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Activity in the Superior Temporal Sulcus Highlights
Learning Competence in an Interaction Game

Masahiko Haruno and Mitsuo Kawato
ATR Computational Neuroscience Laboratories, Kyoto 619-0288, Japan

During behavioral adaptation through interaction with human and nonhuman agents, marked individual differences are seen in both
real-life situations and games. However, the underlying neural mechanism is not well understood. We conducted a neuroimaging
experiment in which subjects maximized monetary rewards by learning in a prisoner’s dilemma game with two computer agents: agent
A, a tit-for-tat player who repeats the subject’s previous action, and agent B, a simple stochastic cooperator oblivious to the subject’s
action. Approximately 1/3 of the subjects (group I) learned optimally in relation to both A and B, while another 1/3 (group II) did so only
for B. Postexperiment interviews indicated that group I exploited the agent strategies more often than group II. Significant differences in
learning-related brain activity between the two groups were only found in the superior temporal sulcus (STS) for both A and B. Further-
more, the learning performance of each group I subject was predictable based on this STS activity, but not in the group II subjects. This
differential activity could not be attributed to a behavioral difference since it persisted in relation to agent B for which the two groups
behaved similarly. In sharp contrast, the brain structures for reward processing were recruited similarly by both groups. These results
suggest that STS provides knowledge of the other agent’s strategies for association between action and reward and highlights learning
competence during interactive reinforcement learning.

Introduction
Humans are extremely interactive creatures and adapt their be-
havior based on the characteristics of other agents. During behav-
ioral adaptation through interaction with human (Van Lange,
1999) and nonhuman agents (Fogg, 2003), we see differences
among individuals in how they learn to cooperate or compete
properly in both real-life situations and games.

Two learning strategies are applicable for making decisions
through interaction (Barraclough et al., 2004; Lee, 2008). One is
to learn the association between one’s own action and reward and
to select an action associated with the maximum expected reward
(Sutton and Barto, 1998). Recent experimental studies have in-
dicated that this mechanism exists in the brain by demonstrating
reward prediction signals in the brain (Schultz et al., 2003; Bar-
raclough et al., 2004; Dorris and Glimcher, 2004; O’Doherty et
al., 2004; Haruno and Kawato, 2006; Kennerley et al., 2006; Seo
and Lee, 2007). In contrast, another strategy predicts the other
agent’s behavior based on our own action and context and uses it
for reward prediction. Such forward modeling of other agent’s
behavior has been formalized as “mentalizing” or “theory of
mind” (Baron-Cohen, 1997; Frith and Frith, 2003) in neuro-
science and social psychology and also plays a key role in behav-
ioral game theory (Camerer, 2003) and motor control (Haruno et
al., 2001).

When the external environment or the other agent is simple
and unaffected by our own behavior, the former strategy is more
efficient than the latter. However, when interaction with the
other agent is complex, the ability to predict the other agent’s
behavior plays a crucial role in reinforcement learning and may
account for individual differences.

In this paper, we contrast individuals who predict rewards by
fully using the other agent’s strategy and those who do so less in a
neuroimaging experiment of a prisoner’s dilemma game (Axel-
rod, 1984). Here, the subjects maximized monetary rewards by
learning to cooperate or defect. We used computer agents be-
cause we are interested in the neural mechanism commonly used
in interaction with human and nonhuman agents.

The results described here were concisely presented at the 35th
annual meeting of the Society for Neuroscience (Haruno and
Kawato, 2005).

Materials and Methods
Experimental paradigm. Normal subjects (n � 32, 21 males and 11 fe-
males, 23–30 years old, and mean � SD: 25.3 � 2.51 years) played a
prisoner’s dilemma game (Axelrod, 1984) against nonhuman computer
agents in a functional magnetic resonance imaging (fMRI) scanner. We
used two types of agents: agent A, a tit-for-tat player, and agent B, a
simple stochastic cooperator with a 0.7 probability of cooperation whose
actions were unaffected by the subject’s behavior. A’s tit-for-tat action
only depended on the subject’s previous action against A, independent of
action against B. In each trial (Fig. 1 A, test), one of the two computer
agents (A or B) was presented in pseudorandom order and symbolized by
a different neutral human face (Ogawa and Oda, 1998). Different pairs of
faces were used for every subject to avoid directing brain activity to
specific faces. The subjects were informed that their opponents were
computer agents, that the time-invariant strategies of each agent were
independent of each other, and they might be stochastic or might depend
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on the subject’s behavior. Therefore, they fully understood that the com-
puter agents were nonhuman without intention or emotion.

Subjects were instructed to decide cooperate or defect immediately
after the agent’s face appeared on the screen and to press the correspond-
ing button at a “beep” presented 6 � 0.5 s after the agent’s face. Subject
and agent actions were shown on the screen 7 � 0.5 s later, as well as that
trial’s monetary reward. The actual monetary reward received per trial
depended on the behavior of both the subject and the agent (Fig. 1 B).
When the subject cooperated, he received 30 yen if the agent also coop-
erated, but lost 30 yen if the agent defected. On the other hand, when the
subject defected, the reward was 50 yen if the agent cooperated but a
penalty of 20 yen if the agent defected. Therefore, the optimal behaviors
for the subjects were cooperating with agent A and defecting for agent B.
The subjects were told that their objective was to maximize their total
reward by learning the optimal behavior for dealing with each agent. At
the experiment’s end, the subject received the total monetary reward won
during the prisoner’s dilemma task. Each test block consisted of three
trials. A control task was interleaved (Fig. 1 A, C) in which the subject
passively pushed the same three buttons as in the preceding test block
guided by visual instructions with a yellow circle (corresponding test face
was also shown at the beginning) without a reward. Twelve sets of test (18
trials for both agents A and B) block– control blocks were presented to
each subject (Fig. 1C).

MRI acquisition and preprocessing. The subjects (n � 32) were post-
graduate students of Kyoto University and the Nara Advanced Institute
of Science and Technology. Informed consent was obtained, and the
protocol was approved by our institution’s ethics committee. MRI scan-
ning was conducted with a 1.5 tesla Marconi scanner at ATR Brain Ac-
tivity Imaging Center (ATR-BAIC) (TR 2.5 s, TE 49 ms, flip angle 80°,
FOV 192 mm, resolution 3 � 3 � 5 mm). High-resolution (T1 [1 � 1 �
1 mm] and T2 [0.75 � 0.75 � 5 mm]) structure images were also ac-
quired from each subject. Before statistical analysis, we performed mo-
tion correction and nonlinear transformation into the standard space of
the MNI coordinates. These normalized images were resliced into 2 �
2 � 2 mm voxels using the T2 template of SPM2 (Friston et al., 1995) and
then smoothed with an 8 mm full-width half-maximum isotropic Gauss-
ian kernel.

Learning model. We used a simple reinforcement learning model (Q-
learning) (Sutton and Barto, 1998) to examine each subject’s learning
process. In each trial, we assumed that the subjects would predict their
reward while playing against the agent based on the subject’s previous

and subsequent actions. Therefore, a subject’s
reward prediction (RP) in the tth trial was de-
noted as Qt(ag, at�1

s , at
s), the predicted reward

based on agent ag (agents A or B), previous be-
havior at�1

s , and subsequent behavior at
s (coop-

erate or defect) of the subject. We included at�1
s

because this information is essential for pre-
dicting and learning against agent A (“tit-for-
tat”). We expected the subjects to choose action
at

s (cooperate or defect) with a larger RP and to
learn by updating RP in proportion to the re-
ward prediction error, i.e., the difference be-
tween RP and the actual reward (rt). Therefore,
the subject’s learning process (model I) is sim-
ulated by the following equation using subject’s
actual action at

s, which reduces the reward pre-
diction error for the next occurrence of the
same combination of agent and actions: if the
model correctly selects the subject’s action by
taking a larger RP (Q),

Qt(ag,at�1
s ,at

s) � Qt(ag,at�1
s ,at

s)�

�t(rt�Qt(ag,at�1
s ,at

s)),

else

Qt(ag,at�1
s ,at

s) � Qt(ag,at�1
s ,at

s)�

�t(rt � Qt�ag,at�1
s ,at

s)),

Qt(ag,at�1
s ,āt

s) � Qt(ag,at�1
s ,āt

s)-�

end.
If the model cannot correctly select the subject’s action, the second equa-

tion is applied to avoid situations where Q for incorrect action (a�t
s) is larger

than its true value. � was set to 5.0 in all simulations because the � value
between 2.5 and 10.0 made no significant difference ( p � 0.05; t test) in the
prediction power of the subject’s behavior. However, unstable learning was
seen when the value was selected outside this range. Considering the agent’s
previous action, Qt(ag, at�1

ag , at
s) also produced results comparable to Qt(ag,

at�1
s , at

s) in subsequent analysis. We also tested an even simpler model
(model II) that does not consider the subject’s previous action (at�1

s ) [i.e.,
Qt(ag, at

s)]. All elements of Qt(ag, at�1
s , at

s) were initially set at 0. Learning rate
�t, which controls the amplitude of the change, was determined by a stan-
dard recursive least-square procedure with an initial value of 100 (Haruno
and Kawato, 2006). This simple learning procedure was expected to capture
both mentalizing-based and simple reinforcement learning since subjects are
grouped based on their different behaviors, as detailed later. The Q-learning
model approximates each subject’s trial-based learning curve, and we do not
claim that it is in the brain in exactly the same form.

Statistical analysis of fMRI data. The fMRI data were analyzed using stan-
dard procedures for random effect models (i.e., one- or two-sample t tests) in
SPM2 (Friston et al., 1995). We included three simple events in our regres-
sors: agent presentation, beep sound, and reward feedback. We used each
subject’s RP as a parametric modulator at the agent presentation event.
Hereafter, we focus on the RP results because we are mainly interested in
interactive reinforcement learning. The imaging results did not change even
if we included RP error as another regressor at the timing of the reward
feedback. The illustrations of the statistical maps (see Fig. 3) were prepared
using “multi_color” (http://www.cns.atr.jp/multi_color/), our in-house
software. In Figures 3B and 4A, each subject’s BOLD signal was extracted by
MarsBar (http://marsbar.sourceforge.net/), and the signal increase ratio was
computed by subtracting the average over the whole sequence. BOLD data
were high-pass filtered (cut-off frequency: 128 s) by the Butterworth filter in
MATLAB.

Results
Behavioral results
Agent A (tit-for-tat) exhibits simple and typical interactive be-
havior, but agent B does not react to the subject’s behavior.

Figure 1. Design of prisoner’s dilemma task. A, Timeline of test trials. After each test block, a control block was interleaved.
Time schedule of control condition was exactly identical as test condition. B, Payoff matrix. C, Schedule of entire task.
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Therefore, to learn to interact with agent A, the subject is ex-
pected to consider the other agent’s action strategy more when
selecting an action. On the other hand, simple association of the
subject’s own action and reward was sufficient to learn against
agent B. We therefore expected that more subjects would learn
the optimal strategy for dealing with agent B than A (i.e., coop-
erating with agent A and defecting for agent B). The evaluation of
subject performances was based on whether they selected the
optimal behaviors in all of the last four trials for both agents.
Among the 32 subjects, 12 learned the optimal behaviors against
both agents A and B and were placed in group I. Twelve other
subjects only learned the optimal behavior for dealing with agent
B and were placed in group II. This categorization of subjects
(and therefore subsequent imaging results) was unchanged even
when the evaluation criterion was based on the last five trials.
Gender and age were comparable between groups I (eight males,
four females, mean age � SD: 25.2 � 2.04 years) and II (eight
males, four females, mean age � SD: 24.8 � 1.55 years). The
remaining eight subjects (five males, three females, mean age �
SD: 26.1 � 2.42 years; group III) did not learn the strategies of
agents A and B. After completing the prisoner’s dilemma task in
the scanner, the experimenter interviewed them and asked
whether they understood each agent’s strategy. All group I sub-
jects correctly identified the strategies of both agents A and B, but
in group II, only four and eight subjects identified the strategies of
agents A and B, respectively. We judged that the subjects success-
fully understood each agent’s strategy when “repeating the sub-

ject’s previous action” and “random cooperation with a consid-
erable probability” were implied in their statements for agents A
and B.

In Figure 2A, the first and second rows show the chronologi-
cal plots of the behavior selections and the cumulative rewards
for each agent during learning by representative subjects in
groups I and II. Subject ST in group I initially fluctuated between
defect and cooperate when dealing with agent A before discover-
ing around the sixth trial that cooperating was the optimal solu-
tion. The same subject quickly learned that the optimal strategy
against agent B was to defect, although he/she tried another op-
tion at the eighth and ninth trials. After learning the optimal
strategy, the subject’s cumulative reward steadily increased for
both agents. In contrast, subject NS in group II did not show
convergence toward any fixed strategy against agent A and dis-
played wider behavior fluctuations than subject ST, but learned
the optimal behavior against agent B after a few trials. Figure 2B
plots the total amount of reward obtained by each subject in
groups I (red) and II (blue) while playing agents A and B. The
amount of the minimum (maximum) and mean (SD) total re-
ward for groups I and II were [agent A: 180 (540) and 367.5
(111.3), agent B: 400 (480) and 460.8 (28.1) yen] and [agent A: 90
(250) and 156.6 (55.0), agent B: 410 (480) and 449.2 (28.7) yen],
respectively. In accordance with the group definitions, the reward
against agent A was significantly larger in group I than in II ( p �
0.000064; t test), and the difference between the groups when
playing against agent B was not significant ( p � 0.33; t test).

Figure 2. Behavioral data. A, Behavior of two typical subjects. First two rows from top illustrate actions taken by subject and cumulative reward. Bottom two rows plot actions predicted by the model and
estimated reward prediction during series of trials. B, Cumulative reward of subjects. Cumulative reward obtained against agents A and B is plotted for group I in red and in blue for group II.
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Furthermore, the mean (SD) probability of choosing defects over
all 18 trials against agent A were 0.22 (0.14) in group I and 0.54
(0.11) for group II. There was no significant difference between
groups I and II in mean reaction time after the triggering beep
against either agent A ( p � 0.98; t test) or B ( p � 0.66; t test).

To further examine each subject’s learning process, we used a
simple reinforcement learning model that considered the sub-
ject’s previous and subsequent actions (model I). In Figure 2A,
the third and fourth rows show action predicted by the model and
reward prediction (RP) estimates for subjects ST and NS, respec-
tively. Against agent A, the RP of subject ST fluctuated during
trial and error and converged around the eighth trial. Subject ST
also showed rapid RP convergence in relation to agent B, although
fluctuations due to the stochastic nature of agent B were also visible.
In contrast, subject NS showed larger RP fluctuations against agent A

than subject ST, but showed a similar RP
pattern against agent B to subject ST.

We evaluated this model based on how
precisely it reproduced the subject’s be-
havior: cooperate or defect. The mean ac-
curacy over subjects and the SD of the cur-
rent model (model I) were the following:
group I (n � 12): 0.87 � 0.11 against agent
A, 0.93 � 0.10 against agent B; group II
(n � 12): 0.67 � 0.19 against agent A,
0.87 � 0.13 against agent B; other subjects
(n � 8): 0.60 � 0.097 against agent A,
0.76 � 0.16 against agent B. We also exam-
ined a simpler model (model II) that only
considered the subject’s next action
(group I: 0.77 � 0.13 against agent A,
0.94 � 0.073 against agent B; group II:
0.61 � 0.11 against agent A, 0.84 � 0.19
against agent B; other subjects: 0.60 � 0.10
against agent A, 0.76 � 0.16 against agent
B). Group I subject behavior only against
agent A was significantly better repro-
duced by model I than model II in the per-
centage of choice explained ( p�0.05; t test).
These results show that without taking ac-
count of subject’s previous behavior, the
Q-learning model defected more against
agent A (tit-for-tat) for group I subjects.
Such a difference was not seen against agent
B, and no significant difference was found
between models I and II for group II sub-
jects. All these observations indicate a key
role of at�1

s for group I in dealing with agent
A (not the general over-fitting due to this
additional parameter), and are consistent
with the view that group I subjects take a
model-based strategy to predict the oppo-
nent’s behavior based on their previous
behaviors.

Imaging results
To identify the differences in learning-
related neural activity between groups I
and II, we performed linear correlation
analysis of the fMRI data with RP by the
contrast on the mean betas for the RP re-
gressor and contrasted the two groups.
Figure 3A shows the differential neural

correlates between groups I and II ( p � 0.001, uncorrected, and
cluster size 	10). The superior temporal sulcus (STS) was the
only brain structure where group I showed a statistically greater
significant correlation against agent A (yellow) than group II.
Importantly, the same analysis against agent B (light blue) also
only lit up the STS with the same statistical threshold, and there
was substantial overlap with the results for agent A. This consis-
tency in the results between agents A and B negates the possibility
that STS activity arose from a difference between the two groups
in behavior or model fitness against agent A because they behaved
similarly against agent B. The opposite contrast detected no sig-
nificant differences for either agents A or B. We also conducted
similar correlation analysis using model II without considering
previous subject behavior and found no such difference in the
STS activity against agent A, even with a very low threshold ( p �

Figure 3. Correlation between fMRI data and RP. A, Differential correlation between groups I and II. Significant difference
between groups I and II only found in STS, yellow against agent A and light blue against agent B, with overlap depicted as a mosaic.
Brightness of color bars reflects T values. MNI coordinates of peak-correlated voxels for agents A and B were [48, �30, 0] and [48,
�32, 2], respectively. B, Learning-related BOLD signal change of group I and group II subjects in STS peak voxels. Error bars
represent SE. Statistical test was done at 5 s after presentation of agent ( p � 0.05; t test uncorrected for multiple comparisons in
selecting the voxel). C, Brain activity commonly correlated with RP in groups I and II. Horizontal sections of brain areas are shown.
MNI Z coordinates of slices depicted were 42 and 12. T values are light green for agent A and magenta for agent B.
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0.01); the result against agent B remained similar. Additionally,
to eliminate the possibility that this STS activity arose from sen-
sorimotor processes and implicit emotions for face perception
(Singer et al., 2004), we conducted the same correlation analysis
of the control trials by using RP of corresponding test trials and
found no difference in STS activity between groups I and II, even
with a very low threshold ( p � 0.1; uncorrected).

Figure 3B displays how the BOLD signal changes during learn-
ing in the STS peak voxel of the group I and II subjects. It was
separately averaged over the subjects for agents A and B, and for
the first nine trials (former half of all 18 trials, bold lines) and the
last nine trials (latter half, dotted lines). STS activity in the group
I subjects increased in the later trials for both agents A and B ( p �
0.05 at 5 s after agent presentation; t test uncorrected for multiple
comparisons in selecting the voxel), while group II subjects did
not show this tendency. Thus, STS activity increased during
learning in the group I subjects, but not in the group II subjects.
Because RP is expected to represent the reward prediction based
on the other agent’s strategy, the RP of the group I subjects takes
higher values and is used more often in the late phase of learning
than the beginning. The STS activity of the group I subjects was
larger in the second half of the trials than the first, consistent with
the behavior of RP.

Figure 3C shows the brain areas commonly activated in both
groups I and II in correlation with RP with identical statistical
thresholds in Figure 3A. The activities in the dorsolateral and
ventral prefrontal, the anterior cingulate, the parietal cortices,
and the striatum showed a statistically significant correlation
with the complete overlap between agents A (green) and B (ma-
genta). The same RP analysis conducted for the eight subjects
(group III) not in groups I or II lit up almost the same areas as
those activated in groups I and II (Fig. 3C), although rigorous
comparison of brain activity is susceptible to behavioral differ-
ences. Specifically, compared with group II subjects, the only
noticeable difference was that group II showed larger correlation
of activity in the caudate nucleus for both agents A and B than
group III with a moderate threshold ( p � 0.005, uncorrected,
and cluster size 	10). Importantly, the STS activity did not ex-
hibit differences between groups II and III for either agents A or
B, even with a very low threshold ( p � 0.1).

The STS activity in Figure 3A is a within-subject finding be-
cause each group I subject showed increased activity in the STS
correlated with that subject’s evaluation of learning performance
(RP). An intriguing question here is whether STS activity can
evaluate a subject’s learning performance in comparison with
other subjects. Figure 4A plots the relationship between each
subject’s average reward for each agent in the late phase of learn-
ing and signal increase in the STS (Fig. 3A, peak voxels) in those
trials upon presentation of the agent (group I: top; group II:
lower). In group I there was a statistically significant positive
correlation in relation to agents A ( p � 0.024) and B ( p � 0.025),
but not in group II. It would be noteworthy that in the peak
selection (Fig. 3), we used the contrast on the mean beta values
for the RP regressor, while in the subsequent across-subject anal-
ysis (Fig. 4A), we conducted correlation analysis of each subject’s
event-triggered activity in the peak voxels with the subject’s be-
havioral performance (i.e., average reward over last 10 trials).
Thus, since the two correlation measures are independent, the
result in Figure 4A is likely to provide unbiased correlation. Fig-
ure 4B plots the point at which each group I subject learned the
optimal behavior and the subject’s average reward, demonstrat-
ing that subjects who learned earlier obtained more reward

against both agents A ( p � 0.002) and B ( p � 0.014) and engaged
their STS more often.

Discussion
The current study showed that group I subjects exhibited an in-
crease in STS activity during interactive reinforcement learning,
but not in the group II subjects, although reward-related brain
structures were similarly recruited by both groups. This STS ac-
tivity was also predictive of learning performances across the
group I subjects. Attributing this differential activity to a behav-
ioral difference is difficult since it persisted in relation to agent B.

Together with the orbitofrontal and paracingulate cortices,
STS has been implicated in “the theory of mind” or “mentalizing”
(Baron-Cohen, 1997; Frith and Frith, 2003) during human-
human interactions. Therefore, the involvement of STS during
interaction games is a reasonable consequence (Rilling et al.,
2004; Hampton et al., 2008). Hampton et al. recently reported
that STS activity was correlated with an update (error) signal at
the timing of the reward feedback. Compared with these studies,
we showed that the learning signal in STS at the timing of the
agent presentation was predictive of individual differences in the
learning competence of group I subjects, but not of group II
subjects, which is consistent with mentalizing (Singer et al.,
2004). We also showed that this STS activity was found through
interaction with nonhuman agents. A future experiment that in-

Figure 4. Relationship between each subject’s learning performance and STS activity. A,
Each panel plots average reward over last 10 trials for each agent and corresponding increase in
BOLD signal in STS averaged for 7.5 s after presentation of each agent. BOLD signal was taken
from peak voxels revealed by previous analysis [i.e., [48, �30, 0] and [48, �32, 2], respectively
(Fig. 3A)]. B, Relationship between the point when each group I subject learned the optimal
solution against each agent and the subject’s average reward over last 10 trials.
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corporates explicit modeling of mentalizing and reward process-
ing might help extend our results.

We speculate that the orbitofrontal and paracingulate cortices
did not show up (Fig. 3A) because STS mainly provides predictive
knowledge of the other agent’s behavior (Frith, 2007) for reward-
action association, while the other two areas are involved in the
estimation and evaluation of the other human agent’s intention,
which were unnecessary in our task. Correspondingly, STS activ-
ity in Figure 3A was located slightly anterior to the typical “theory
of mind” area (Singer et al., 2004) and toward the locus of bio-
logical motion perception and prediction (e.g., mouth) (Pelphery
et al., 2005).

A third of the group II subjects accurately reported agent A’s
tit-for-tat strategy in postexperiment interviews but could not
behave optimally, suggesting that STS also plays a role in linking
the knowledge of the other agent’s behavior and reward-based
action selection. The finding that the two groups similarly re-
cruited brain structures for reward processing such as the stria-
tum (Schultz et al., 2003; Haruno et al., 2004; O’Doherty et al.,
2004; Haruno and Kawato, 2006), prefrontal (Barraclough et al.,
2004), anterior cingulate (Kennerley et al., 2006; Seo and Lee,
2007), and posterior cortices (Dorris and Glimcher, 2004) is con-
sistent with this view (Fig. 3C).

Our behavioral and modeling results indicate that simple as-
sociation between subject’s subsequent action and reward was
not sufficient to explain group I subject behaviors against agent
A. However, simple association did work well to explain group I
subject behaviors against agent B and group II subject behaviors
against both agents. In contrast, the imaging results showed that
group I subjects recruited STS against both agents A and B, while
group II subjects did neither. This difference suggests that group
I subjects were considering the other agent strategies, even
though unnecessary for optimal behavior, while group II subjects
were not or their efforts did not improve learning performance.
Group I subjects apparently always used this STS function to
boost the association between their actions and rewards, while
group II subjects tended to rely on simpler associations. The dif-
ference in learning strategies between groups I and II only sur-
faced when playing agent A.
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