11304 - The Journal of Neuroscience, September 9, 2009 - 29(36):11304 11315

Cellular/Molecular
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Type Il neuregulins exposed on axon surfaces control myelination of the peripheral nervous system. It has been shown, for example, that
threshold levels of type III Bla neuregulin dictate not only the myelination fate of axons but also myelin thickness. Here we show that
another neuregulin isoform, type III- 33, plays a distinct role in myelination. Neuronal overexpression of this isoform in mice stimulates
Schwann cell proliferation and dramatically enlarges peripheral nerves and ganglia—which come to resemble plexiform neurofibro-
mas— but have no effect on myelin thickness. The nerves display other neurofibroma-like properties, such as abundant collagen fibrils
and abundant dissociated Schwann cells that in some cases produce big tumors. Moreover, the organization of Remak bundles is
dramatically altered; the small-caliber axons of each bundle are no longer segregated from one another within the cytoplasm of a
nonmyelinating Schwann cell but instead are close packed and the whole bundle wrapped as a single unit, frequently by a compact myelin
sheath. Because Schwann cell hyperproliferation and Remak bundle degeneration are early hallmarks of type I neurofibromatosis, we
suggest that sustained activation of the neuregulin pathway in Remak bundles can contribute to neurofibroma development.

Introduction
Compact myelin is a vertebrate-specific adaptation that dramat-
ically increases nerve conduction velocity. The formation of my-
elin by Schwann cells in the peripheral nervous system (PNS) is
primarily dependent on axon-derived signals (for review, see
Sherman and Brophy, 2005). Recently, it was shown that Neu-
regulin 1 (NRGI) gene products expressed in PNS neurons are
pivotal for the survival and proliferation of Schwann cell lineage
(Levietal., 1995; Morrissey et al., 1995; Wolpowitz et al., 2000). It
was also elegantly demonstrated that later, axon surface-exposed
neuregulins provide instructive signals for the myelination of
peripheral neurons (Michailov et al., 2004; Sherman and Brophy,
2005; Taveggia et al., 2005).

Neuregulins are a group of cell-cell signaling molecules that
act as ligands of ErbB receptor tyrosine kinases. NRGI is a highly
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spliced gene with >15 isoforms, each containing an epidermal
growth factor-like domain that is essential for receptor binding
and activation. According to the structure of their N-terminal
domains, three main types of splicing products (type I-III) with
specific biological roles have been described (Falls, 2003). It has
been shown that only type III isoforms (characterized by a
cysteine-rich domain) are involved in the control of PNS myeli-
nation (Michailov et al., 2004; Taveggia et al., 2005). Type III
isoforms control not only myelination but also the ensheathment
of small-diameter axons and their segregation by the cytoplasm
of nonmyelinating Schwann cells (nmSC) in so-called Remak
bundles (Taveggia et al., 2005).

Two different neuregulin type III isoforms have been so far
described, type I1I-Bla and type I1I- B3 (Ho et al., 1995; Schroer-
ing and Carey, 1998; Falls, 2003). Gain-of-function studies on the
role the type III isoforms in myelination have been exclusively
conducted with the type III-B1a splicing form. However, the type
II-B3 isoform (also known as SMDF, for sensory and motor-
neuron derived factor) is also highly expressed in PNS neurons,
suggesting that it could have a role in myelin development. To
determine the role of this isoform in myelination, we have gen-
erated transgenic mice that overexpress human SMDF (hSMDF)
under the control of the rat neuron-specific enolase (NSE) pro-
moter. We show that, although SMDF overexpression has no
major effects on myelin thickness around individual large-
diameter axons, it has dramatic effects on the structure of the
Remak bundles. The small-caliber axons in these bundles are not
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segregated one from another within the Schwann cell cytoplasm
as they normally are but remain as a close-packed bundle that is
ensheathed as a single entity. Strikingly, the ensheathing
Schwann cells in mutant Remak bundles elaborate a compact
myelin sheath around the exterior of the axon bundle. We also
show that overexpression of SMDF provokes a dramatic prolif-
eration of nmSC, suggesting that neuregulin is an in vivo mito-
genic signal for these cells. Akin to type I neurofibromatosis (Ling
et al., 2005; Zheng et al., 2008), mutant nerves show increased
deposits of collagen fibrils in the extracellular space and, in some
cases, develop big tumors, suggesting that neuregulin overexpres-
sion in the small-sized axons of Remak bundles could be involved
in the development of neurofibroma and other peripheral nerve
tumors.

Materials and Methods

Generation of NSE-hSMDF transgenic mice. All the procedures involv-
ing animals were performed following European Union and United
Kingdom guidelines. The cDNA encoding for the human SMDF was
directionally cloned in the Xbal, NotI restriction sites of the NSE-mouse
platelet-derived growth factor alfa chain plasmid (Fruttiger et al., 1996).
The sequence of the construct was verified by DNA sequencing. The NSE
promoter, hSMDF ¢cDNA, and simian virus 40 poly(A) were excised with
EcoRI and injected into fertilized C57BL/6 hybrid mouse oocytes. These
were transferred into pseudopregnant female mice. Two founders, able
to transmit and express the transgene, were used to establish two trans-
genic mouse lines, NSE-hSMDF#1 and NSE-hSMDF#2. Mice were
genotyped by PCR using human-specific SMDF primers (sense,
5'_GAGTCTGCAGTCCTCGACCT; antisense, 5'_GATGGGGACAAT-
GCAGATT).

mRNA detection and quantification by reverse transcription and quan-
titative PCR. To detect and quantify gene expression, animals were killed,
the sciatic nerve was dissected, and total RNA was isolated using Purelink
Micro-To-Midi kit according to the instructions of the manufacturer
(Invitrogen). Genomic DNA was removed by incubation with RNase-
free DNase I (Fermentas), and RNA was primed with random hexamers
and retrotranscribed to cDNA with SuperScript IT Reverse transcriptase (In-
vitrogen). Control reactions were performed omitting retrotranscriptase.
The same primers used for genotyping were used for reverse transcription
(RT)-PCR. To control the quality of the cDNA, housekeeping mRNA
(SREBP2) was amplified (sense, 5'_AAGTCTGGCGTTCTGAGGAA;
antisense, 5'_ CCAGGAAGGTGAGGACACAT). Quantitative real-time
PCR (qPCR) was performed using the Applied Biosystems 7500 Real
Time PCR System and Platinum SYBR_Green qPCR SupermixUDG (In-
vitrogen). To avoid genomic amplification, PCR primers were designed
to fall into separate exons flanking a large intron. Reactions were per-
formed in duplicates of three different dilutions, and threshold cycle
values were normalized to the housekeeping gene 18S. The specificity of
the products was determined by melting curve analysis and gel electro-
phoresis. The ratio of the relative expression for each gene to 18S was
calculated by using the 24" formula (Table 1 ).

To quantify the amount of mRNA for SMDF in peripheral neurons,
qPCR was performed with primers able to amplify both the human and
mouse SMDF (SMDF human/mouse sense, 5'_GCC CAA ATG AGT
TTA CTG GTG; SMDF human/mouse antisense, 5'_GCT CCT ATT
CAG GCA GAG ACA G). Results were normalized to 18S.

Calculating the number of integrated copies. The number of transgene cop-
ies was evaluated as described previously (Mitrecic et al., 2005; Haurogne et
al.,, 2007). Briefly, genomic DNA was extracted from tail biopsies using
standard protocols, and DNA concentrations were determined with an
UV spectrophotometer (Nanodrop). DNA stock solutions at 50 ng/ul
were prepared, and the actual concentration was reevaluated (mean of
five measurements). According to this result, two dilutions were pre-
pared (6.25 and 3.13 ng/ul of genomic DNA). For qPCR reaction, we
always used a 2 ul of sample of each dilution. The primer sequences used
for the transgene were as follows: sense, 5'_GAGTCTGCAGTCCTC-
GACCT; antisense, 5'"_GATGGGGACAATGCAGATT. A fragment of
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Table 1. Primers used in this study to amplify the myelin related genes

Primer GenBank accession number Sequence (5" —3')

MBP NM_0100777 Sense ATCCAAGTACCTGGCCACAG
Antisense  CCTGTCACCGCTAAAGAAGC

PO NM_008623 Sense ACCAGACATAGTGGGCAAGACCTC
Antisense  AAGAGCAACAGCAGCAACAGCACC

(NPase ~ NM_009923 Sense TGCTGCACTGTACAACCAAATTC
Antisense  GTGTCACAAAGAGAGCAGAGATGG

HMGCR ~ NM_008255 Sense TGGATCGAAGGACGAGGAAAG
Antisense  GAATTACGTCAACCATAGCTTCCG

185 NR_003278 Sense (GGCTACCACATCCAAGGAA
Antisense  GCTGGAATTACCGCGGCT

the same size (~250 bp) was also amplified from the mGJA5 housekeep-
ing gene (GenBank accession number NM_008121; primer sense,
5'_GCCTATGAGTACCCAGTAGCCG; antisense, 5'_CGTGGGCCTC-
GAAACATAAC). The number of transgene copies was calculated using
the 224€T formula.

In situ hybridization. Antisense RNA probes for in situ hybridization
were prepared from human SMDF cDNA cloned in pcDNA3 (Cabedo et
al., 2002). In situ hybridization was performed as described previously
(Fruttiger et al., 1999).

Immunoblotting and lectin binding. Tissues were homogenized at 4°C
in radioimmunoprecipitation assay buffer (1% Nonidet P-40, 1% so-
dium deoxycholate, 0.1% SDS, and 5 mm EGTA) containing protease
inhibitors (Complete tablets; Roche) and phosphatase inhibitors (50 mm
sodium fluoride and 0.2 mm sodium vanadate). Protein concentrations
were determined by the BCA method (Pierce). For Western blotting,
6-15 ug of total protein was subjected to SDS-PAGE and blotted onto
Protran nitrocellulose membrane (Whatman Schleicher and Schuell).
Membranes were incubated overnight at 4°C with the indicated specific
primary antibody, washed and incubated with secondary antibodies, and
developed with ECLplus (GE Healthcare). The primary antibodies used
were as follows: mouse monoclonal anti-glial fibrillary acidic protein
(GFAP) (1:1000; Millipore Bioscience Research Reagents) and anti-3-actin
antibodies (1:2000; Sigma); rabbit polyclonal anti-mitogen-activated pro-
tein kinase (MAPK), anti-phospho-MAPK p44-42, anti-AKT, and anti-
phospho-AKT (Ser473) antibodies (1:1000; Cell Signaling Technology);
rabbit polyclonal anti-heregulin 83 and anti-ErbB3 antibodies (1:500;
Santa Cruz Biotechnologies); and anti-phospho-Histone H3 (pSer10)
(1:200; Sigma) and anti-Krox-20 (Egr2) rabbit polyclonal antibodies (1:
100; Covance). Goat polyclonal antibodies were anti-MBP (clone D-18)
(1:500; Santa Cruz Biotechnologies) and anti-apolipoprotein E (ApoE)
(1:500; Millipore Bioscience Research Reagents). The secondary an-
tibodies were conjugated with horseradish peroxidase (1:2000;
Sigma). For lectin binding, tissues were lysed with 10 mwm Tris-HCI,
pH 7.5, 100 mm NaCl, 0.4% sodium deoxycholate, 0.3% SDS, and 1%
Nonidet P-40, and extracts were incubated with 80 ul of wheat germ
agglutinin—agarose lectin, extensively washed with lysis buffer, and
analyzed by immunoblotting.

Immunohistochemistry. Mice were killed, and sciatic nerves were dis-
sected, fixed overnight in 4% paraformaldehyde, and cryoprotected by
sequential immersion in 5, 15, and 30% sucrose in PBS at 4°C. Fixed
nerves were embedded in O.C.T. (TissueTek; Sakura) and frozen on dry
ice. Longitudinal or transversal nerve sections were blocked for 2 h in 5%
goat serum and 0.3% Triton X-100 in PBS. Primary antibodies (anti-
$100 at 1:400 and anti-GFAP at 1:500) were diluted in 1% goat serum and
0.3% Triton X-100 in PBS and incubated at 4°C. Sections were then
washed with PBS, and detection was performed using the appropriate fluo-
rescent secondary antibodies (AlexaFluor 594 anti-mouse, AlexaFluor 488
anti-rabbit, 1:700; Invitrogen) for 1 h. Nuclei were counterstained with bis-
benzimide (Hoechst nuclear stain) in PBS. Samples were mounted in
Fluoromount G (Southern Biotechnology Associates). Anti-Krox-20 im-
munohistochemistry was performed as described by Le et al. (2005).

Cell proliferation analysis. Cell proliferation was measured by bro-
modeoxyuridine (BrdU) (Sigma) incorporation. Transgenic mice and
littermates [postnatal day 5 (P5) or P14] were administered four doses of
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BrdU (50 mg/kg in PBS) intraperitoneally at 2 h intervals. Sciatic nerves
were subsequently dissected, and cells were disaggregated and plated on
coverslips. After cell attachment (8—12 h), cells were processed for BrdU
immunostaining. Briefly, cells were fixed in 4% paraformaldehyde for 30
min, washed in PBS, treated with 2N HCI for 30 min at 37°C, washed in
borate buffer, pH 8.3, and PBS, and blocked in PBS containing 0.5%
Triton X-100 and 5% goat serum. Processed cells were incubated with a
mouse anti-BrdU (1:500; Sigma) and a rabbit anti-S100 (1:400; Sigma)
antibody for 2 h at 37°C and then washed with PBS. Detection was
performed using fluorescent secondary antibodies (AlexaFluor 546 anti-
mouse and AlexaFluor 488 anti-rabbit, 1:1000). Samples were mounted
in Fluoromount G (Southern Biotechnology Associates). To calculate the
mitotic index, anti-phospho-Histone H3 (1:200) immunohistochemis-
try was used.

Toluidine blue staining and transmission electron microscopy. Mice were
profoundly anesthetized by intraperitoneal injection of 40 mg/kg ket-
amine and 30 mg/kg xylazine and then intracardially perfused with 2%
paraformaldehyde, 2.5% glutaraldehyde, and 0.1 M phosphate buffer, pH
7.4. Tissues were dissected and immersed in the same fixative solution at
4°C overnight, washed in phosphate buffer, postfixed in 1% osmium
tetroxide, dehydrated in graded ethanol series, and embedded in epoxy
resin (Durcupan). Semithin sections were cut with a glass knife at 1-3
pm and stained with toluidine blue. Images were obtained with a 63X
objective in an inverted microscope (Nikon) and digitalized with Meta-
Morph 7.1 software (Molecular Devices). For electron microscopy, ul-
trathin sections (70—90 nm) were cut on an ultramicrotome (Reichert
Ultracut E; Leica) and collected on 200-mesh nickel grids. Staining was
performed on drops of 1% aqueous uranyl acetate, followed by Rey-
nolds’s lead citrate. Ultrastructural analyses were performed in a Jeol-
1010 electron microscope. g-Ratio and axon perimeter were calculated
using NIH Image]. Electron microscopy images were used for calculating
the g-ratio. Axon perimeter measurements were performed on images
taken on a light microscope. At least 100 randomly selected axons were
analyzed per animal. Three or more animals were used per genotype.

Gomori’s staining. Sciatic nerves were sectioned longitudinally (10 wm
thickness) and fixed in 4% paraformaldehyde for 15 min, washed in
water, stained in Gomori’s Trichrome Stain LG for 5 min, and washed
again with 0.5% acetic acid for 1 min. Then, slides were sequentially
dehydrated in 70, 95, and 100% alcohol series, cleared in xylene, and
mounted with Permount (Thermo Fisher Scientific). Images were ob-
tained with AxioCamHRC (Carl Zeiss) in DM5000R microscopes (Leica)
under a 20X objective.

Electrophysiology. Mice were anesthetized by intraperitoneal injection
of 40 mg/kg ketamine and 30 mg/kg xylazine and then perfused with
oxygenated (95% O,/5% CO,) saline containing the following (in mm):
133 NaCl, 16.3 NaHCO;, 1.3 NaH,PO,, 3.6 KCI, 1.2 MgSO,, 1.2 CaCl,,
and 7.8 glucose. Sciatic nerves were dissected and placed in a recording
chamber superfused with the same solution. Electrical stimuli were ap-
plied using a suction electrode at one end of the nerve, and compound
action potentials were recorded with a pipette filled with 1 m NaCl (5
M(Q)) at the other end. Signals were recorded using a MultiClamp 700B
amplifier (Molecular Devices), filtered at 10 kHz and digitized at 20 kHz
(Digidatal320A; Molecular Devices), and analyzed with AxoGraph X 1.0
(AxoGraph Scientific). To increase the signal-to-noise ratio, 40 sweeps
were averaged.

Results

Neuronal overexpression of type III-33 NRG1: NSE-SMDF
transgenic mice

Although it is well established that overexpression of the type
III-Blaisoform of Neuregulin 1 increases myelin thickness in the
PN, the effects of type III-33 isoform overexpression have not
been yet determined. To explore this point, we produced trans-
genic mice expressing the human type I1I-33 neuregulin in neu-
rons, under transcriptional control of a 1.8 kb NSE promoter
fragment from rat (Fig. 1a), which has been used previously to
target transgene expression to postnatal neurons (Forss-Petter et
al., 1990; Fruttiger et al., 1996; Calver et al., 1998). Two founder
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Figure 1. Strategy to overexpress type lll-33 neuregulin 1in neurons. a, To drive the ex-
pression of type ll- 33 neuregulin into CNS and PNS neurons, the cDNA encoding for the human
SMDF was cloned under the 1.8 kb promoter of the rat NSE and microinjected into fertilized
mouse oocytes (see Material and Methods). b, In situ hybridization with a human hSMDF probe
shows that the transgene is expressed in neurons (gray matter) but not in glial cells (white
matter) in the NSE-SMDF#1*/~ mice. ¢, The overexpression of hSMDF induces the sustained
activation of the MAPK and PI3K pathways in the PNS. Protein extracts from P20 sciatic nerves
were submitted to SDS-PAGE and blotted with anti-phospho-MAPK kinase or anti-phospho-
Akt-specific antibodies. The incubation with anti-MAPK and anti-Akt (total protein) illustrates
that the increase in phospho-immunoreactivity was not caused by changes in the amount of
protein. WT, Wild type; TG, transgenic.

lines (#1 and #2) were derived that contained ~24 and ~7 trans-
gene copies per genome, respectively (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material). Both
lines were fertile and developed no obvious phenotype during the
first few months of life. I sifu hybridization with a probe specific
for hSMDF showed that both lines expressed the NSE-hSMDF
transgene in cells of the spinal cord gray matter but not white
matter, consistent with neuron-specific expression (Fig. 1b)
(supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). Unless otherwise stated, the work described
from here on concerns transgenic line #1. To determine whether
mRNA encoded by the transgene is translated to protein, SMDF
(and other glycosylated proteins) from adult NSE-hSMDF brain
and sciatic nerve homogenates were concentrated by lectin bind-
ing (Cabedo et al.,, 2004) and immunoblotted with an anti-
neuregulin B3-specific antibody (see Material and Methods). As
shown in supplemental Figure S3 (available at www.jneurosci.org
as supplemental material), SMDF immunoreactivity was notice-
ably increased in the nervous tissue of the NSE-hSMDF mice. To
further define the expression pattern of the transgene we per-
formed RT-PCR experiments with primers designed to amplify
hSMDF but not endogenous mouse SMDF. As is shown in sup-
plemental Figure S4 (available at www.jneurosci.org as supple-
mental material), transgene-derived mRNA is found in neural
tissues (forebrain, cerebellum, spinal cord, trigeminal, and dorsal
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the sustained activation of two key signal-
ing pathways for the proliferation and dif-
ferentiation of Schwann cells.
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termates (see Material and Methods).
Gene expression levels were normalized
against 18S rRNA. As is shown in Figure
2a, each of the selected Schwann cell mR-
NAs was dramatically downregulated in
NSE-hSMDF mice. The reduction in
MBP transcripts was accompanied by a re-
duction of 53 * 1.1% in MBP protein
(n = 4), revealed by immunoblotting P20
sciatic nerve extracts (Fig. 2b). The reduc-

axonal size (um)

Figure 2.

root ganglia) but not in non-neural tissues (heart, liver, and kid-
ney). Using qPCR, we estimated that the expression of mRNA for
SMDF in the peripheral neurons of line #1 transgenic animals is
increased by almost sevenfold (6.91 * 0.04). Although less dra-
matically (2.6-fold), mRNA for SMDF was also increased in neu-
rons of the transgenic line #2.

Axonal neuregulin activates two different signaling path-
ways in Schwann cells: the phosphatidylinositol kinase (PI3K)
pathway and the RAS-MAPK pathway (Taveggia et al., 2005).
To determine whether these pathways are activated in the PNS
of NSE-hSMDF mice, the phosphorylation state of Akt and
MAPK proteins was explored. Sciatic nerve homogenates from
P20 NSE-hSMDF*/~ mice and their wild-type littermates were
immunoblotted with anti-phospho-Akt and anti-phospho-
MAPK-specific antibodies (see Material and Methods). Figure 1¢
shows that the phosphorylation state of MAPK was increased in
the transgenic mice, suggesting that overexpression of neuregulin
in neurons produces sustained activation of the MAPK signaling
pathway in Schwann cells. Akt (a downstream effector of PI3K)
was also hyperphosphorylated in the transgenic mice, although
less dramatically compared with MAPK (Fig. 1¢). Together, these
data suggest that overexpression of SMDF in neurons provokes

Overexpression of hSMDF induces a dramatic decrease in the myelin protein expression, which reflects no real
myelination deficit. @, The mRNA for PO, MBP, CNPase, and HMGCoA reductase is dramatically downregulated in the sciatic nerves
of the NSE—hSMDF #1+/~ mice. cDNA from PO, P3, P10, P20, P35, and P150 was analyzed for the expression of these genes by
gPCR. mRNA levels are expressed in arbitrary units after normalization to a housekeeping gene (18S). b, The drop in mRNA is
reflected in a decrease in the steady-state levels of myelin proteins as shown by the anti-MBP Western blot of protein extracts of
P20 NSE— hSMDF #1™~ sciatic nerves and wild-type littermates. ¢, Myelin thickness is not altered in the mutant nerves. Myelin
thickness was estimated by determining the g-ratio in EM images obtained from mutant P20 mice and wild-type littermates (see
Material and Methods). g-Ratio was plotted against axon size. Four animals per genotype were used. Except for aslight increase for
larger axons, no significant changes in g-ratios could be observed. Data are given as mean == SE. WT, Wild type; TG, transgenic.

tion in myelin-related mRNAs was also
observed, to a lesser extent, in the NSE-
hSMDF transgenic line #2 (~7 integrated
copies rather than ~24) (supplemental
Fig. S5, available at www.jneurosci.org as
supplemental material), suggesting that
the reduction in myelin gene expression is
the consequence of neuregulin overex-
pression and not transgene positional ef-
fects. Myelin protein expression has been
widely used as a surrogate marker of my-
elination; however, there are situations in
which myelin protein expression does not
accurately reflect the myelination state of axons (Muse et al.,
2001). Therefore, we examined sciatic nerves of P20 NSE-
hSMDF*/~ mice in the electron microscope and determined the
g-ratio (axon diameter/outer diameter of myelin sheath) as an
estimate of myelin thickness. Surprisingly, except a slight de-
crease in the thickness of myelin for larger axons, no major
changes in the myelin thickness occurred ( g-ratio, 0.67 = 0.004
for wild type and 0.65 * 0.013 for mutant; n = 4 animals per
genotype) (Fig. 2¢). Therefore, our data show that overexpression
of SMDF in PNS neurons provokes a reduction in myelin mRNAs
and proteins but no corresponding deficit in myelination.

4 6 8

Hyperproliferation of Schwann cells causes enlargement

of peripheral nerves

The lack of any reduction in myelin thickness in NSE-hSMDF
mice raised the possibility that the apparent reduction in myelin
gene expression might be a “dilution” effect caused by hypertro-
phy of other endoneurial compartments of the nerve. This idea
was supported by the striking enlargement of nerve roots and
dorsal root ganglia in NSE-hSMDF*’~ mice (Fig. 3a). A detailed
microscopic analysis showed that the space between myelinated
axons was dramatically increased in the transgenic animals, espe-
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cially between P14 and P35 (Fig. 3b). Part
of this increase is apparently caused by the
expansion of the extracellular matrix,
mainly proteoglycans and proteins (Fig.
3b) (see Fig. 8c—e). Although this expan-
sion might explain the reduction in spe-
cific signal on Western blots (in which
the loaded sample is normalized to total
protein concentration), it cannot explain
the dramatic decrease in the cognate mR-
NAs. The reduction of myelin-related mR-
NAs might, however, be explained by an
increase in the number of nonmyelinating
cells, for example, fibroblasts or nonmy-
elinating Schwann cells. To test this, we
estimated by immunoblot the amount
of ErbB3, a receptor that is expressed in
both myelinating and nonmyelinating
Schwann cells but not in fibroblasts
(Jessen and Mirsky, 2005). Protein ex-
tracts from sciatic nerves of P20 NSE-
hSMDF*'~ mice and wild-type littermates
were analyzed on Western blots with a
polyclonal anti-ErbB3 antibody. ErbB3 protein was upregulated
in NSE-hSMDF*’~ mice (Fig. 4a), suggesting that the Schwann
cell population is expanded. This expansion seemed to involve
preferentially nmSC, because GFAP, a reliable marker for nmSC
(Jessen and Mirsky, 2005), was dramatically upregulated. Also sup-
porting this interpretation, immunoreactivity for ApoE, which is
expressed mainly in nmSC in the PNS (Boyles et al., 1985), was
also greatly increased (Fig. 4a). Inmunofluorescence microscopy
confirmed that GFAP-positive (GFAP *) nmSC are much more
numerous in NSE-hSMDF ™/~ mice (Fig. 4b). The sciatic nerves of
wild-type mice were mainly occupied by myelinating Schwann cells
(S100B8 ", GFAP-negative, elongated nuclei), whereas in NSE—
hSMDE*’~ mice there were large clusters of nmSC separating the
axons (GFAP 7, irregular shaped nuclei) (Fig. 4b). Toluidine blue
staining of cross-sectioned nerves revealed that myelinated axons
were less densely packed in NSE-hSMDF nerves compared with
wild type, because the former contained abnormally large num-
bers of nonmyelinating cells in the inter-axonal space (Fig. 4c).
However, no changes in the number of myelinating Schwann
cells (Krox-20 ™) per unit of nerve length could be observed (wild
type, 100 = 19%; transgenic, 108 = 16%; n = 3) (Fig. 4d). To-
gether, our data show that the enlargement of the nerves in the
transgenic animals results from a large increase in the numbers of
nmSC. To quantify the increase in cellularity and nerve thickness
during postnatal development, cross-sections of sciatic nerves
from NSE-hSMDF*’~ mice and wild-type littermates were
stained with bisbenzimide (Hoechst nuclear stain) (Fig. 4e).
Cross-sectional area and number of nuclei per cross-section were
counted in confocal microscope images (Fig. 4f,). As is shown in
Figure 4f, the cross-sectional area of P5 transgenic sciatic nerves
and wild-type littermates was essentially the same (wild type,
62.8 = 3.5 um?, n = 5 animals; transgenic, 64.3 = 1.0 um?, n =
5). At P20, the area of sciatic nerves in wild-type animals had
increased ~1.9-fold compared with P5 (116.2 + 6.8 um?, n = 5),
whereas it had increased ~3.4-fold in the transgenic animals
(221.1 = 11.7 wm?, n = 5). At P150, cross-sectional area was still
larger in the transgenic mice relative to wild type (297.2 = 1.4
wm?, n=5vs260.8 + 1.7 um?, n = 5, respectively). The number
of nuclei per section (Fig. 4g) was also very similar at P5 in wild-
type and transgenic animals (458 * 26 nuclei per section in wild

mice of the indicated ages.
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Figure3. Transgene expression enlarge peripheral nerves. a, Nerve roots and ganglia of P20 mutant NSE— hSMDF#1 ™/~ mice
[transgenic (TG)] are notably enlarged when compared with wild-type littermates (WT). b, Mutant nerves (TG) show evident
morphological alterations during postnatal myelination. Initial steps of myelination (P0—P5) are indistinguishable in the NSE—
hSMDF mutants and wild-type littermates. In contrast, from P14 to P150, the number of myelinated axons per section is notably
decreased in the mutant sciatic nerves. Images (60<) of toluidine blue-stained sciatic nerves cross-sections were obtained from

type, n = 5; 499 * 6 nuclei per section in transgenics, n = 5).
However, by P20, the number of nuclei per section was much
greater in NSE-hSMDF'’~ mice compared with wild type
(1859 * 89, n = 5vs 527 * 26, n = 5). At P150, the number of
nuclei per section was still higher in the transgenic animals
(1580 * 30, n = 5vs 550 = 20, n = 5). Interestingly, the number
of nuclei per unit area drops between P5 and P20 in wild-type
nerves, probably as a consequence of increasing myelination and
the consequent increase in Schwann cell volume (Fig. 4h). In
contrast, in transgenic mice the density of nuclei does not fall
between P5 and P20. After P20 (when myelination is complete),
the number of nuclei per unit volume declines at a similar rate in
both transgenic and wild-type nerves (Fig. 4h). Similar results
(although less marked) were found in the independent transgenic
line #2 (supplemental Fig. S6, available at www.jneurosci.org as
supplemental material).

Apart from Schwann cell numbers, an increase in the number
and/or volume of axons could also theoretically contribute to the
enlargement of nerves in mutant mice. To explore this possibility,
we estimated axon density at P5, P20, and P150 in NSE-
hSMDF*’~ mice and their wild-type littermates. The density of
myelinated axons was practically the same in transgenic and wild-
type animals at P5 (Fig. 5a). However, at P20, the density of
myelinated axons in transgenic nerves dropped to 60.9 = 7.6%
that of wild type. However, allowing for the increase in nerve
cross-sectional area (~1.9-fold), the number of axons per nerve
is very similar in transgenic and wild-type animals (115 * 14% in
transgenics relative to wild type). To explore the potential con-
tribution of an increase in axonal volume to the increased nerve
volume, we measured axon perimeter in P20 NSE-hSMDF*'~
and wild-type nerves. As is shown in Figure 5b, the distribution
of axon perimeters in transgenic animals was clearly shifted
toward smaller sizes compared with their wild-type littermates
(Fig. 5b). Together, our data demonstrate that axons do not
contribute to the increased thickness of peripheral nerves in
NSE-hSMDF animals.

The augmented number of Schwann cells in NSE-hSMDF
animals might be caused by increased proliferation and/or by a
decrease in apoptosis in the P5-P20 period. Because apoptosis is
already low in late postnatal nerves (Grinspan et al., 1996), we
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focused in putative changes in cell prolif-
eration. BrdU (50 mg/kg body mass) was
administered to NSE-hSMDF'/~ mice
aged P5 or P14 (see Material and Meth-
ods). After three injections, the mice were
killed, and sciatic nerve cells were dissoci-
ated and plated on poly-L-lysine- and
laminin-coated coverslips. After cell at-
tachment (~12 h), cells were fixed and
immunolabeled with anti-S1008 and
anti-BrdU antibodies. The BrdU labeling
index (fraction of S1008 ™ Schwann cells
that was BrdU ¥) is plotted in Figure 5d.
At P5, the labeling index was substantially
greater in the transgenic mice than in their
wild-type littermates, indicating an in-
creased proliferation rate in the transgen-
ics. In contrast, at P14, the proliferation
rates of transgenic and wild-type Schwann
cells had converged. In the same line, the
number of phospho-Histone H3-positive
nuclei (a maker of mitosis) was found also
increased in the P5 transgenic nerves (Fig.
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Figure 4.  Nerve enlargement is caused by the hyperplasia of
the nmSCduring the postnatal development. a, The amount of
erbB3 protein (a Schwann cell marker) was notably increased,
suggesting that there are more Schwann cells in the mutant
nerves. GFAP (a protein expressed exclusively in nmS() is also
clearly upregulated, suggesting that the expanded population
of Schwann cells is mainly in a nonmyelinating state. In sup-
port of this tenet, the expression of ApoE was also increased. In
contrast, MBP expression was notably downregulated in the
mutant nerves. Protein extracts from NSE— hSMDF#1*/~ and
wild-type nerves were submitted to SDS-PAGE and immuno-
blotted with the indicated antibody. b, Inmunohistochemis-
try of mutant nerves: nmSC (GFAP ™) were barely observed in
longitudinal sections of wild-type P20 sciatic nerves under the
confocal microscope. In contrast, big clusters of nmSC segre-
f gate myelinated fibers (5100 ™ with sharp nucleus) in the
nerves of mutant animals. ¢, Detailed inspection of toluidine
blue-stained sections show that the number of cells dissoci-
ated from axons is increased in the mutant nerves (asterisks).
d, The number of myelinating cells is not increased in the mu-
tant nerves. Although the density of Krox-20 * nuclei is nota-
bly decreased in mutant nerves, the number of Krox-20 ©
nuclei per unit of nerve length s similar in wild-type and trans-
genic nerves. e, Transgene expression increases dramatically
the number of nucleated cells in the P20 mutant nerves. Im-
ages obtained with a confocal microscope from sciatic nerve
sections stained with bisbenzimide of NSE-hSMDF#1 ™+~
mice [transgenic (TG)] and wild-type littermates (WT). f, Sci-
atic nerve section area in wild-type and mutant mice during
postnatal development. The nerve section was estimated for
g (x109) h 0y at least ﬂvg a.nimals w.ith thg indicateq age. g, The number of

cells (nuclei) is dramatically increased in the mutant mice. Nu-
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that the main alterations of mutant nerves are produced dur-
ing the postnatal development. Data are given as mean = SE.



11310 - J. Neurosci., September 9, 2009 - 29(36):11304 11315

Sef). Therefore, the hypercellularity of
transgenic nerves is caused mainly by the
hyperproliferation of Schwann cells be-
tween P5 and P14.

In summary, our data suggest that
the enlargement of sciatic nerves in the
NSE-hSMDF mice is the consequence
of the in vivo mitogenic effect of type
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It has been shown that small-sized axon
segregation in the Remak bundles is con-
trolled by type III neuregulins (Taveggia

et al,, 2005). To investigate whether the

type III- B3 neuregulin isoform also plays
arole in small-caliber axon ensheathment

and segregation, we obtained electron mi-
croscope images of sciatic nerves from

P20 NSE-hSMDF "'~ mice and wild-type
littermates. As is shown in Figure 6, the e
structure of the Remak bundles in the mu-
tant nerves is dramatically altered. In con-
trast to wild type (Fig. 6a,b), most of the
small-caliber axons of the transgenic mice
remain unsegregated within the Schwann
cell cytoplasm, forming a single fascicle of
axons located in a large pocket (Fig. 6¢,d).
However, the number of axons per Remak
bundle remains unaltered. A detailed
quantification of the number of axons per
pocket and total axons per bundle in mu-
tant and wild-type nerves is shown in Fig-
ure 6, e and f.

Interestingly, in mutant bundles, the
nmSC is apparently “extruded” from the
fascicle and ensheathes the whole pack of
axons as if it were a single large-caliber
axon, in what resembles a premyelinating
complex. Strikingly, a significant number
of these atypical Remak bundles (~20%)
develop an electron-dense structure sur-
rounding the axon fascicle resembling a
compact myelin sheath (Fig. 6g—j). In-
deed, the high-resolution structure of this
electron-dense material in the electron mi-
croscope was indistinguishable from compact myelin around single
axons (Fig. 6k,!). In longitudinal sections, myelination seems to be
continuous along some axon bundles (Fig. 6m), whereas in others
myelination is only partial (Fig. 6n). To our surprise, no “nor-
mal” Remak bundles could be found in P20 transgenic nerves
(supplemental Fig. S7, available at www.jneurosci.org as supple-
mental material). Although much less dramatically, Remak bun-
dle degeneration and myelination was also observed in transgenic
line #2 (data not shown). Together, our data suggest that the
expression of type III-B83 neuregulin in small-caliber axons, in
addition to stimulating Schwann cell proliferation, reprograms the
nmSC into a myelinating phenotype and results in the myelination
of whole Remak bundles as single units.

Unmyelinated small-diameter axons in normal Remak bun-
dles have slow conduction velocities (<1 m/s) and can be iden-
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Increased Schwann proliferation rate but not axon size or density drives to nerve enlargement. a, Axonal density is
lower in the mutant mice, suggesting that an increase in the number of axons does not contribute to nerve enlargement. b, The
distribution of axon perimeter is shifted to the left in the P20 mutant mice, ruling out that axon swelling could contribute to nerve
enlargement. Axon density and size were estimated in optical and EM images obtained from sections of two or more sciatic nerves
from mice of the indicated age. ¢, d, BrdU experiments show increased proliferation of Schwann cells in mutant mice. Number of
BrdU-labeled cellsin sciatic nerves of P5 and P14 NSF— hSMDF#1 ™/~ mice and wild-type littermates were counted and normalized
105100 * Schwann cells (see Materials and Methods). A notable increase in the Schwann cell proliferation in the mutants could be
observed at P5 but not at P14. e, f, Similar results were obtained when the mitotic index (phospho-Histone H3 ™) was estimated.
Two to three animals per genotype and age were used. Data are given as mean == SE (***p < 0.0001, Student's ¢ test.). WT, Wild

tified as “C-fibers” in recordings of compound action potentials
along sciatic nerves. C-fibers have been shown to be involved in
temperature sensing, pain, mechanical transduction, and itching.
The proper ensheathment and segregation of small axons in in-
dividual pockets of the nmSC cytoplasm is critical for nerve func-
tion (Taveggia et al., 2005). To explore whether the atypical
myelination and aberrant segregation of small-caliber axons in
the abnormal Remak bundles of NSE-hSMDF mice affects nerve
conduction velocity, sciatic nerves from adult NSE-hSMDF*/~
mice and wild-type littermates were removed, and compound
action potentials were recorded (see Materials and Methods). We
found that myelination of Remak bundles did not increase the
nerve conduction velocity in the C-fibers. In fact, a significant
decrease in the conduction velocity was found (Fig. 7a,b). Sur-
prisingly, and although myelination of individual large-diameter
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Figure6.  Transgene expression disrupts small-diameter axon segregation and induces Remak bundle myelination. a, b, Transmission
EM images obtained from P20 wild-type mice showing that small-sized axons (AXx) are segregated by the cytoplasm of the nmSCin the
Remak bundle (arrows). Scale bars, 1 wm. ¢, d, No cytoplasm segregates small-sized axons in the NSE— hSMDF mice (arrows). In these
nerves, the Schwann cell (Sc) remains outside of the bundle ensheathing the whole pack of axons. Scale bars, 1 .m. e, Distribution of axons
per pocket is profoundly modified in mutant nerves. In contrast to wild type, in mutant nerves, very few axons are found in individual
pockets. f, In contrast, the number axons per Remak bundle is not changed. More than 170 bundles from four P20 different animals (n =
4) were counted per genotype. Data are given as mean == SE (**p = 0.0041, ***p << 0.0001, Student’s ¢ test.). g, With these atypical
Remak bundles (arrowhead), others coexist in which the ensheathing Schwann cell has developed a myelin membrane wrapping the
whole bundle (arrow). The total area of the myelinated bundle is similar to the area of myelinated axons. Scale bar, 1 um. h—j, Myelinated
bundles with increased magnification. Scale bars, 1 pem. k, 1, High-power EM images of mutant Remak bundles. The membrane wrapping
the bundle is structurally indistinguishable of a myelin sheath. Scale bars, 0.2 um. m, n, EM images of longitudinal sections of mutant
nerves showing that, whereas some bundles seem completely myelinated (m), myelination is not always continuous along other bundles
(n, arrow). Scale bars, 1 em. WT, Wild type; TG, transgenic.
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axons is basically normal (Fig. 2¢), nerve
conduction velocity of myelinated single
fibers was also decreased in the transgenic
mice (Fig. 7¢,d).

Sustained neuregulin axon—glial
signaling induces the development of
neurofibroma-like lesions and
peripheral nerve sheath tumors

Type I neurofibromatosis is a genetic dis-
ease caused by the inactivation of the NfI
gene (Cichowski and Jacks, 2001; Zhu et
al., 2002). Neurofibromas are benign tu-
mors that enlarge nerves (Zhu et al., 2002;
Ling et al., 2005). Histology of neurofi-
broma is characterized by Schwann cell
hyperplasia, dissociation of Schwann cells
from axons, increased endoneurial colla-
gen matrix, and mast cell accumulation
(Ling et al., 2005). As has been introduced
previously, NSE-hSMDF"'~ transgenic
nerves displayed several traits of neurofi-
broma. First, at early postnatal ages (P20),
all transgenic mice show an obvious en-
largement of nerve roots (Fig. 3a), resem-
bling plexiform neurofibromas (Zhu et
al., 2002). Enlargement was also observed
in the dorsal root ganglia, trigeminal gan-
glia, and sciatic and brachial nerves (data
not shown). Moreover, the number of
Schwann cells (mainly dissociated and
nonmyelinating Schwann cells) in trans-
genic nerves was also noticeably increased
(Fig. 4d,f). To investigate further the
neurofibroma-like phenotype of NSE-
hSMDF*’~ mice, we asked whether the
endoneurial collagen matrix of mutant
sciatic nerves was increased, as in neurofi-
broma. We stained sections of sciatic
nerves with Gomori’s trichrome stain, a
histological reagent that renders extracellu-
lar collagen green and cell cytoplasm purple.
In wild-type mice, collagen (green) was pri-
marily restricted to the perineum, being
very faint in the endoneurium (Fig. 84). In
contrast, the transgenic nerve showed a
rich green staining of the endoneurium
(Fig. 8b), suggesting an increase in colla-
gen deposition. In electron microscope
images, the myelinated axons of the trans-
genic nerves were also separated by ab-
normally expanded extracellular matrix
highly enriched in collagen fibrils (Fig.
8c—e, arrows).

Five to 10% of patients with plexiform
neurofibroma develop malignant periph-
eral nerve sheath tumors, an aggressive
type of cancer that decreases enormously
life expectance and quality. To know
whether the overactivation of the neu-
regulin pathway promotes as well the ap-
parition of peripheral nerve tumors, we
aged NSE-hSMDF"/~ transgenic mice
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and littermates. Approximately 1 in 10
NSE-hSMDF"/~ mice develop big tu-
mors in the peripheral nervous system
producing neurological symptoms (Fig.
9a). Tumors could be identified in both
transgenic lines, mainly between 6 and 24
months of age. In mouse line #1, 12.4% of
transgenic animals (11 of 89) showed
symptomatic big peripheral nerve tu-
mors, whereas no tumors were detected in
wild-type littermates of the same age (0 of
78). In mouse line #2, 10.5% transgenic
mice showed peripheral nerve tumors (4
of 38), whereas no tumors were found in
its wild-type littermates (0 of 29). In most
cases, the tumors were clearly associated
with peripheral nerves and/or ganglia
(Fig. 9b—e). Immunohistochemistry stud-
ies showed that tumors express S1003 and
GFAP (Fig. 9f), suggesting a Schwann cell
origin. Supporting this view, mRNA for
PO, MBP, and CNPase could also be de-
tected (data not shown). Together, our
data show that the sustained axon-—glial
signaling at the Remak bundle produces
neurofibroma-like lesions that in some
cases are transformed into peripheral
nerve sheath tumors.

Discussion

Members of the neuregulin family are
abundantly expressed in the nervous sys-
tem in which they are involved in pivotal
steps of neuron and glial cell biology and
development (Meyer et al., 1997; Jessen
and Mirsky, 2002; Nave and Schwab,
2005). The Neuregulin 1 gene encodes for
at least 15 different isoforms, grouped in
three different types. Type III isoforms
(but no type I or II) have been shown to
regulate the myelination of PNS neurons
(Nave and Salzer, 2006). There are at least
two different type III neuregulins. The
first type III isoform reported was the
type III- B3, also known as SMDEF. This
neuregulin is highly expressed in the
sensory and motor neurons of the dorsal
root ganglia (Ho et al., 1995) and segre-
gated into lipid rafts, membrane plat-
forms pivotal for axon-glial signaling
(Cabedo et al., 2002, 2004; Decker and
ffrench-Constant, 2004).

It was shown recently that type III neu-
regulins regulate the thickness of the my-
elin sheath (Michailov et al., 2004). In
addition, the artificial expression of one of
these isoforms (the III-Bla isoform) in
unmyelinated axons converts them to a
myelinated phenotype, suggesting that
threshold levels of neuregulin determines
the myelination status of the axon (Taveg-
gia et al., 2005). Here we show that, in
contrast to type III-fB1la, in vivo overex-
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Figure 7. Nerve conduction velocity of C-fibers is decreased in the mutant mice. a, Typical recording of compound action
potential from the sciatic nerves of NSE— hSMDF#1™/~ and wild-type littermates. Arrows indicate signal from C-fibers. b, Quan-
tification at room temperature (RT) and 31°C shows that C-fiber conduction velocity (CV) is decreased in the mutant mice. ¢, d,
Conduction velocity of myelinated fibers (arrows) is also reduced, probably as a consequence of the reduced diameter of axons in
the transgenic animals. n = 4 animals for RT and n = 2 for 31°C recordings. Data are given as mean = SE (*p << 0.05, Student's
ttest).

Figure 8.  Accumulation of extracellular collagen in the mutant nerves. a, Gomori’s trichrome staining of wild-type nerves
shows that collagen (green) is concentrated in the perineurum and barely detectable in the endoneurium, which is mainly occupied
by cytoplasm (purple). b, In contrast, endoneurium of mutant nerves is widely stained in green, suggesting that collagen accumu-
lates in the extracellular matrix. ¢, d, High-power EM images obtained from cross-sections of mutant animals showing large
deposits of collagen fibrils in the extracellular space. e, Collagen fibrils can be also observed in longitudinal sections of mutant
nerves. Ax, Axons; Sc, Schwann cells. Scale bars, 0.5 pm.
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which results in the myelination of the bundles.

pression of type I1I- B33 isoform (SMDF) does not increase myelin
thickness in the PNS. Although these studies were performed
using different promoter constructs (NSE and Thy1), given their
broad neuronal expression in many neurons (Morris et al., 1983;
Kollias et al., 1987; Forss-Petter et al., 1990; Vega et al., 1990) and
their similar postnatal expression pattern (supplemental Fig. S9,
available at www.jneurosci.org as supplemental material), these
are probably bone fide differences in neuregulin isoform activity.
We do not have a molecular explanation for the dissimilar behav-
iors of the III-Bla and III-B3 isoforms. However, it might be
significant that the type III-33 isoform lacks the transmembrane
and cytoplasmic domains located at the C terminus of type III-
Bla. It has been suggested that this domain might signal back to
the cell nucleus (Bao et al., 2003); thus, the possibility exists that
the increase in myelin thickness induced by type III-B1a could

Sustained neuregulin signaling induces tumorigenesis. @, Tumors produce neurological symptoms, such as limb
paralysis and postural alterations. b, A big tumor in the trigeminal ganglia in an NSE— hSMDF mutant mouse. ¢, One of the tumors
originated in a cervical nerve root of the spinal cord. d, Tumors originated in the nerve roots and dorsal ganglia compressing the
spinal cord in transgenic animals. e, Multiple enlargement of nerves and ganglia at the cervical and dorsal level of the spine.
f, Immunohistochemistry showing that tumors express S1003 (red) and GFAP (green). Nuclei were stained with bisbenzimide
(blue). g, Model for the development of nerves in wild-type and mutant mice. Top, During the postnatal development of wild-type
nerves, Schwann cells ensheathe and myelinate large-diameter axons. Small-sized axons remain ensheathed but unmyelinated in
the Remak bundles (adapted from Jessen and Mirsky, 2005). Bottom, Overexpression of SMDF (red) has a mitogenic effect on
Schwann cells inducing hyperproliferation. SMDF also induces a phenotypic change of the nmSC toward a myelinating phenotype,
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require the coexpression of an additional
(yet unidentified) growth factor induced
by back-signaling.

Although it is well known that neuregu-
lins are mitogenic factors for Schwann cells
in vitro (Stewart et al., 1991; Dong et al,,
1995; Levi et al., 1995; Maurel and Salzer,
2000), there has been no conclusive in vivo
evidence (Jessen and Mirsky, 2005). By
using BrdU uptake experiments and
phospho-Histone 3 immunohistochemis-
try, we have shown that nerve enlarge-
ment in NSE-SMDF mice is caused
by early postnatal hyperproliferation of
nmSC, supporting that SMDF is a mito-
genic factor for Schwann cells in vivo. The
increased proliferation in the transgenic
nerves is transient, not persisting after
P14. The reason for this is not clear be-
cause expression of the SMDF transgene
continues after P14 and even during
adulthood (data not shown). One possi-
bility is that stability of SMDF, ErbB2, or
ErbB3 proteins might decrease after P14.
However, this seems unlikely because
PI3K and MAPK pathways remain hyper-
activated in P20 transgenic nerves. An-
other possibility is that Schwann cell
proliferation is self-limited, through a bal-
ance between the relative rates of supply
and demand of SMDF and other mito-
gens: as Schwann cell number increases,
so might their rate of consumption/degra-
dation of SMDF. There is evidence that
such a mechanism involving PDGF regu-
lates oligodendrocyte precursor prolifera-
tion and ultimate cell number in the
developing CNS (Calver et al., 1998; van
Heyningen et al., 2001). Other explana-
tions are, however, also possible.

It is well established that myelination
depends on axon diameter (Friede and
Bischhausen, 1982). Small-caliber axons
(<1 pm) are not large enough to be my-
elinated and remain grouped in packs and
ensheathed by the nmSC in Remak bun-
dles. It has been suggested that neuregu-
lins contribute to the correct segregation
of small-diameter axons in the Remak bundle (Taveggia et al.,
2005). Here we show that overexpression of type III-33 neuregu-
lin in neurons has dramatic effects on the organization of Remak
bundles. The small-caliber axons are not segregated in individual
pockets in the nmSC cytoplasm as they normally are but are
compacted into a tight fascicle that is ensheathed by compact
myelin, as if it were a single large-diameter axon. The conduction
velocity of abnormally myelinated Remak bundles is not in-
creased; on the contrary, we found that their conduction velocity
was decreased relative to normal C-fibers. This is presumably
related to the fact that only the peripheral axons of the bundle are
in contact with the myelin membrane, the majority in the interior
of the bundle remaining unmyelinated. Even for those axons that
are in contact with myelin, contact is only partial. Furthermore,
myelination is not continuous along the longitudinal axis of the
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bundles, leaving large parts of the axons unmyelinated (although
ensheathed by a single nmSC wrap) (Fig. 6n). This by itself would
be expected to severely hamper saltatory conduction.

It has been shown previously that adequate segregation of
C-fibers in individual cytoplasmic pockets is pivotal for proper
conduction (Taveggia et al., 2005). Because the axons in the ab-
errant bundles are not individually segregated but close to or in
contact with one another, this also would be expected to interfere
with conduction. Interestingly, the conduction velocity of my-
elinated individual fibers was also decreased in the mutant nerves
(Fig. 7¢,d). Because there is not an obvious change in the myelin
thickness, we believe that this is probably provoked by a down-
ward shift in the distribution of axon caliber size (Fig. 5b). In
support of this view, we also found a significant decrease in the
current amplitude for the component of myelinated fibers (sup-
plemental Fig. S8, available at www.jneurosci.org as supplemen-
tal material).

During our study, we observed that NSE-hSMDF*/~ mice
develop several phenotypic traits of neurofibromatosis. One of
the most remarkable observations was that they develop enlarged
nerve roots and peripheral ganglia (Fig. 3a) with a striking simi-
larity to human plexiform neurofibromas and animal models of
the disease (Cichowski et al., 1999; Zhu et al., 2002). A detailed
microscopic study shows that nerve enlargement is mainly
caused by the hyperplasia of nmSC. Interestingly, it has been
suggested that the induction of abnormal proliferation of nmSC
triggers neurofibroma formation. In Nf/"*~;POA—cre* mice,
Zheng etal. (2008) have shown that NfI deficiency does not cause
hyperproliferation or tumorigenesis during the early postnatal
period. The only differential trait found at this time is the exis-
tence of abnormal Remak bundles. Akin to NSE-hSMDF mice,
Remak bundles in these animals contain poorly segregated axons
and, in some cases, myelinated structures containing both small-
and large-diameter axons. These authors suggest that neurofibro-
mas that originate at later stages in Nf"*/~;P0A—cre™ mice are
caused by the hyperproliferation of nmSC in the postnatal nerves.
Our own data show that sustained overexpression of SMDF also
induces nmSC hyperproliferation and disorganization of Remak
bundles. As in the case of type I neurofibromatosis, Remak bun-
dle degeneration also facilitates the development of big periph-
eral nerve sheath tumors. Whether there is link between both
pathological mechanisms needs to be further explored.

The NRG1-erbB pathway is hyperactivated in many epithelial
tumors (Alroy and Yarden, 2000). Interestingly, the ectopic ex-
pression of the type II neuregulin GGFS3 in myelinating
Schwann cells (PO-GGFB3 mice) induced as well the develop-
ment of hypertrophic neuropathies and malignant peripheral
nerve sheath tumors (Huijbregts et al., 2003). In the same line,
the overexpression of ErbB1 receptor in Schwann cells (CNP-
epidermal growth factor receptor mice) provokes peripheral nerve
tumors (Ling et al., 2005). Moreover, the gene encoding for one
of the neuregulin receptors (ErbB2 gene) is frequently amplified
in human malignant peripheral nerve sheath tumors, a cancer
type derived from plexiform neurofibroma (Storlazzi et al,
2006). Although the molecular link between ErbB receptor acti-
vation and neurofibroma development needs to be further clari-
fied, it is interesting to point out that neuregulin binding to ErbB
receptors elicits the activation of the MAPK pathway, which is
believed to be responsible for hyperproliferation in the NfI-
deficient Schwann cells (Cichowski and Jacks, 2001).

In summary, our data support the view that the sustained
activation of nmSC by axon-derived neuregulin in Remak bun-
dles can contribute to peripheral nerve tumorigenesis (Fig. 9¢)
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and points toward the inhibition of the axon—glial signaling
pathway as a putative therapeutic target for the treatment of pe-
ripheral nervous system tumors.
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