx1 at E18.5 (Fig. 5 J,K)
confirmed this finding (Fig. 5K, red arrowheads). Tbr1 is a
marker of the pallium (cortex and hippocampus) and thalamic
eminence (Bulfone et al., 1995) and it was expressed in a layered
structure positioned in the mutant hypothalamus at E18.5 (Fig.
5L,M). Foxg1 (Xuan et al., 1995) is a telencephalic marker (Fig.
5N) also expressed in this structure (Fig. 5O, arrow).

Cell proliferation and cell death in the Shh-c hypothalamic
neuroepithelium at E10.5 and E12.5
Shh promotes proliferation and cell viability in the diencephalic
neuroepithelium at E9.0 (Ishibashi and McMahon, 2002). We

wanted to know whether neural Shh controls those cellular pro-
cesses in the hypothalamus after that age. To address this ques-
tion, we analyzed Shh-c mutant embryos for proliferation and cell
death. We analyzed proliferation by BrdU labeling at E10.5 (1 h
survival) and E12.5 (3 h survival). At E10.5, we did not find any
difference in labeling index between wild type and mutant (data
not shown). At E12.5, however, we found in rostral sections a
moderate (�20%) but significant ( p � 0.001) decrease in pro-
liferation in the mutant (labeling index in rostral hypothalamus:
49.5 � 0.70 in wild type vs 40 � 4.20 in the mutant; in caudal
hypothalamus: 50 � 0.5 in wild type vs 51.5 � 0.70 in the mutant)
(data not shown). We did not find changes in cell death in the
hypothalamus at E10.5 or E12.5 (data not shown).

The ventral diencephalon of the Shh-c is transversally divided
into two parts
Next, we wanted to assess diencephalic differentiation at a later
stage, when neurogenesis is over and the mantle layer is differen-
tiated. Since Shh-c mutants do not survive beyond the end of
gestation, we analyzed E18.5 brains. Inspection of Nissl-stained
sections showed size reduction of the basal ganglia, hypothala-
mus and thalamic region, and an enlarged third ventricle (Fig.
6A,B). As expected from previous results (Fig. 5K), a layered
structure (Fig. 6B, asterisk) was positioned medially and ven-
trally. To identify the major brain regions in the mutant, we used
marker genes Gbx2, Nkx2-1, Lhx1, and Calb1. Gbx2, a thalamic
transcription factor (Miyashita-Lin et al., 1999), identified a re-
duced mutant thalamus (Fig. 6C,D). Expression of Nkx2-1, an
essential marker of the early hypothalamus as a region, is re-
stricted during differentiation to specific hypothalamic nuclei
including part of the preoptic area and the mamillary body (Price
et al., 1992) (Fig. 6E). Expression of Nkx2-1 was maintained in
the mutant preoptic area (Fig. 6F). Immediately caudal to the
preoptic area is the anterior hypothalamic area, a prominent nucleus
of which is the suprachiasmatic (SCH), specifically expressing tran-
scription factor Lhx1. Lhx1 expression was preserved in the mutant
(Fig. 6G,H). The next rostrocaudal subdivision, the tuberal region,
contains the ventromedial nucleus (VMH), specifically expressing
Calb1 (Fig. 6I). In the mutant, the VMH was smaller but expressed
the marker (Fig. 6J). The layered structure was positioned immedi-
ately caudal to the VMH in the mutant (Fig. 6J) but rostral to the
MBO (Fig. 6F,H). This suggested that this structure separated the
preoptic, anterior, and tuberal areas from the MAM.

These results are summarized in Figure 6, K and L. Additional
information can be found in supplemental Figure 2 (available at
www.jneurosci.org as supplemental material).

Neural Shh is required for the development of the
lateral hypothalamus
To explore the mediolateral extension of the mutant hypothala-
mus we detected expression of arginine vasopressin (Avp), which
encodes a hormone specifically expressed in the paraventricular
(PVN) and supraoptic (SO) nuclei (Fig. 7A). In the mutant, the
PVN was reduced, Avp neurons were scattered in the mediolat-
eral plane and the SO was absent (Fig. 7B). However, on sagittal
sections labeled with specific marker genes Sim1 (Michaud et al.,
1998) and Otp (Acampora et al., 1999) (supplemental Fig. 2E–H,
available at www.jneurosci.org as supplemental material), the
PVN was not expanded rostrocaudally. Since the hypothalamus
is strongly patterned in the transverse plane (i.e., medial hypo-
thalamus vs lateral hypothalamus), these data suggested a specific
alteration of mediolateral patterning.

In horizontal sections, the lateral hypothalamus can be recog-

Table 1. Abbreviations

Abbreviation Definition

3V Third ventricle
ac Anterior commissure
AHA Anterior hypothalamic area
bar Branchial arch
bp Basal plate
CTX Cortex
DG Dentate gyrus
DTJ Diencephalon–telencephalon junction
EMT Thalamic eminence (eminentia thalamica)
hPLAP Human placental alkaline phosphatase
Hy Hypothalamus
LH Lateral hypothalamus
MAM Mammillary area
MBO Mammillary body
MGE Medial ganglionic eminence
Os Optic sulcus
oto Otocyst
PCP Prechordal plate
PRO Preoptic area
PT Pretectum
PTh Prethalamus
PVN Paraventricular nucleus
SC Superior colliculus
SCH Suprachiasmatic nucleus
sub Suboptical domain
TG Tegmentum
Th Thalamus
TL Telencephalon
TUB Tuberal area
VL Lateral ventricle
VMH Ventromedial nucleus
ZLI Zona limitans interthalamica
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nized by the large number of longitudinal axons that course
through it, as opposed to the more compact medial hypothala-
mus (Fig. 7C). By this criterion, a lateral hypothalamus seems to
be mostly absent in the mutant (Fig. 7D). By crossing our Shh-c
conditional mutants with the mouse reporter line Z/AP (Lobe et
al., 1999), we labeled the neurons of Foxb1 lineage (see Materials
and Methods), which are very abundant in the lateral hypothal-
amus (Fig. 7E) but were dramatically reduced in the mutant (Fig.
7F). Specific expression of marker genes pro-melanin-
concentrating hormone (Pmch) (Fig. 7G) and hypocretin-orexin
(Hcrt) (Fig. 7I) characterizes two independent neuronal sub-
populations in the lateral hypothalamus. The number of Pmch
neurons was extremely reduced in the mutant (Fig. 7H), whereas
Hcrt neurons were completely absent (Fig. 7J). These results

(summarized in Fig. 7K,L) show that deficiency in neural Shh
results in alterations of growth and terminal differentiation of the
lateral hypothalamus as well as in the lack of specific, functionally
important neuronal subpopulations.

Neural Shh is required to maintain expression of the
mammillary survival factor Foxb1
Dependence of Foxb1 expression on neural Shh (Fig. 8A,B) was
surprising, since Foxb1 is expressed in the Shh-deficient neural
plate (Fig. 1 I, J), suggesting a feedback loop between both factors.

We analyzed this question on cultured explants of whole em-
bryonic forebrain. For this purpose, we dissected the forebrains
of wild-type E9.5 mouse embryos, cut them open following the
ventral midline, and flattened them on Millipore membranes

Figure 3. Loss of hypothalamic markers in the Shh-c embryo. A–N, Whole-mount ISH detection on hemisected embryo brains. Ages, probes, and genotypes are as indicated. A–D, At E9.5 (A, B)
as well as E11.5 (C, D), Nkx2-1 was expressed in the ventral forebrain in wild type (A, C, arrows) and mutant (B, D, arrows). E, F, The TUB (and PTh) domains of Dlx2 (E) were almost completely
abolished in the mutant (F ) (the arrow indicates a remnant). The upper border of Th is outlined for clarity. G, H, The hypothalamic domain of Dbx1 expression (G) (MAM plus TUB) was absent in the
mutant (H ). I, J, The MAM and EMT domains of Lhx5 (I ) are reduced and seem fused in the mutant (J ). K, L, Colocalization of Lhx5 and Pitx2 expression clarifies the extent and position of the MAM
with respect to the EMT in the mutant. M, N, Foxg1 and Foxd1 show the DTJ in wild type (M ). In the mutant, Foxd1 is not expressed (N ). O, P, Diagrams showing the DTJ (red line) in wild-type (O)
and Shh-c (P) E12.5 hemisected brains as seen in the previous panels.
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with the neuroepithelial side down (Fig. 8C–E). The explants
were cultured for 48 h in control media or after adding one of
several reagents to modify the activity of different signaling path-
ways. Shh pathway inhibitor cyclopamine abolished Foxb1 ex-
pression in E9.5 explants (in 8 of 10 explants; 8 of 10) (Fig. 8F,G),
but not in E12.5 explants (9 of 11) (Fig. 8H, I). Therefore, be-
tween E9.5 and E12.5, neural Shh maintains Foxb1 expression,

perhaps against inhibiting influences by other factors. A powerful
signaling agent, Wnt8b, specifically expressed in the MBO (Fig.
8 J–L) is able to reduce the Foxb1 MAM expression domain in
zebrafish (Kim et al., 2002). We therefore tested whether canon-
ical Wnt signaling controls Foxb1 expression. Wnt pathway acti-
vator LiCl (Stambolic et al., 1996) decreased the Foxb1 MAM
expression domain (9 of 10) (Fig. 8M,N). D4476 is a casein

Figure 4. The Shh-c hypothalamus in horizontal sections at E12.5. A, B, K, L, Whole-mount detection of gene expression on hemisected E12.5 brains; probes and genotypes are as indicated. The
red dotted lines indicate approximate plane of section of the panels below. The white lines in B, K, and L emphasize the DTJ. C–J, M–T, ISH detection of Nkx2-1 (C–J ), and Emx2 (M–T ) on horizontal
sections showing four dorsal-to-ventral levels of the hypothalamus of WT and Shh-c E12.5 brains as indicated. The most dorsal hypothalamic domain of Nkx2-1 (A, C, arrows) in the wild type marks
a sulcus that can be followed up to ventral levels in wild type and mutant (D–H, J, M–R, arrows). M, N, Emx2 expression shows that the sulcus corresponds in the mutant to the point at which
diencephalon and telencephalon meet (N, arrow), in close proximity to a domain of Emx2 expression (N, arrowhead). This Emx2 domain can be followed in the mutant from the DTJ (N ) to ventral
levels of the hypothalamus (P, R, T ). S, Expression of Emx2 in the wild-type MBO. T, A convoluted structure expresses Emx2 in the mutant.
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kinase-1 inhibitor able to block the Wnt pathway (Rena et al.,
2004; Bryja et al., 2007). In explants cultured with D4476 the
Foxb1 MAM expression domain increased in size (9 of 11) (Fig.
8O–Q). These results suggested that the Wnt pathway, probably
activated by Wnt8b, restricts the Foxb1 MAM expression domain
in the neuroepithelium. In agreement, as Wnt8b expression in-
creases in the MAM neuroepithelium during development,
Foxb1 is downregulated in the neuroepithelium and upregulated
in the newly born MBO neurons; by E12.5 the separation of the
expression domains of both markers in the MAM was complete

(Fig. 8R,S). These results suggest that neural Shh maintains
Foxb1 MBO expression, whereas Wnt8b inhibits it in the neuro-
epithelium, thereby restricting Foxb1 to neurons. Our results,
together with some data from the literature (see Discussion), are
summarized in Figure 8T.

Discussion
By analyzing a neuroepithelium-specific Shh mutant phenotype,
we elucidate the differential roles of Shh from the notochord and
the neuroepithelium on hypothalamic development. We show

Figure 5. Layered structure in the ventral diencephalon in the Shh-c brain. A–D, E12.5 wild-type (A, B) and Shh-c (C, D) brains hybridized for Emx1 in caudal (A, C) and ventral (B, D) view (the
diencephalic ventral side was cut open longitudinally). The black arrows indicate the medial limit of the cortex in wild type (A, B) and comparable point in the mutant (C, D). The red arrowheads
indicate ectopic expression of Emx1 in the mutant (C, D). E–I, Sections of E12.5 wild-type (E, F ) and Shh-c (G, H ) brains hybridized for Emx1 show ventral ectopic expression in the mutant (G, H, red
arrowheads). The plane of section is shown in I. J, K, Emx1 expression on sections of E18.5 wild-type (J ) and Shh-c (K ) brains. The black arrows indicate normal expression in hippocampus. The red
arrowheads (K ) indicate neuroepithelial ectopic Emx1 expression in the mutant. L, M, Tbr1 expression on sections of E18.5 wild-type (L) and Shh-c (M ) brains. The black arrows indicate normal
expression in hippocampus. The black arrowhead in L indicates EMT expression of Tbr1 in wild type. The red arrowhead in M indicates one well defined layer of ectopic Tbr1 expression in the mutant.
N, O, Foxg1 expression labels the telencephalon (N, O) as well as the ectopic structure in the mutant (O, arrow).
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that neural Shh is essential for the coordination of tissue growth
and acquisition of AP and DV patterning in the hypothalamus
and the DTJ. We demonstrate a role for neural Shh in growth and
pattern coordination along the mediolateral axis of the hypothal-

amus as well as in the specification of lateral hypothalamic neu-
ronal subpopulations. We further show that neural Shh differen-
tially promotes cell proliferation in the rostral and MAM regions.
In addition, neural Shh influences the maintenance of Foxb1 ex-
pression in postmitotic MBO neurons by interplay with the Wnt
pathway.

Finally, since our mutant expresses Nkx2-1 in the ventral di-
encephalon and has two eyes, our results imply that neural Shh is
dispensable for hypothalamic regional specification and eye field
separation, two processes depending on Shh signaling (Chiang et
al., 1996; Mathieu et al., 2002).

Neural Shh in hypothalamic precursor expansion
and neurogenesis
Shh is needed early for proliferation in the diencephalon (Ishi-
bashi and McMahon, 2002) and in particular in the caudal re-
gions (Manning et al., 2006), which agrees with the reduced size
of the hypothalamus in our mutant already at E9.5 (Fig. 3B). Our
data indicate that this requirement is temporally restricted, and
by E10.5 it has disappeared. However, we show that neural Shh
has some promoting effect on proliferation in the rostral hypo-
thalamus at E12.5, during the most active phase of hypothalamic
neurogenesis (Altman and Bayer, 1986; Clancy et al., 2001). The
effect of neural Shh on the neuroepithelium at this age could be
direct, since weak expression of Gli1 and Ptch1 can be detected at
ventral levels of the hypothalamic neuroepithelium through
E12.5 and persists at least until E14.5 (data not shown). The effect
of neural Shh could also be indirect, as in the early dorsal dience-
phalic proliferation (Ishibashi and McMahon, 2002).

Shh is necessary for cell viability in the diencephalic neuroep-
ithelium at E9.0 (Ishibashi and McMahon, 2002) and in the mid-
brain– hindbrain junction until E10.5 (Blaess et al., 2006). We
show, however, that in the hypothalamus this effect is temporally
restricted, and it has disappeared by E10.5.

Neural Shh and AP patterning in the hypothalamus
In Shh-c brains, reduced growth of the medial hypothalamus
causes the hypothalamic mantle to become abnormally separated
into a rostral subdivision (the three rostral hypothalamic regions)
and a caudal one (the MAM). The gap that is created in this way
unexpectedly confirms neural plate fate-mapping data in ze-
brafish showing that the presumptive MAM is indeed caudal to,
but not continuous with the rest of the hypothalamus (Staudt and
Houart, 2007). This region has been considered a somewhat
atypical part of the hypothalamus from the point of view of spec-
ification mechanisms (Mathieu et al., 2002), patterning (Puelles
and Rubenstein, 2003), connectivity (Thompson and Swanson,
2003), and function (Stackman and Taube, 1998; Vann and
Aggleton, 2004; Radyushkin et al., 2005).

In addition, the mutant MAM is extremely reduced and be-
comes contiguous with the thalamic eminence, altering the DV
pattern of the diencephalon (see below).

Neural Shh in the PTh and EMT
It has been well documented that deficiency in neural Shh from
the ZLI leads to abolition of the PTh (see citations in Introduc-
tion). Therefore, our mutant lacks a PTh, as reflected by the loss
of Dlx2 (Fig. 3E,F) and Arx expression (supplemental Fig. 1F,G,
available at www.jneurosci.org as supplemental material). How-
ever, Lhx5, a specific marker of the EMT, is preserved in our
mutant, suggesting that lack of neural Shh in this region performs
a genetic dissection between the two regions [Tbr1, another spe-
cific marker of the thalamic eminence, is however lost in the

Figure 6. Neural Shh is required for differentiation in the medial hypothalamus. A, B, Nissl-
stainedsagittalsectionsofE18.5wild-type(A)andmutant(B)brains.Thered– blacklineindicatesthe
boundaries of the abnormal layered structure (asterisk) in B. C–J, ISH on sections of wild-type (C, E, G,
I ) and Shh-c (D, F, H, J ) E18.5 brains. A white circle marks the anterior commissure for reference. C, D,
Gbx2 labels the thalamus and was preserved in the mutant. E, F, Expression of Nkx2-1 is preserved in
the mutant PRO and MBO. G, H, Lhx1 is preserved in the mutant SCH and MBO. I, J, Calb1 is preserved
in the mutant VMH but lost in the MBO. K, L, Summary diagram of results.
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mutant (supplemental Fig. 1F,G, available at www.jneurosci.org
as supplemental material)]. This reduces the size of the dorsal
diencephalon and enlarges the communication between the lat-
eral ventricles and the third ventricle.

Neural Shh coordinates AP and DV patterning in the
diencephalon and the formation of the DTJ
Surprisingly, the patterning defects in dorsal and ventral dien-
cephalon compound to alter the DTJ, which in the mutant ex-
tends ventrally to reach the midline (Fig. 3O,P). This is reminis-
cent of the major role played by neural Shh in the coordination of
the AP and DV patterning in the midbrain– hindbrain junction
(Blaess et al., 2006). In wild-type embryos, the growth of the
thalamus and hypothalamus forces the expanding medial pal-
lium to acquire a characteristic curved shape (compare, for in-
stance, the hippocampus of wild type and mutant in Fig. 5L,M).
In the Shh-c embryo, the very reduced hypothalamus (and thal-
amus) does not oppose resistance to the pallium, which stretches
unimpeded toward the midline, particularly on the ventral side
(Fig. 5A–D). At later stages, this fact has as an unexpected conse-
quence the presence of part of the pallium (presumably the hip-
pocampus) mispositioned at the caudal end of the ventral hypo-
thalamus in the mutant.

Neural Shh in mediolateral hypothalamic patterning
Mediolateral patterning of the hypothalamus involves the speci-
fication of its distinctive medial and lateral zones. Between E9.5
and E13.0 approximately, Shh is expressed as a longitudinal band
in the basal plate of the ventral hypothalamus (Shimamura et al.,
1995). This expression domain coincides in time (E10.3–E12.7)
(Altman and Bayer, 1986) and space (Altman and Bayer, 1986;
Marchand et al., 1986), with the primordium of the lateral hypo-
thalamus. We show that abolition of Shh expression in the hypo-
thalamic neuroepithelium results in a very reduced lateral hypo-
thalamus in which some of the most functionally important and
characteristic neuronal subpopulations are either very reduced
(Pmch neurons) or completely missing (Hcrt/orexin neurons).
This indicates that neural Shh has a very important and specific
role in the development of the lateral hypothalamus, possibly
mediated by regulation of Dlx2, Dbx1, and Foxd1 (Fig. 3).

An interplay between Shh and Wnt8b regulates expression of
Foxb1, a crucial regulator of caudal hypothalamus
development
Deficiency in neural Shh translates also in incomplete differenti-
ation of hypothalamic nuclei. We used the MBO as model to
analyze this defect, since in the mutant this nucleus expresses
several specific differentiation markers (Nkx2-1, Lhx1), but fails
to express others like Sim1, Otp, and Foxb1. The case of Foxb1 is
particularly intriguing, since it is expressed by the neural plate
(E8.5) in the Shh full mutant (Fig. 1 I, J) but fails to be expressed
at E18.5 in the Shh-c MBO (Fig. 8A,B). Our explant experiments
show that, at E12.5, the dependence on Shh has disappeared.
Since Foxb1 is still missing in the mutant MBO at E18.5, we
conclude that neural Shh is necessary for maintenance of Foxb1
expression.

Incidentally, since Foxb1 is essential for the survival of the
MBO neurons beyond the day of birth (Alvarez-Bolado et al.,
2000), this result reveals an unexpected requirement for neural
Shh in differentiation and survival of the MAM and is in keeping
with data showing a role of Shh in neuronal survival in other
systems (Miao et al., 1997; Oppenheim et al., 1999).

We also show that Wnt signaling suppresses Foxb1 expression

Figure 7. Neural Shh is required for lateral hypothalamus development. A, B, ISH on trans-
verse sections of E18.5 shows that the Avp expression domain is broader in the mutant and the
SO is absent. C, D, Horizontal sections through E18.5 wild-type (C) and mutant (D) brains. The
lateral hypothalamus (delimited with dotted lines in C) shows typically abundant longitudinal
axons. A similar structure cannot be found in D. E, F, hPLAP detection of the Foxb1 lineage in
Foxb1-Cre/ZAP reporter mice (see Materials and Methods) shows the normal extent of the
lateral hypothalamus (E), very reduced in the Shh-c mutant (F ). G, H, Pmch neurons are very
scarce in the mutant. I, J, Hcrt neurons cannot be detected at all in the mutant. K, L, Summary
diagrams of results. Expression is shown on the left side of each diagram, and abbreviations are
on the right side.
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in progenitors (neuroepithelium), and therefore it counterbal-
ances or modulates the positive effect of Shh in Foxb1 expression
maintenance. The Wnt ligand involved here could be Wnt8b, a
specific marker of the MAM in all vertebrates (Cui et al., 1995;
Hollyday et al., 1995; Kelly et al., 1995; Lako et al., 1998; Richard-
son et al., 1999; Garda et al., 2002; Houart et al., 2002). Wnt8b
downregulates Foxb1 in the MAM of zebrafish (Kim et al., 2002),
controls mammillary neurogenesis (Lee et al., 2006), and could

be a local organizer (Erter et al., 2001; Houart et al., 2002). The
interplay Shh/Wnt in Foxb1 control is presumably downstream
the Nodal pathway (Strähle et al., 1996; Erter et al., 2001; Rohr et
al., 2001; Houart et al., 2002; Mathieu et al., 2002) (Fig. 8T).
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Szabó et al. • Neural Shh in Mouse Hypothalamus J. Neurosci., May 27, 2009 • 29(21):6989 –7002 • 7001



murine homeobox gene, Dbx, displays extreme spatial restriction in em-
bryonic forebrain and spinal cord. Proc Natl Acad Sci U S A
89:8053– 8057.

Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-
Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP,
Fishell G (2003) Sonic hedgehog is required for progenitor cell mainte-
nance in telencephalic stem cell niches. Neuron 39:937–950.

Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein
signals. Annu Rev Biochem 73:891–923.

Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M
(2006) Regional morphogenesis in the hypothalamus: a BMP-Tbx2
pathway coordinates fate and proliferation through Shh downregulation.
Dev Cell 11:873– 885.

Marchand R, Lajoie L, Blanchet C (1986) Histogenesis at the level of the
basal forebrain: the entopeduncular nucleus. Neuroscience 17:591– 607.

Martí E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K
form of Sonic hedgehog for induction of distinct ventral cell types in CNS
explants. Nature 375:322–325.

Mathieu J, Barth A, Rosa FM, Wilson SW, Peyriéras N (2002) Distinct and
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