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The brain is widely assumed to be a paradigmatic example of a complex, self-organizing system. As such, it should exhibit the classic
hallmarks of nonlinearity, multistability, and “nondiffusivity” (large coherent fluctuations). Surprisingly, at least at the very large scale
of neocortical dynamics, there is little empirical evidence to support this, and hence most computational and methodological frameworks
for healthy brain activity have proceeded very reasonably from a purely linear and diffusive perspective. By studying the temporal
fluctuations of power in human resting-state electroencephalograms, we show that, although these simple properties may hold true at
some temporal scales, there is strong evidence for bistability and nondiffusivity in key brain rhythms. Bistability is manifest as nonclassic
bursting between high- and low-amplitude modes in the alpha rhythm. Nondiffusivity is expressed through the irregular appearance of
high amplitude “extremal” events in beta rhythm power fluctuations. The statistical robustness of these observations was confirmed
through comparison with Gaussian-rendered phase-randomized surrogate data. Although there is a good conceptual framework for
understanding bistability in cortical dynamics, the implications of the extremal events challenge existing frameworks for understanding
large-scale brain systems.

Introduction
The characterization of spontaneous or “resting-state” data has
been traditionally overshadowed by the study of task-related ac-
tivity, such as the evoked response potential of psychophysiology.
However, there is growing interest in resting-state data (Biswal et
al., 1995), both as an influential precursor to sensory processing
(Makeig et al., 2002) or motor activity (Fox et al., 2006) and as a
window into the highly structured nature of spontaneous large-
scale brain activity per se (Greicius et al., 2003; Achard et al.,
2006). The use of resting-state electroencephalogram (EEG) data
is ideal in these regards, because its high temporal resolution
allows the study of activity from long to very short timescales.
Lengthy acquisitions of such data permit estimation of the statis-
tics of activity at various scales, including the mean power (or
power spectra) plus higher-order moments, as reflected in long-
range temporal (Linkenkaer-Hansen et al., 2001) and spatial in-
terdependences (Breakspear and Terry, 2002). However, the only

measure traditionally reported is the mean power (i.e., the power
spectrum). This leaves the nature of spontaneous fluctuations
around the mean unknown. An understanding of these fluctua-
tions may have far-reaching methodological and computational
consequences.

We hence examine the likelihood distribution of power fluc-
tuations across a range of timescales (0.5–35 Hz) in human
resting-state EEG and seek low-dimensional parametric forms at
each frequency. In particular, we test the null hypothesis that the
distribution at all frequencies could be well described by the sim-
ple one-parameter family of exponential distributions, which
contain no additional information that could be inferred from
knowledge of the mean. Such distributions arise when the under-
lying system generates uncorrelated stochastic events and have
near-maximum entropy (i.e., are close to thermodynamic equi-
librium). This would accord with the view that cortical activity is
well described as filtered Gaussian noise, justifying the sole use of
the power spectra when reporting the properties of scalp EEG
data. Rejection of this null hypothesis would imply the presence
of non-Gaussian processes in the cortex and suggest the need for
more sophisticated generative models.

Stochastic systems that generate Gaussian statistics are typi-
cally close to equilibrium, dominated by short-range interactions
and characterized by weak global correlations (Tsallis and
Brigatti, 2004). They may comprise complex local units but are of
sufficiently high dimension that their large-scale statistics are
nonetheless essentially uncorrelated. However, the brain has
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dense internal connectivity with long-range projections that scale
hierarchically (Hilgetag and Kaiser, 2004; Sporns and Zwi, 2004).
Through its abundant use of energy, the brain resides in a
strongly non-equilibrium state. These are the hallmarks of com-
plex systems, which exist in a wide variety of physical and biolog-
ical fields and exhibit self-organization, multiple excited modes
and highly correlated, nondiffusive processes (Zaslavsky, 2002).
From this perspective, it might seem remarkable that, in contrast
to many complex systems, the brain would exhibit only simple
diffusive dynamics at the global scale. However, current compu-
tational models of neural population dynamics, such as the Fok-
ker–Plank formulation (Renart et al., 2003; Deco et al., 2008), are
premised on the “diffusion approximation,” namely that the in-
puts impinging on individual neurons within a population can be
treated as temporally uncorrelated when computing instanta-
neous postsynaptic firing rates. Likewise, Bayesian formulations
of human inference propose that cortical populations compute
via uncorrelated Poisson processes (Ma et al., 2006). Ultimately,
the spatial and temporal scales at which these assumptions are
valid are empirical questions that can only be determined by
examining the statistics of in vivo neuronal activity. The goal of
the present study is to address this at the macroscopic spatial
scale.

Materials and Methods
Subjects and data acquisition
Scalp EEG data were collected from a total of 16 healthy, adult volunteers
(11 females; mean age, 25.3 years; range, 20 –31 years). Written informed
consent was obtained from each subject before their participation. Sub-
jects were requested to rest with eyes closed while maintaining alertness.
Acquisition times ranged in duration from 14 to 30 min.

All data were acquired using magnetic resonance-compatible amplifi-
ers (hardware bandpass filter, 0.1–250 Hz; BrainAmp; Brain Products)
and EEG caps (Easy-Cap; FMS) arranged according to the International
10 –20 System, referenced against an electrode centered between Cz and
Pz. Impedances of all electrodes were set below 5 k�. In seven subjects,
EEG data were acquired from 60 scalp channels in a sound- and light-
attenuated room. In nine subjects, EEG data were acquired from 29 scalp
channels and recorded simultaneously with functional magnetic reso-
nance imaging (fMRI) in a 1.5 T MR Vision tomograph (Siemens) using
a T2*-weighted blood oxygen level-dependent (BOLD)-sensitive gradi-
ent echo planar imaging sequence (scan repetition time, 2200 ms; acqui-
sition time, 2050 ms; echo time, 60 ms; volumes, 750; slices, 20; flip angle,
90°; voxel size, 3 � 3 � 5 mm). For additional details of the EEG–fMRI
setup, see Moosmann et al. (2003) and Ritter et al. (2009a). EEG sam-
pling rate was 5 kHz. In all cases, the electrooculogram and electrocar-
diogram were also recorded.

Data preprocessing
The nine datasets acquired simultaneously with fMRI contain artifacts
from MR gradient switching (Ritter et al., 2009b) and ballistocardiogram
effects, which are generated by heart rate-associated movements of the
electrodes in the static B0 field of the MR scanner. Both types of artifacts
were corrected using template estimation and subtraction (Allen et al.,
1998, 2000; Ritter et al., 2007) as implemented in the Vision-Analyzer
software (version 1.03; Brain Products).

Temporal independent component analyses (ICAs) were performed
on all 16 datasets. Components reflecting eye movement and scalp mus-
cle artifact were identified and subtracted from the data. Data were then
visually inspected to ensure they were artifact free. For this study, we
characterized temporal fluctuations from the right occipital region
(channel O2). These single-channel data were low-pass filtered (70 Hz
high cutoff frequency) and downsampled to 200 Hz for subsequent
analysis.

Data analysis
Wavelet decompositions and derivation of empirical probability distribu-
tion functions. Wavelet-based estimators of the dynamic spectral content

of time series are a well established approach, with robust theoretical
support (Torrence and Compo, 1998) and recent extensions to inference
on dynamic coherence (Maraun et al., 2007). For the present study,
dynamic spectrograms were derived by convolving the data with com-
plex Morlet wavelets (center frequency, 1 Hz; bandwidth parameter, 10 s;
corresponding to a kernel with a full-width at half-maximum of 0.5 s at
10 Hz). Conversion from scales to frequency was estimated as the inverse
of the scaling parameter at each level of the wavelet decomposition, yield-
ing a frequency range from 0.5 to 35 Hz in steps of 0.5 Hz. Power was
estimated as the modulus squared of the corresponding wavelet coeffi-
cients. Frequency-specific probability distribution functions (PDFs)
were then obtained by partitioning the fluctuations of power separately
at each frequency and counting the number of observations in each bin.
Bin width was determined individually at each frequency by dividing the
frequency-specific power range into 200 equally sized bins.

Estimating and fitting exponential PDFs. A Gaussian process is expected
when the observed events arise independently from a stochastic source.
According to the central limit theorem, such events need not be drawn
from a single distribution with stationary statistics but may be drawn
from a large (limiting to infinite) number of independent processes that,
by themselves, need not be Gaussian, provided they have finite variance.
In the context of scalp EEG, which reflects summed activity across a
number of large neuronal populations, this implies that the temporal
fluctuations in activity may be Gaussian even if neuronal activity on
smaller scales is not Gaussian (e.g., if it is a nonlinear process) as long as
they are statistically independent when observed at the macroscopic
scale. In the present study, this forms the null hypothesis. Rejection of
this null hypothesis attributable to non-Gaussian statistics is expected
when such spatially distributed macroscopic processes become suffi-
ciently correlated.

For processes exhibiting Gaussian fluctuations in amplitude, the func-
tional form of the corresponding power distribution (i.e., the amplitude
squared) follows an exponential PDF (Balakrishnan and Basu, 1996):

Px� x� � �e��x, (1)

where x is the power, and � is the shape parameter that can be estimated
from an empirical distribution by taking the log of the likelihood and
estimating the slope of the resulting line. For the present purposes, this
was achieved by a linear regression of the PDF in linear–log coordinates.
High variance at the lower end of the log-likelihood line typically arises as
a result of the relatively infrequent observations. We hence iteratively
excluded such bins until a goodness-of-fit threshold (R 2 � 0.95) was
achieved. It is important to note that this procedure was only pursued to
provide a best estimate of the shape parameter � when Equation 1 was at
least approximately satisfied, not to make any inferences regarding the
best functional form for the distribution. To gain a better insight into the
functional form of the PDF, particularly the asymptotic scaling behavior
of both tails, the fitted PDFs were formally evaluated in log–linear and
log–log coordinates. For the data, this was achieved by partitioning the
range of the log of the power into equally sized bins and counting the
number of observations in each bin. For the fitted distributions, this
required a change of variables to y � log(x) and, hence,

Py� y� � � dx

d y
�Px� x� y�	 � exp�y � �ey�. (2)

Independent component decomposition. It is possible that deviations
from an exponential fit could reflect multiple independent spatial
sources (i.e., cortical regions) contributing in a complex, heterogeneous
manner to scalp channels. We hence also applied the estimation and
fitting procedure to time series data obtained from ICA of the whole-
head EEG (Makeig et al., 1996). This algorithm produces the maximally
temporally independent signals available in the channel data, hence un-
mixing spatially discrete sources of the scalp channel data.

Phase-randomized surrogate data. Non-negligible residual errors and
biases in an empirical fit to an exponential PDF may arise from trivial
causes such as a finite sample set, measurement bias, or methodological
processes, such as wavelet-based estimates of moment-to-moment
power in a colored noise dataset. To test the null hypothesis that observed
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deviations are attributable to such trivial effects,
we repeated the analysis on surrogate data con-
structed by Fourier-based phase randomization
of the original EEG data (Theiler et al., 1992).
Such a process preserves the mean power spec-
trum of the original data while rendering its
statistics Gaussian. Two hundred such surro-
gate datasets were computed for each subject
and used to represent the null distribution.

Results
Representative distributions and paramet-
ric fits at different temporal scales are pre-
sented first. A systematic survey across the
frequency domain is then provided, to-
gether with a formal model-based com-
parison of Gaussian and candidate non-
Gaussian fits on empirical and phase-
randomized surrogate data.

Exemplar results: Gaussian, bimodal,
and super-Gaussian
In this section, we present examples of em-
pirical PDFs of power across a range of
different temporal frequencies.

Example of a simple unimodal
exponential distribution
At some temporal scales, empirical distri-
butions of the log power were observed to
exhibit a unimodal form with featureless
tails above and below the mean. Exponen-
tial PDFs fitted to these distributions capture the observed vari-
ability across the entire power domain. Figure 1 shows such an
example from a single subject at 34 Hz, of the power-likelihood
distributions in log–linear (Fig. 1a) and log–log (Fig. 1b) coordi-
nates. In this example, the exponential PDF is an excellent quan-
titative estimate of the data, as evident in both log–linear and
log–log space. Importantly, there are no obvious systematic de-
viations (biases) evident above or below the mean. Residual error
variance increases near the lower tail (left-hand), but this is
spread across both sides of the tail and hence does not show a
systematic bias. Increased variance is expected at the ends of the
tails because of the relatively few observations.

The observed and fitted distributions derived from the same
data, after phase randomization, are plotted in Figure 1, c and d. It
is hence evident that the exponential PDF closely fits a time series
that has been deliberately rendered Gaussian. Once again, there
are some unbiased residual errors at the lower left tail. Although
fitting phase-randomized data with an exponential PDF is an
expected result, it is nonetheless important to verify empirically
because it confirms that combined use of the wavelet decompo-
sition and curve-fitting procedures used have prima facie valid-
ity, that is, they do capture the nature of a distribution when it is
known to be Gaussian by construction. Comparison of Figure 1,
a and b, with Figure 1, c and d, also shows that, in this example,
phase randomization had no discernable effect on the statistics of
the original empirical distribution. This accords with a view that
power fluctuations in this subject, at this scale, likely arise from
uncorrelated stochastic processes.

Examples of bimodal exponential distributions
In most subjects, the appearance of two distinct modes in the
alpha rhythm (8 –12 Hz) marks a striking deviation from the
unimodal exponential distribution shown above. An example of

an observed bimodal distribution in a single subject at 10 Hz in
log–linear and log–log coordinates is given in Figure 2. To model
this distribution, a single-exponential PDF was regressed to fit the
dominant mode (black line), which in this case is the mode with
greatest power. A second exponential distribution was then esti-
mated from the residuals of this fit (gray line). It can be seen that
the two exponentials provide a remarkably good fit, as evident by
comparing their sum (red line) with the original distribution.
Figure 2, c and d, shows the same data rendered Gaussian through
phase randomization. The second mode has been abolished and
the surrogate data hence affords a close fit with a single-
exponential PDF. Forcing a second exponential fit to the residual
errors in the phase-randomized case actually renders a worse fit
than one mode alone, as evident in the large errors of the summed
exponentials (red line) in Figure 2, c and d.

To ensure that the abolishment of the second mode is not an
artifact of using the Fourier-based phase-randomization method
of producing surrogate data, we also inspected PDFs derived
from a wavelet-based resampling technique (Breakspear et al.,
2003). Briefly, these surrogate data are created by resampling the
coefficients of a discrete wavelet decomposition, using a low-
order discrete wavelet basis set (we used the Daubechies wavelet
of order 3). The results accorded with those derived from the
Fourier approach. Supplemental Figure S1 (available at www.
jneurosci.org as supplemental material) shows the outcome of
applying this alternative procedure to the same data as shown in
Figure 2, showing that the outcome is not dependent on the
particular surrogate algorithm used.

Clear visually evident bimodal distributions of alpha activity
(8 –12 Hz) were observed in 13 of the total 16 subjects whose data
was acquired and inspected. These distributions are shown in
supplemental Figure S2 (available at www.jneurosci.org as sup-
plemental material). Data from two other subjects (S05 and S06)

Figure 1. Example of a simple unimodal distribution of power at 34 Hz in a single subject (S10). a, b, Observed PDF in log–log
(a) and log–linear (b) coordinates obtained from original data. Blue squares show the observed distribution, and the black line
shows the fitted exponential function (Eq. 1). c, d, The observed and fitted distributions obtained from surrogate data in log–log
(c) and log–linear (d) coordinates.
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exhibited somewhat less distinct bimodal distributions at 8 and
23 Hz. For completeness, the PDFs for these two subjects at the
respective (non-alpha) frequencies where they were observed are
shown in supplemental Figure S3 (available at www.jneurosci.org

as supplemental material). One additional
subject (S07) had no clear bimodal distribu-
tion within any of the frequencies studied.

To address the possibility that the bi-
modal distributions arise from two spa-
tially distinct sources, each with different
amplitude statistics, we analyzed time se-
ries derived from independent component
decompositions of the full multichannel
EEG, identifying the single dominant pos-
terior alpha component. In subjects who
showed a bimodal alpha distribution, the
corresponding posterior alpha mode was
invariably bimodal, typically with even
greater separation of the modes. Figure 3
shows an example of a bimodal ICA distri-
bution, again in log–log (a) and log–linear
(b) coordinates taken from a single subject
at 10.5 Hz. The spatial topology of this ICA
mode (Fig. 3c) shows a single posterior
source, consistent with the principles that
ICA unmixes single (linearly mixed) brain
sources of scalp activity (Makeig et al.,
1996). The power spectrum of this compo-
nent (Fig. 3d) evidences a strong peak in
the alpha rhythm, albeit obscuring the bi-
modal nature of this peak.

These observations suggest that the two
modes arise through a temporally hetero-
geneous process, whereby two distinct dy-
namical processes arising from a single
cortical region are alternately expressed.
Figure 4 shows examples of the temporal
expression of bimodal distributions in two
representative subjects at their peak alpha
frequency. In the first subject (Fig. 4a– c),
the second (higher-power) mode is ex-
pressed erratically throughout the entire
500 s example (Fig. 4a). The time series
exhibits a burst-like behavior from the
lower-power first mode (Fig. 4b), evident
as sudden increases in the magnitude of
the first temporal derivative of power (Fig.
4c). Each burst is weakly visible in the raw
electrode time series. In this subject, this
bursting behavior is present throughout
the entire dataset. In contrast, data from
the second subject (Fig. 4d–f) shows two
distinct periods of time (t 
 180 s and t �
1000 s) when the second (higher-power)
mode is constantly present. In the interim
period (180 s 
 t 
 1000 s), there are spo-
radic instances when the second mode ap-
pears to be expressed, although these are
typically lower in amplitude. Greater ir-
regularity is also visible in the raw elec-
trode time series (Fig. 4a,d), underlining
the gross, macroscopic impact of alpha
rhythm bimodality.

Although the bimodal distribution clearly affords a far better
fit to the data, it does include a second parameter. To formally
compare the fits, we used the Bayesian information criterion
(BIC), which includes a penalty term for model complexity:

Figure 2. Example of strongly bimodal distribution in a single subject (S11) at 10 Hz. Panels as per Figure 1. The red line shows
the sum of the two unimodal forms.

Figure 3. a, b, Example of a bimodal distribution in a single independent component in log–log (a) and log–linear (b)
coordinates at 10.5 Hz. c, Spatial distribution of this component. Color bar shows weighting of component over scalp electrodes
(dimensionless units). d, Power spectrum estimated from wavelet coefficients.
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� � nln�RSS

n � � kln�n�, (3)

where RSS is the sum of the squared residuals, n is the number of
observations (discrete power bins), and k is the number of free
parameters (k � 1 for the unimodal fit and k � 2 for the bimodal
fit). Given two or more candidate models, the “best” model will
yield relatively low values, reflecting small residual variance after
penalization for the number of free parameters. Figure 5 shows a
(single-subject) example of the difference between the BIC values
for a unimodal versus a bimodal fit across all frequencies studied.
Hence, a strongly positive value favors the bimodal fit, whereas a
strongly negative value favors a unimodal fit. Results for the em-
pirical data are shown in black squares. The mean and 95% con-
fidence intervals, estimated parametrically from 200 surrogate
datasets, are depicted in red circles.

The stand-out feature in the original data is a strong upward
deflection in the BIC difference between 8 and 11.5 Hz. This
supports the results clearly visible in Figure 2 (the same subject)

while additionally providing a quantitative measure of model
preference and indicating the approximate frequency domain
over which the second mode is expressed. In stark contrast, re-
sults from the surrogate data are consistently negative, indicating
that, after penalizing for the second parameter, the bimodal fit is
statistically inferior to a single-exponential fit for the unimodal
distribution that is invariably generated from surrogate data. The
original data also show a second peak at �14.5–15.5 Hz. Visual
inspection of the PDF at these frequencies reveals only weak evi-
dence for a second mode, evident as a point of inflection in the
right-hand tail. The significance of the broader positive region of
the curve in the beta range (13–30 Hz) is considered below.

In systems with multistability, the distribution of times for
which the system “dwells” in each mode can also be informative
of the possible nature of the underlying process (Nakamura et al.,
2007). Figure 6 shows the cumulative distribution of dwell times
derived from the two same subjects whose data was shown in
Figure 4. It can be seen that dwell-time distributions of each

Figure 4. Examples of mode switching in two subjects (top, S14; bottom, S11). a–f, Time series for the original O2 electrode data (a, d), the power (amplitude squared) of the wavelet coefficients
for this frequency (b, 10 Hz; e, 10.5 Hz), and its temporal derivative (c, f ). Panels have gray shading whenever the system is in the high-amplitude mode. The red line in b and e show the power at
which the modes have equal likelihoods. This threshold was derived from the crossing of the two PDFs (see Fig. 2).

8516 • J. Neurosci., July 1, 2009 • 29(26):8512– 8524 Freyer et al. • Non-Gaussian Spontaneous Cortical Activity



mode (which have been rescaled to their mean) appear to follow
similar functional forms. When viewed in log–log coordinates
(Fig. 6b,d), it is clear that the dwell-time distributions in these
subjects do not follow a power-law relationship. When viewed in
linear–log coordinates (Fig. 6a,c), the distributions instead sug-
gest a gamma-type stretched exponential function:

P� x� � ���x��. (4)

Solid lines in each panel show fits to the
respective data. As evident in the form of
Equation 4, the parameter � determines
the curvature of the curves (in linear–log
space). When � is close to 1, Equation 4
approaches a basic exponential form e� �x,
whereas if � approaches 0, the curve be-
comes highly concave (in linear–log coor-
dinates), trending toward a power-law ef-
fect. In the first subject (Fig. 6a,b), � �
0.45 for the low-power mode and � � 0.5
for the high-power mode. For the second
subject, the corresponding values are � �
0.45 (low-power mode) and � � 0.75
(high-power mode). Hence, the dwell
times for the high-power mode in this sub-
ject are closer to a basic exponential form.
Similar fits were obtained in all 13 subjects
showing a bimodal alpha pattern. These
are shown in supplemental Figure S4
(available at www.jneurosci.org as supple-
mental material). For the lower-power
mode, � was generally close to 0.5 (mean,
0.49; range, 0.40 – 0.60), whereas for the
higher mode, � was higher in all subjects
except one (mean, 0.68; range, 0.50 – 0.90).

Examples of unimodal
non-Gaussian distributions
In all subjects and across a broad range of
frequencies, typically in the beta range
(�13–30 Hz), the empirical PDFs fre-
quently show a consistent upward bias of
the right-side tail (i.e., above the mean)
from exponential toward power-law scal-
ing. Figure 7 provides examples of this ef-
fect in two subjects. It is critical to note that
the empirical distributions (Fig. 7a,b)
show a systematic bias and not simply
large unbiased residuals over the right-
hand tails. In clear contrast, this bias is ab-
sent in PDFs derived from the surrogate
data (Fig. 7c,d).

Research into complex, highly corre-
lated systems motivates the consideration
of an alternative stochastic model (Bram-
well et al., 1998). Above the mean, fluctu-
ations in these systems scale according to
the following functional form:

P� x� � �exp�x � �ex�	a, (5)

where the parameter � is estimated in the
same manner as for the exponential PDF.
Setting a � 0.5 yields the heavy right-hand
tail that has been empirically observed in
data from numerous complex systems

(Bramwell et al., 2000). This double-exponential form, also
known as the “Fisher–Tippett distribution,” clearly captures the
trend in the empirical PDF, correcting the bias resulting from a
simple-exponential fit above the mean. Phase randomization re-
turns the tails back to simple-exponential scaling. Similar results

Figure 5. Difference between Bayesian information criterion for unimodal and bimodal fits in a single subject (S11). Positive
(negative) values indicate preference for bimodal (unimodal) exponential PDF. Results from original data are shown in black.
Mean and 95% confidence intervals for surrogate data are shown in red.

Figure 6. Representative CDFs for the bimodal dwell times in two subjects, rescaled to their mean. a and b show data from
subject S11, and c and d show data from subject S14. Empirical distributions for low-power and high-power modes are given as
black squares and red triangles, respectively, in linear–log (a, c) and log–log (b, d) coordinates. Stretched exponential CDFs are
plotted as solid lines in the linear–log coordinates with �� 1.45, �� 0.45 for the low-power (black) mode and �� 1.35, ��
0.5 for the high-power (red) mode in the first subject (a). The parameters in the second subject (b) are � � 1.55, � � 0.45 for
the low-power (black) mode and � � 1.15, � � 0.75 for the high-power (red) mode.
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were seen at many frequencies in all sub-
jects and are presented in supplemental
Figure S5 (available at www.jneurosci.org
as supplemental material).

By fixing a � 0.5, Equation 5 becomes a
one-parameter double exponential and
can hence be compared directly against the
simple exponential without need for pa-
rameter penalization. Figure 8 shows the
ratio of the RSS for the exponential and
double-exponential fits in a single subject.
In this subject, the ratio is relatively small
(
10) for frequencies below 16 Hz and
above 30 Hz. However, within the beta
band, between 16 and 30 Hz, there is a very
strong increase in the ratio, reflecting a de-
crease in the residual error for the Fisher–
Tippett fit in this range and hence a corre-
sponding increase in the relative log
evidence, peaking at 21 Hz.

In comparison, the ratios derived from
the surrogate data (shown in red) are uni-
formly small, typically 
1, with low vari-
ability between surrogate realizations.
However, in this subject, as in all others,
the ratio of the residuals in the empirical
data is outside the surrogate distribution at
most frequencies, although they are rela-
tively low (
10). Visual inspection of the
data shows that this is typically attribut-
able to a small number of outlier observa-
tions, typically near the very edges of the
right-hand tail, and not to a consistent bias
as evident in Figure 7 and supplemental
Figure S3 (available at www.jneurosci.org
as supplemental material). Such outlier
observations increase the residual error for
both the simple- and double-exponential
PDFs. However, the relative ratio of the
RSS is invariably only large (�10) when
there is a consistent upward bias of the
right-hand tail associated with very small
errors for the Fisher–Tippett fit.

The preferential performance of the
Fisher–Tippett fit over the exponential
PDF for the right-hand tail implies that
large-amplitude (“extremal”) events occur
far more frequently than expected from
the (null) simple-exponential form. Such
events can be clearly seen in time series of power at the frequen-
cies exhibiting Fisher–Tippett statistics versus the same data after
phase randomization (Fig. 9a,b). Notably, compared with ampli-
tude dynamics at frequencies showing bimodal distributions
(Fig. 4), power fluctuations here do not exhibit obvious irregular
switching because they are still drawn from a unimodal distribu-
tion. Hence, fluctuations are sampled from a single underlying
mode. The critical difference is that their log likelihood falls less
rapidly than an exponential functional form, and hence large-
amplitude “events” are sporadically observed. Hence, the kurto-
sis—a measure of the width of the tails—is increased approxi-
mately twofold.

What are the characteristics of extremal events in the time–
frequency plane? By calculating the ratio of the simple-

exponential and Fisher–Tippett curves, it is possible to define
the threshold above which amplitude events are 95% more
likely to be drawn from a Fisher–Tippett rather than a simple-
exponential PDF. Examples of extremal events in the time–
frequency plane, after imposing this threshold in a single sub-
ject, are shown in Figure 9, c and d. For example, the double
peak at 22 Hz in a is seen to span several adjacent frequencies
in d at �1328 s. Their appearance in this case, as in all subjects,
suggests that, after taking into account the smoothing kernel
of the complex Morlet wavelet, extremal events are relatively
isolated in both temporal and frequency domains. Detailed
inspection of the data failed to reveal more complex phenom-
ena, such as chirped signals tracking diagonally across the
time–frequency plane.

Figure 7. Examples of non-Gaussian unimodal distributions in two subjects. a and b show observed PDFs. Fitted simple-
exponential PDFs (Eq. 1) are depicted as black solid lines, and fitted double-exponential PDFs (Eq. 5) are shown in red above the
mean. c and d show corresponding fits to phase-randomized surrogate data from same subjects.

Figure 8. Ratio of the RSS of the single-exponential PDF (Eq. 1) to the double-exponential PDF (Eq. 5) in a single subject (S12).
Mean and 95% confidence intervals (
1.96 SDs) were estimated from surrogate data using nonparametric rank ordering.
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Group-level findings
In this section, we present the intersubject consistency and vari-
ability of the observed bimodal and non-Gaussian statistics.

Bimodal distribution
The summary statistics of bimodal PDFs observed at the single-
subject level in all 16 subjects are presented in Table 1. These
results were compiled by inspecting the BIC differences for each
subject and verifying the results against visual inspection of the
frequency-specific PDFs to exclude spurious results attributable
to outlier observations or poor performance of the fitting rou-
tine. They evidence remarkable consistency in 13 of the subjects
showing a robust center frequency in the alpha range (mean 

SD, 10.65 
 0.72 Hz; range, 9.5–12 Hz).

One subject (S06) had bimodal activity that spanned a wide
range of frequencies (19.0 –27.0 Hz) in the beta range. In one
subject (S05), the bimodal activity was somewhat less distinct
and evident just below the defined alpha range. For complete-
ness, the PDFs for these two subjects at the respective (non-
alpha) frequencies where they were observed are shown in
supplemental Figure S3 (available at www.jneurosci.org as
supplemental material). The single case of bimodal beta activ-
ity in the beta activity (S06) is notable for exhibiting the same
classic bimodal form as typically evident at approximately half
that frequency in most other subjects. Only one of the 16
subjects (S07) had no evidence of bimodal activity in the fre-
quencies studied. Interestingly, this subject had consistently
high-amplitude alpha activity and hence a high-power peak in

the alpha range, suggesting that the data were acquired during
a period of time when the alpha rhythm was consistently in the
high-power mode. For thoroughness, the empirical PDFs for
these three subjects at 10.5 Hz (the peak frequency for bimodal
activity in the grand average) are also shown in supplemental
Figure S6 (available at www.jneurosci.org as supplemental
material). The lack of any suggestion of a second mode is quite
clear in these PDFs. These results hence argue that the exis-
tence of bimodal alpha activity is not consistently observed in
all subjects.

To further characterize the nature of the bimodal alpha activ-
ity in those 13 subjects in whom it was apparent, we calculated the
grand average difference between the unimodal and bimodal BIC
across this subgroup. Robust evidence for a bimodal fit, when
compared with the surrogate data, is evident across the conven-
tional alpha range (8 –12 Hz). Above 12 Hz, there exists a broad
range of frequencies for which the difference is close to 0, yet
nonetheless well above the surrogate distribution, a phenomenon
seen at the single-subject level (as in Fig. 5). However, detailed
inspection of the PDFs at the single-subject level shows that this
finding is not attributable to weak bimodality (such as may be
evident as a point of inflection). Rather, it is typically because of
the existence of a Fisher–Tippett distribution. When compared
with a single-exponential PDF, forcing a second fitted exponen-
tial PDF, usually with a very low maximum likelihood, is typically
able to decrease the residual error term at least sufficiently to
offset the parameter penalty term in Equation 3, hence yielding

Figure 9. Exemplar extremal events in a single subject (S12). a, b, Power time series at 22 Hz in surrogate (a) versus real data (b), both scaled to have unit mean. Red line shows the 95% relative
likelihood for the double-exponential compared with single-exponential fit. c and d show two complementary views of the time–frequency plane of the empirical data after thresholding at the 95%
relative likelihood. Colors depict superthreshold power.
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near equivalent BIC values for bimodal
and unimodal exponential fits between
�12 and 28 Hz.

It is, of course, possible to include the
extra three subjects in such a group-level
approach. Their statistics have only a mi-
nor effect on the mean but naturally in-
crease the variance. However, the present
goal is not to make a population-level in-
ference regarding the existence of a single
frequency at which a bimodal PDF occurs,
because some subjects clearly do not
evidence this in a single resting-state re-
cording. Intersubject variability in the ex-
istence and character of bimodal distribu-
tions is an interesting subject that would
arguably require a larger database.

To further investigate the deviation
from a unimodal exponential process
within the alpha range using a conven-
tional nonparametric statistic, we applied
the Kolmogorov–Smirnov (K–S) test on
the empirical distributions of both original
and surrogate data at each timescale and
compared the resulting statistics. The K–S
test is based on comparing the empirical
distribution function (eCDF) to a theoret-
ical distribution function (tCDF). The
resulting statistics reflect the maximum
distance between eCDF and tCDF and
can be read as a goodness-of-fit measure
(Chakravarti et al., 1967; Stephens, 1974).
For the tCDF, we used the CDF corre-
sponding to the simple-exponential PDF
(Eq. 1), representing the null hypothesis of
an underlying Gaussian process. However,
it must be noted that the conversion from
a K–S statistic to an associated p value rests
on the assumption that the data are serially
independent, which is certainly not the
case for raw EEG data or coefficients de-
rived from a continuous wavelet decom-
position. We hence used the K–S test sim-
ply as a measure of goodness of fit and used
the same Fourier-resampling approach for
statistical inference.

The grand-averaged frequency-specific
K–S statistics are plotted for original and
surrogate data in supplemental Figure S7
(available at www.jneurosci.org as supplemental material).
Essentially the K–S test replicates the finding observed when
using log RSS (compare this figure with Fig. 10). In particular,
the K–S statistic diverges for the empirical (black), but not
surrogate (red), distributions specifically within the alpha
range (8 –12 Hz). It is also worth noting that the K–S statistic
is lower for the surrogate compared with the empirical data
throughout the measured frequency range; this is likely attrib-
utable to a variety of ad hoc reasons, such as outlier observa-
tions and non-Gaussian (Fisher–Tippett) distributions within
the beta range. Also of note is that the K–S statistic gradually
decreases with increasing frequency for the surrogate distribu-
tions. This is likely attributable to the decreasing length of
serial correlations at higher frequencies and hence the increas-

ing effective degrees of freedom in the data at higher frequen-
cies (to which the K–S test is sensitive).

Non-Gaussian unimodal distributions
Table 2 summarizes the statistics of non-Gaussian PDFs in all 16
subjects. It hence documents the existence of non-Gaussian “fat
right-hand tails” within the beta range in all subjects. Evidence of
non-Gaussian scaling is also often present at frequencies in the
theta and low alpha range (4 – 8.5 Hz). In contrast to the bimodal
PDFs, non-Gaussian distributions showed far greater intersub-
ject variability. It is not uncommon for the relative log evidence
to dip close to unity for narrow-frequency intervals separating
broader intervals when the relative log evidence is consistently
high (�10). Because of this high intersubject frequency evidence,

Figure 10. Grand average BIC difference across 13 of the 16 subjects whose data showed distinctly bimodal PDFs, as shown in
supplemental Figure S2 (available at www.jneurosci.org as supplemental material). Mean and 95% confidence intervals (
1.96
SDs) for surrogate data are shown in red.

Table 1. Bimodal PDF properties in all subjects

Subject
Acquisition
method

Peak BIC difference
(unimodal � bimodal)

Frequency for peak BIC
difference (Hz)

Approximate range of
bimodal distribution (Hz)

S01 A 434 9.5 8.5–11.5
S02 A 389 11.0 8.5–13.5
S03 A 252 12.0 8.5–13.0
S04 A 374 11.5 8.5–12.5
S05 A 181 8.0 7.5– 8.0
S06 A 280 23.0 19.0 –27.0
S07 A
S08 C 532 10.5 8.5–12.0
S09 C 421 11.0 8 –12.0
S10 C 268 10.0 8.5–14.0
S11 C 745 10.0 8.5–11.5
S12 C 328 10.0 8.5–11.5
S13 C 467 10.5 9.0 –12.5
S14 C 351 10.5 8.0 –12.0
S15 C 478 11.5 8.5–12.0
S16 C 399 10.5 10.5–11.5

Subject order as per supplemental Figure S2 (available at www.jneurosci.org as supplemental material). Acquisition method: C, combined EEG–fMRI; A, EEG
alone. The end points of the bimodal range were defined according to the following criteria: clear point of inflexion in PDF causing increased residual error in
single-exponential fit; strongly decreased residual error with second exponential PDF; and adjacent to clearly bimodal PDF (i.e., with 2 distinct maximums).
S07 had no discernable bimodal distribution.
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a second-level subgroup statistic (equivalent to Fig. 10) was not
performed.

Notably, the only subject without bimodal activity (S07) had
low RSS for a Fisher–Tippett distribution in the alpha range.

At a number of frequencies in all subjects, there existed outlier
observations in a small number of power subintervals. The result-
ing PDFs did not show a clear scaling behavior suggestive of
either a single or double exponential, producing quite large errors
for both unimodal fits. Because these outlier observations were
inevitably above the background likelihood trend, they invariably
yielded smaller errors for the Fisher–Tippett distribution, al-
though the relative log ratio was typically 
10. These frequencies
were not included in Table 2 as evidence for Fisher–Tippett
scaling.

Discussion
After an extensive survey of neuronal oscillations across a hierar-
chy of scales and the 1/f scaling laws of their power spectrum,
Buzsaki (2006, p 128) surmised that “rare but extremely large
events are inevitable, because at one point 1/f dynamics become
supersensitive to either external perturbations or its internal pro-
cesses, responding with very large synchronized events.” How-
ever, he then concluded that “such large events never occur.” In
addressing this issue, we have shown that the problem does not lie
in observing such events but rather in forming a proper represen-
tation of the null distribution for their non-occurrence. By esti-
mating PDFs across a spectrum of timescales in spontaneous EEG
data and comparing the empirical PDFs with null distributions
generated from phase-randomized surrogate data, we observe the
robust occurrence of two classes of large-amplitude events in

resting-state EEG. First, in the alpha range
(8 –12 Hz), 13 of 16 subjects showed a dis-
tinctly bimodal distribution with a high-
power mode expressed irregularly in dis-
crete time windows. Second, in all subjects
and at many temporal scales, the empirical
PDFs exhibited a consistent upward bias
above the mean from exponential toward
power-law scaling. This translates into
sporadically occurring high-amplitude
events in the time–frequency domain. We
therefore argue that the extremal events
foreseen by Buzsaki are a robust and rou-
tine property of spontaneous cortical
activity.

The present approach was informed by
the characterization of correlated, non-
Gaussian processes in a wide variety of
other complex systems, whereby a simple
functional form is sought for the probabil-
ity distribution of a measure of system ac-
tivity (Bramwell et al., 1998, 2000). As
shown by Chapman et al. (2002), it is the
presence of non-vanishing higher-order
moments that distinguishes systems with
nontrivial, strongly correlated fluctuations
from those dominated by uncorrelated,
diffusive ones. Intriguing applications of
this approach have revealed universal
power-law distributions in human loco-
motor activity (Nakamura et al., 2007) and
non-Gaussian statistics in heart rate vari-
ability during daily activity (Kiyono et al.,
2005). The present report also mirrors the

observation of non-Poisson statistics in a variety of human activ-
ities ranging from communication to work patterns (Barabási,
2005), as can be seen by comparing Figure 1 of Barabási’s report
with Figure 9 of the present one. To our knowledge, this is the first
observation of such statistics in spontaneous cortical electrical
activity. It accords with an innovative methodological advance by
Anemüller et al. (2003) who generalized ICA to the complex
domain for cortical EEG data. Their approach enables disambig-
uation of nonstationary, correlated sources of cortical activity
that each exhibit super-Gaussian statistics. The detailed charac-
terization of super-Gaussian empirical PDFs in the present study,
particularly in the beta range, arguably provides strong support
for this approach over standard ICA models. Another related
study is that of Suckling et al. (2008) who estimated the Hölder
exponent, a measure of correlated fluctuations, from time series
of the resting-state cortical BOLD signal. As with the present
approach, they also analyzed timescale-specific activity via a mul-
tiscale wavelet decomposition. They hence reported scale invari-
ance of this exponent that was, moreover, sensitive to age and
pharmacological perturbation. However, the deviation from a
Gaussian process in their data was marginal, possibly attributable
to the fact that the Hölder exponent is primarily intended as a
singularity analysis and may be less sensitive to non-Gaussian
amplitude fluctuations or attributable to the low-pass temporal
filtering property of the hemodynamic response function that
converts neuronal activity into an fMRI BOLD signal.

An important study of nontrivial temporal correlations in
cortical activity is that of Linkenkaer-Hansen et al. (2001) who
studied modulations in alpha (8 –13 Hz) and beta (15–25 Hz)

Table 2. Properties of non-Gaussian distributions in all subjects

Subject
Acquisition
method

Maximum relative
log evidence

Frequency for maximum
ratio (Hz)

Approximate range of Fisher–Tippett
distribution (Hz)

S01 A 26 8.0 7.0 – 8.5
22 22.5 21.5–25.0

S02 A 50 27.5 26.0 –35.0
46 17.5 17.5

S03 A 35 23.5 20.5–24.0
31 15.0 14.0 –16.5

S04 A 47 34.5 30.5–34.5
S05 A 202 29.0 29.0 –29.5

42 13.5 11.0 –13.5
S06 A 76 28.0 27.5–29.5
S07 A 50 8.5 8.0 –9.0

20 19.0 17.0 –20.0
S08 C 49 18.0 17.0 –20.5

42 30.5 27.5–32.5
S09 C 82 32.5 22.5–31.5

26 5.5 2.5–7.5
S10 C 75 24.0 22.5–27.0

29 4.5 4.5–5.5
S11 C 59 22.0 21.5–25.5

53 17.0 15.5–20.5
S12 C 53 21.0 18.5–27.5
S13 C 138 26.5 26.5–27.0

60 17.5 18.0 –21.5
S14 C 91 30.0 26.5–33.0

50 15.0 13.0 –15.5
S15 C 21 19.5 18.5–22.5
S16 C 105 31.0 30.5–31.5

83 27.5 22.0 –28.0

Relative log evidence denotes the maximum ratio of log residual error (Fisher–Tippett fit to simple exponential fit). The range was defined to include all
adjacent frequencies, which scaled closely to the Fisher–Tippett distribution above the mean. In the case in which there are two distinct intervals in the
frequency domain showing non-Gaussian PDFs, the interval showing the second highest relative log evidence is given in a second row for each subject.
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power in both EEG and magnetoencephalographic data. They
observed power-law scaling of temporal correlations at time-
scales ranging from a few seconds to several minutes. These long-
range correlations were also present, although attenuated, during
sensory input (Linkenkaer-Hansen et al., 2004). It has been pro-
posed that this observation reflects the propagation of “ava-
lanches” of critical neuronal activity in a network close to an
instability (Poil et al., 2008), as detailed previously in neuronal
cultures by Beggs and Plenz (2003). Long-tailed, possibly scale-
free, distributions of synchronous activity in multichannel EEG
(Breakspear et al., 2004; Stam and de Bruin, 2004), MEG and
fMRI (Kitzbichler et al., 2009) have also been reported across a
broad spectrum of timescales, including those of the present
study. By revealing the typical presence of two distinct modes of
alpha activity and formally estimating parameters for each un-
derlying mode, our study advances this research by providing a
more principled (parametric) estimate for switching between
high- and low-power modes and hence for estimating the scaling
behavior of their respective dwell times. Although we did find
long-tailed dwell times for both modes, these appeared to be
better captured by stretched exponential forms rather than the
power-law scaling functions used by Poil et al. (2008).

A number of methodological points require careful consider-
ation. The present goal of describing power distributions in scalp
EEG arose from an objective to characterize the covariance struc-
ture of simultaneously acquired EEG and fMRI data. We hence
observed the bimodal and non-Gaussian PDFs in the nine simul-
taneous acquisitions reported in Tables 1 and 2. The classic ap-
pearance of eyes closed, resting-state alpha fluctuations underly-
ing the bimodal distributions in these data, and the intersubject
variability seen in the non-Gaussian statistics provided prima
facie support for the neuronal origin of these phenomena. In
addition, an exploratory regression of both bimodal and extremal
EEG events onto the BOLD data showed a variety of regional
signal increases and decreases in cortical regions and did not
suggest a classic artifactual effect, such as a ventricular or pericra-
nial pattern. A full characterization of these BOLD correlates is to
be the subject of a future report. Additional empirical support
arose from the replication of both bimodal and non-Gaussian
high-power tails in the additional seven EEG recordings acquired
without fMRI in a sound- and light-attenuated room, as also
reported in the present study.

It is also critical to note that we estimated the exponential
shape parameter � from a linear regression in linear (power)–log
(likelihood) coordinates. However, noting that the estimation of
residual errors using a linear regression may yield varied results
(Armstrong, 1985; Clauset et al., 2009), we studied the nonlinear
functional forms of the PDFs in log (power)–log (likelihood)
coordinates. This enables a more accurate visualization of the
scaling behavior of the tails of the PDFs and, crucially, quantita-
tive analysis of any systematic scaling bias. We also avoided direct
inference on the goodness of fit of the original regression, focus-
ing instead on relative model selection of several candidate mod-
els using the BIC approach. The findings were also consistent
with those derived from the K–S statistic (Clauset et al., 2009) and
validated using surrogate data. Our goal was hence to find the
best unbiased model, through a formal model comparison, for
these functional forms. Moreover, we also studied the behavior of
the candidate models on Gaussian-rendered data to ensure that
no systematic methodological bias could lead to spurious non-
Gaussian distributions. Finally, we also repeated the groupwise
analysis using the K–S test, replicating the finding using BIC.

We chose to analyze the original channel data, rather than

source reconstructed data, because source reconstruction tech-
niques inevitably embody a number of assumptions about the
noise structure of the underlying data sources. However, finding
non-Gaussian distributions in channel data, which arise from
large regions of cortex, arguably has a positive meaning. Accord-
ing to the central limit theorem, the linear superposition of un-
correlated sources is expected to converge toward a Gaussian
distribution even if the sources themselves are not Gaussian.
Hence, the finding of a non-Gaussian distribution in scalp chan-
nel EEG data argues, conversely, that the underlying sources must
be correlated and non-Gaussian. Recent theoretical work sug-
gests a non-Gaussian central limit for correlated stochastic pro-
cesses (Tsallis, 2006). In other words, we submit that both the
bimodal and super-Gaussian distributions that we observe in
channel data reflect the presence of the same nontrivial distribu-
tions in cortical sources and indeed at all scales from the macro-
scopic down.

The findings we report here have significant implications. The
observation of a bimodal PDF in the alpha range supports previ-
ous arguments for the presence of a weakly stable, noise-
perturbed steady-state attractor in the underlying corticotha-
lamic system (Stam et al., 1999; Valdes et al., 1999) and argues for
cortical field models that allow for a nearby bifurcation (Robin-
son et al., 1997, 2001, 2002; Lopes da Silva et al., 2003). However,
the frequent occurrence of regular switching between two dis-
tinct modes in our data adds critical details. First, the bifurcation
should arguably be of a subcritical Hopf nature to permit distinct
jumps between two distinct modes, because a noise-perturbed
supercritical bifurcation would be expected to lead to constant
(and therefore unimodal) mixing of subthreshold and suprath-
reshold dynamics. Second suprathreshold oscillations hence oc-
cur in healthy states and not only during pathological conditions
such as epilepsy, as argued previously (Robinson et al., 1997,
2002; Breakspear et al., 2006). Theoretical work on Hopf bifur-
cations in time-delayed stochastic systems (Longtin, 1991) pro-
vides a potential for understanding the stretched exponential
forms that describe the dwelling distributions in our data.

The observation of super-Gaussian (double-exponential)
PDFs primarily in the beta range is also of importance, particu-
larly because this frequency range underlies critical cognitive and
behavioral processes, such as motor learning and coordination
(Boonstra et al., 2007). This finding suggests the presence of non-
trivial spatial and temporal correlations among macroscopic
neuronal populations. Although these may be expected to occur
in small-scale neural systems, as supported by an abundance of
theoretical arguments (Amari et al., 2003; Kuhn et al., 2003),
current computational models of large-scale neural systems are
premised on the diffusion approximation, namely that inputs
impinging on individual neurons within a population can be
treated as being temporally uncorrelated when computing firing
rates (Renart et al., 2003; Deco et al., 2008).

Such models do, however, predict spatial and temporal corre-
lations across multiple scales, including 1/f behavior near critical
points where instabilities occur (Robinson et al., 1997, 2001,
2002; Robinson, 2003). Extending such models to more explicitly
incorporate strong correlations and nontrivial higher-order mo-
ments would link them to the rich theoretical developments that
currently underpin the study of other complex correlated systems
(Zaslavsky, 2002; Tsallis, 2006). These developments explain how
systems with both dynamical and stochastic processes, such as a
densely connected physiological system under the influence of
noise, can intermittently be dominated by the dynamical forces,
causing the system to be transiently “trapped” near low-
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dimensional, highly synchronous manifolds (Shlesinger et al.,
1993).

Such processes arise (although not exclusively so) in systems
of coupled oscillators that unfold on an underlying structure with
scale-free (i.e., power-law) connectivity (Vasily et al., 2006), a
possible basic structural principle of the cortex (Freeman and
Breakspear, 2006). Characterizing the temporal statistics of the
sporadic expression of extremal events, for example, if they are
clustered in time or display formal intermittency (Platt et al.,
1993), may help to formally investigate these possibilities. Future
work is also required to understand their computational role and
metabolic correlates.
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