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The Spatiotemporal Frequency Tuning of LGN Receptive
Field Facilitates Neural Discrimination of Natural Stimuli
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Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
200031, China

The efficient coding hypothesis suggests that the early visual system is optimized to represent stimuli in the natural environment. While it is
believed that LGN processing removes the redundant information of natural scenes, it is not clear whether the early visual processing can
selectively amplify important signals in natural stimuli to facilitate discrimination. In this study, we examined the functional role of LGN
spatiotemporal frequency tuning in the processing of natural scenes. First, we characterized the relationship between spatial and temporal
frequency tuning for LGN receptive fields. We found that LGN neurons exhibit inseparable spatiotemporal frequency tuning in a manner
consistent with the feature of optimal filters that can maximize information transmission of natural scenes. Second, we analyzed the spatiotem-
poral power spectrum of natural scenes and found that some frequencies exhibit larger variation in power across different scenes. Interestingly,
the preferred frequency of ensemble LGN neurons matches the range of frequencies in which natural power spectrum varies most. Comparison
of neural discrimination for natural stimuli and for artificial stimuli with similar mean power spectra but different variation structure showed that the
match between LGN tuning and natural spectra variation enhances neural discrimination for natural stimuli. Our results indicate that, in addition to

removing redundancy, the spatiotemporal frequency characteristics of LGN neurons can facilitate neural discrimination of natural stimuli.

Introduction

Theoretical studies suggest that the early visual system allows
an efficient representation of natural stimuli (Barlow, 1961;
Atick, 1992; Simoncelli and Olshausen, 2001; Simoncelli, 2003;
Zhaoping, 2006). Natural scenes exhibit significant correlations
in space and time, with amplitude spectrum proportional to the
inverse of frequency (Field, 1987; Dong and Atick, 1995). Given
the finite bandwidth of the optic nerve, the efficient coding hy-
pothesis proposes that neurons in the early visual system should
decorrelate the incoming signals to maximize the information
transmission (Atick, 1992; Dong and Atick, 1995). The center-
surround antagonistic structure of receptive fields (RFs) in the
retina and LGN is consistent with the function of spatial decor-
relation (Atick, 1992), and the flattened spectrum of LGN re-
sponses to natural scenes provides experimental evidence for
temporal decorrelation (Dan et al., 1996).

Although higher amplitude for low-frequency components
represents redundancy, certain low-frequency components may
contain more information if their power varies greatly among
different natural scenes. In such case, an efficient strategy for the
early visual system is to selectively amplify the frequency compo-

Received March 15, 2009; revised July 19, 2009; accepted Aug. 7, 2009.

This work was supported by grants from Knowledge Innovation Project from the Chinese Academy of Sciences
KSCX2-YW-R-29, the National Basic Research Program in China (973 Program 2006(B806600), the Hundred Talent
Program of the Chinese Academy of Sciences (2008 -2010), and the Science and Technology of Shanghai Munici-
pality (06dj14010). We thank Christoph Kayser and Nicholas Lesica for kindly providing the natural scene movies
used for mapping STRF. We thank Si Wu, Libo Ma, Zhe Chen, Hao Li, Liang She, and Xiaodong Chen for helpful
discussion. We thank Peipei Li, Huiyuan Zhong, and Weigi Xu for technical assistance.

Correspondence should be addressed to Haishan Yao at the above address. E-mail: haishanyao@ion.ac.cn.

DOI:10.1523/JNEUR0SCI.1268-09.2009
Copyright © 2009 Society for Neuroscience  0270-6474/09/2911409-08$15.00/0

nents that are more informative for distinguishing among differ-
ent scenes. In a recent study in the auditory midbrain and
forebrain, the spectro-temporal modulation tuning property of
auditory neurons was found to enhance the discrimination of
natural sound, due to specific relationship between the tuning
properties and the statistics of the power spectrum of natural
sounds (Woolley et al., 2005). In the present study, we aimed to
reveal the functional relevance of LGN spatiotemporal frequency
tuning in the processing of natural scenes, particularly the dis-
crimination among different stimuli.

Previous physiological studies have used drifting gratings to
examine the interaction between spatial frequency (SF) and tem-
poral frequency (TF) tuning for retinal ganglion cells (Enroth-
Cugell et al., 1983; Frishman et al., 1987) and LGN cells (Troy,
1983; Derrington and Lennie, 1984). Given that the power spec-
trum of natural scenes exhibits not only a 1/frequency power law
but also spatiotemporal inseparability (Dong and Atick, 1995), it
is of interest to characterize the spatiotemporal frequency tuning
of LGN RF and examine its relationship with the second-order
statistics of natural scenes. We performed Fourier analysis on the
space-time RF (STRF) and found that the spatial and temporal
frequency tuning was inseparable, which resembled the property
of optimal spatiotemporal filter that can maximize information
transmission of natural scenes (Van Hateren, 1993; Dong and
Atick, 1997). Interestingly, analysis on the temporal frequency
tuning of ensemble LGN neurons showed that its peak frequency
overlapped with the range of frequencies in which power varies
most across different natural scenes. We further examined
whether such frequency tuning can enhance differences in the
neural responses to different natural stimuli. For natural and
artificial stimulus that matched in the mean power spectrum but



11410 - J. Neurosci., September 9, 2009 - 29(36):11409-11416

differed in the variability of the spectrum, A
we found that the spike train distance be-

tween two response segments was larger

for the natural stimulus. Thus, the spatio-

temporal frequency tuning of LGN RF

may be specifically adapted to the varia-

tion of natural power spectrum, which

serves to facilitate neural discrimination

of natural stimuli.

Materials and Methods

Electrophysiology. Adult cats ranging in weight
from 2 to 3.5 kg were used in the experiments.
Before surgery, the animals were anesthetized
with ketamine (25-30 mg/kg, im.) and in-
jected with atropine sulfate (0.05 mg/kg, s.c.)
to reduce secretion and promote sedation. A
local anesthetic (lidocaine) was applied before
all incisions. A tracheotomy was performed for
artificial ventilation, and femoral catheteriza- 0
tion for intravenous infusion. The animal was 0
moved to a Horsley—Clarke stereotaxic frame
and anesthetized with urethane (13-20 mg/
kg/h) and glucose (100 mg/kg/h) in Ringer’s
solution. The electrocardiogram, and the EEG
in some cats, was monitored continuously to
assess the level of anesthesia. To minimize eye
movements, the animal was paralyzed with
Gallamine (10-20 mg/kg/h) and artificially
ventilated. The volume and rate of ventilation
was adjusted so that the end-tidal CO, was ~3.5%. The rectal tempera-
ture was monitored and maintained at 37.5°C-38.5°C. Pupils were di-
lated with topical application of 1% atropine sulfate, and the nictitating
membranes were retracted with 5% phenylephrine. Eyes were refracted,
fitted with appropriate contact lenses, and focused on a tangent screen. Eye
positions were stabilized mechanically by gluing the sclerae to metal posts
attached to the stereotaxic apparatus. A craniotomy was performed over
LGN (A6 L10). All procedures were in accordance with National Institutes of
Health Guidelines and were approved by the Animal Care and Use Commit-
tee at the Institute of Neuroscience, Chinese Academy of Sciences.

Recordings were made with tungsten microelectrode (5 M), A-M
Systems). Neural signals were amplified and filtered with a computer
controlled multichannel amplifier (Neuralynx). Spike isolation was
based on cluster analysis of waveforms, and the presence of a refractory
period was determined from the shape of the autocorrelogram. Only well
isolated cells (n = 140) were included in the analysis, and all cells re-
corded were within 10° of the area centralis. Cells were classified as X or
Y based on the responses to contrast reversal gratings (Hochstein and
Shapley, 1976). Among the 140 neurons examined, 52 were classified as X
cells and 58 as Y cells. The remaining 30 cells were not classified, because
the responses to contrast reversal gratings were not measured. Responses
to spatially uniform natural and artificial stimuli were recorded for 25
neurons (8 X cells, 11 Y cells, 6 cells were not classified).

Visual stimulation. Visual stimuli were generated with a PC containing
a Leadtek GeForce 6800 video card and displayed on a CRT monitor
(Iiyama HM903DT B or Sony CPD-G520, maximum luminance of 90
cd/m?, 1024 X 768 resolution). Luminance nonlinearities were cor-
rected through software. STRF was mapped using two-dimensional bi-
nary noise (14 X 14,16 X 16 or 32 X 32 pixels,4° X 4° ~ 14.2° X 14.2°)
presented at a frame rate of 60 or 85 Hz. The mapping sequence consisted
of 18,000 to 100,000 frames. For 18 cells, we mapped STRF using both
binary noise and natural scenes movie. The movie sequences, recorded
by the laboratory of Peter Konig, were scenes taken by a removable light-
weight CCD-camera mounted on the head of a freely roaming cat in
natural environments (Kayser et al., 2003). Such movies were described
in detail in previous studies (Kayser et al., 2003; Lesica et al., 2007) and
were used to examine the adaptation of LGN RF to stimulus statistics
(Lesicaetal., 2007). In our study, we used 50,000 to 55,000 frames of such
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Spatiotemporal frequency tuning characteristics of LGN neurons. 4, Left, STRF of an example LGN neuron. Right, A map
obtained by radially collapsing the one on the left. Red and blue represent regions activated by light and dark stimulus, respectively. B, STF
map of the neuron, obtained by applying FFT on the radially collapsed STRF map. The intensity of yellow pixels represents the level of activity
at the corresponding spatiotemporal frequency. €, A set of TF tuning curves extracted from the STF map in B. D, The peaks of the TF tuning
curves are plotted against the corresponding SFs. Shaded area indicates 95% confidence interval.
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Figure2. Distribution of the shiftin TF peak. The TF shift s the difference between the TF peak for
the lowest SF and that for the highest SF. Positive shift means that TF increases as SF decreases. Dark
bars, X cells (n = 52). White bars, Y cells (n = 58). Gray bars, Cells that were not classified (n = 30).

movie sequence (32 X 32 pixels, RMS contrast of 0.4) to map the STRF.
The movie was presented at 60 Hz.

To compare neural discrimination for visual stimuli with different
statistics, we measured LGN responses using two types of spatially uni-
form temporal stimuli (van Hateren et al., 2002; Butts et al., 2007), one
natural and one artificial. The natural stimulus was created by selecting a
pixel from a 32 X 32 natural scenes movie (1500 frames) in the database
(van Hateren and Ruderman, 1998). To generate the artificial stimulus
with similar mean power spectrum but different variation of the spec-
trum, we randomized the phase spectrum of the natural stimulus (Hsu et
al., 2004; Felsen et al., 2005). The power spectrum of both stimuli fol-
lowed a 1/frequency power law; however, the two stimuli differed in the
variability of the power spectrum (see Fig. 7C). The mean luminance of
the two stimuli was the same and the RMS contrast of both stimuli was at
0.24. Each stimulus was presented at 60 Hz and repeated 15 times. A total
of 10 sets of natural and artificial stimuli were used.

Analysis of spatiotemporal frequency properties of the RF. To estimate
the STREF, responses to the two-dimensional binary white noise were
binned and reverse-correlated with the stimulus sequence (Cai et al.,
1997; Reid et al., 1997). The two-dimensional space was radially col-
lapsed to one-dimensional (Lesica et al., 2007). A two-dimensional Fast
Fourier Transform (FFT) was applied to the STRF map (DeAngelis et al.,
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ms). We then corrected for the stimulus cor-
relation by decorrelation with regularization

(David and Gallant, 2005; Sharpee et al.,
2006). To implement the regularization, we di-
agonalized the stimulus covariance matrix, and
obtained a pseudoinverse of the matrix by choos-
ing the eigenvectors below a cutoft point to mul-
tiply with the inverse of their corresponding
eigenvalues. The cutoff point was chosen as 50%
of the total number of eigenvectors, so that the
high-frequency components above the cutoff
point did not contribute to the inverse (other cut-

off point, such as 30% or 80%, did not signifi-
cantly influence the estimated STRF map for a
model neuron and a trial set of neurons). The
STRF was obtained by multiplying the STA by the
pseudoinverse of the covariance matrix.
Analysis of stimulus statistics. To estimate the
spatiotemporal power spectrum of natural
scenes, we randomly sampled 6900 segments of
620 ms movie from a natural scenes database
(van Hateren and Ruderman, 1998) (spatial
resolution, 32 X 32 pixels; frame rate, 50 Hz),
and performed 2D FFT after applying a ham-
ming window to each segment. We assumed
that the visual angle of the image is ~20 de-
grees. To quantify the variation in power spec-
trum across different movie segments, we
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Figure3.  SFand TF selectivity for a population of LGN neurons. 4, A spatial (temporal) profile can be extracted from the STRF

map along the vertical (horizontal) dashed line that passed through the peak of the STRF map. B, SF (red) and TF (black) tuning
curve was obtained by applying FFT on the spatial and temporal profile, respectively. €, Joint distribution of optimal SF and optimal
TF fora population of LGN neurons (n = 140, r = —0.25,p << 0.005). Cyan, X cells. Red, Y cells. Gray, cells that were not classified.

D, Ensemble STF map for the population of neurons.

1993a) to obtain the spatiotemporal amplitude spectrum (STF map) in
the quadrant of positive frequencies. A set of TF tuning curves, each
corresponding to a different SF, were extracted from the STF map. We
then identified a range of SFs at which the variance of the TF tuning curve
was =0.08 of the maximum variance, and analyzed the TF tuning curves
corresponding to these SFs. Each TF tuning curve was fitted with a
gamma function (DeAngelis et al., 1993b; Cai et al., 1997) as follows:

R(f) = A X <|f;ﬁ|>v } exP<_¥>

oXT'(y)

where frepresents frequency, and A, f,, o, and vy are free parameters. The
peak TF was determined from the peak of the fitted tuning curve. The
dependence of TF on SF can be estimated by the shift in TF peak with SF,
which was the difference between the TF peaks corresponding to the
lowest and the highest SF. To obtain the confidence interval for the shift
in TF peak, we generated 100 jackknife data sets by each excluding a
different 1% segment from the complete data set of the responses to the
mapping stimulus (David et al., 2004). Each jackknife set was used to
obtain an STRF map, and a corresponding STF map from which the shift
in TF peak was estimated. From these jackknife sets, we computed the
95% confidence interval and the significance level for the shift in TF peak.

For each cell, we also extracted a one-dimensional spatial (temporal) pro-
file from the STRF map by slicing through its peak parallel to the axis of space
(time). We then applied FFT to transform each profile to SF (TF) tuning
curve. We fitted each tuning curve with the gamma function, and the opti-
mal SF (TF) for each cell can be estimated from the fitted curve. To obtain the
ensemble STF map, we averaged the STF maps of all LGN neurons.

To estimate STRF from the responses to movie sequence of natural
scenes (Lesica et al., 2007), we first computed a spike-triggered average
(STA) vector by averaging all stimuli that elicited a spike (binned at 16.7

(1

30 calculated the coefficient of variation (CV) of
the power spectrum, which is the SD divided by
the mean. The SD of the power spectrum was
estimated by jackknife method.

Optimal spatiotemporal filter. Assuming that
natural stimulus is transformed by a spatiotem-
poral filter and the filtered signal is delivered to a
noisy channel with limited capacity, it is possible
to predict a filter that is optimized to transmit
maximum amount of information about natural
stimulus with the constraint that the filtered signal is within the channel’s
dynamic range (van Hateren, 1992; Van Hateren, 1993).

The information rate I in the channel is as follows:

B S(f) X K(f)
"2”%*M@xﬂﬁ+mm>

(2)

where S( f) represents the spatiotemporal power spectrum of the natural

stimulus, K( f) is the spatiotemporal power spectrum of the filter, and N( f) and

N( f) is the power spectrum of input noise and channel noise, respectively.
The dynamic range of the channel R is as follows:

R= SO0+ NI XK NS )

Given a certain signal-to-noise ratio, the method of Lagrange multipliers is
used to maximize the information rate I subject to the constraint that the
response is within the channel’s dynamic range (i.e., R is a constant). By intro-
ducing a new variable A called a Lagrange multiplier, we require the following:

S(f) X K(f) )
Ni(f) X K(f) + NAf)

1+

J
aK(f) l°g<

3
+ )\W((S(f) + N(f) X K(f) + N(f) =0, (4)

which leads to the following:

K(f)

=~ NN f) + S(f) + \/Nf(f)Sz(f) - 4Ni(f)S(f)Nc(f)%
2N()Ni(f) + S(f)) '

(5)
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We find K( f) by choosing the value of A so that
the response range R is a constant (van Hat-
eren, 1992; Van Hateren, 1993).

While the above method is used to compute
the optimal transfer function for individual
cell, it can also predict the optimal SF and op-
timal TF for a population of cells. Assuming
that \K(f) represents the probability distri-
bution of optimal spatiotemporal frequency
for the population and the gain is the same
for each cell, based on the same assumption
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that early visual system aims at maximizing
information transfer through noisy channels,
the probability distribution of optimal SF and
optimal TF for the population can be estimated
using the above equation that solved for K( f).

Spike train distance. We estimated neural
discrimination using spike train distance. For
the two types of spatially uniform temporal
stimuli (natural vs artificial stimulus) that
matched in the mean power spectrum but dif-
fered in the variability of spectrum, we aver-
aged the responses over trials and binned the
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histogram at 16.7 ms. To remove the effect of
mean firing rate on the value of spike train dis-
tance, we normalized the histogram by its
mean rate. We then randomly sampled two
segments (300 ms) of the normalized responses
and calculated the Euclidean distance between

them:
D= {2 (A(t) — B>  (6)

where A(t) and B(t) represent the two segments
of responses. The random sampling was re-
peated 4000 times, and an average spike train
distance was calculated. We also computed
spike train distance for the responses predicted
by the STRF (Dan et al., 1996).

Stimulus distance. To compute stimulus dis-
tance, the natural stimulus (or the artificial
stimulus) was first normalized to zero mean.
We then sampled two segments (300 ms) of the
normalized stimuli, and used the same equa-
tion for spike train distance to compute the
stimulus distance. The distance was averaged
over 4000 repeats of random sampling.
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N

Figure 4.

Results

We made single-unit recordings from 140 LGN neurons in the
anesthetized adult cat. Binary white noise stimuli were used to
map the STRF (Reid et al., 1997), and contrast reversal gratings
were used to classify the cells as X or Y (Hochstein and Shapley,
1976).

Inseparability of spatial and temporal frequency tuning

in LGN

The STRF of LGN neurons was estimated by cross-correlating the
peristimulus time histogram (PSTH) and the sequence of the
two-dimensional white noise. Figure 1A shows the STRF map of
an ON-center LGN neuron (left), and the map collapsed along
the radius of space (right), with red and blue pixels representing
regions activated by light and dark stimulus, respectively. To ex-
amine the SF and TF tuning of the neuron, we performed 2D FFT
on the STRF map (DeAngelis et al., 1993a). Figure 1B shows a
map of the amplitude spectrum in the joint spatiotemporal fre-
quency domain (STF map), in which the intensity of yellow pixels
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Comparison of the STF maps measured with noise and movie stimuli. 4, Top, STRF (left) and STF map (right) for an
example cell estimated using noise stimuli. Bottom, STRF (left) and STF map (right) for the same cell estimated using movie stimuli.
B, Distribution of the CCbetween STF maps measured with noise and movie stimuli for 18 neurons. €, Ensemble STF map of the 18
cells measured with movie stimuli.

represented the level of activity at the corresponding spatiotem-
poral frequency. The STF map exhibited a slanted feature, indi-
cating dependence between SF and TF. When we plotted the STF
map as a set of TF curves (Fig. 1C), each for a given SF, we found
that the TF peaks shifted from low to high frequency as SF
changed from high to low frequency (Fig. 1 D). To quantify the
degree of shift in TF peak, we calculated the difference between
TF peaks corresponding to the lowest and the highest SF within a
significant region of the STF map (Materials and Methods). For a
population of 140 neurons examined, the shift in TF peaks was
3.6 = 0.5 Hz (Fig. 2, mean = SEM, p < 10 >, Wilcoxon signed
rank test), and 78.6% of the neurons showed significant increase
in the TF peak as the SF decreased (Materials and Methods). The
result indicates that higher TF is associated with lower SF, and
vice versa. Thus, the RF of individual LGN neurons exhibited
inseparability of spatial frequency and temporal frequency
tuning.

We further estimated the optimal SF (SFo) and optimal TF
(TFo) for each neuron, to examine the relationship between SF
and TF selectivity over the population. We extracted a one-
dimensional spatial (temporal) profile from the STRF map by
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slicing through the peak parallel to the axis of space (time) (Fig.
3A), and applied Fourier transform on the spatial and temporal
profile to obtain an SF tuning and a TF tuning curve, respectively
(Fig. 3B). The SFo or TFo for each cell was determined by fitting
the tuning curve with a gamma function (Materials and Meth-
ods). When we plotted the TFo against the SFo for the population
of neurons (Fig. 3C), we found that the two parameters exhibited
anegative correlation (r = —0.25, p < 0.005), indicating neurons
preferring higher (lower) TF were tuned to lower (higher) SF.
Thus, SF and TF selectivity are negatively correlated with each
other in LGN, at the level of population as well as single RF. When
we averaged the STF maps over the population, we found that the
ensemble STF map (eSTF) also exhibited a slanted feature (Fig.
3D), which can be accounted for by the inseparability of SF and
TF tuning at single cell level (Figs. 1, 2) and the correlation be-
tween SF and TF at population level (Fig. 3C).

RF in the early visual pathway can change adaptively with the
input stimulus (David et al., 2004; Sharpee et al., 2006; Lesica et
al., 2007). To examine whether such inseparable STF tuning can
be observed under stimulation of natural stimuli, we compared
STRFs mapped with noise and movie stimuli for a subset of cells
(n = 18). Figure 4 A shows the results for an example cell mapped
with noise (upper) and movie (lower) stimuli. The correlation
coefficient (CC) between the two STRF maps was 0.92, and the
CC between the two STF maps was 0.96. For 18 cells examined,
the mean CC between STF maps measured with noise and movie
was 0.91 * 0.02 (mean * SEM) (Fig. 4 B), and the ensemble STF
map under movie stimulation also exhibited a slanted feature
(Fig. 4C). This indicates that the inseparable spatiotemporal fre-
quency tunings of LGN neurons measured with noise and natural
stimuli were comparable.

LGN spatiotemporal frequency tuning resembles the

optimal filter

Assuming that the early visual processing reduces stimulus re-
dundancy at high signal-to-noise ratio (SNR) and increases re-
dundancy at low SNR, previous theoretical studies predicted an
optimal spatiotemporal filter that maximizes the stimulus infor-
mation transmitted through a noisy channel of limited capacity
(van Hateren, 1992; Van Hateren, 1993; Li, 1996; Dong and
Atick, 1997). We applied a similar method to compute the spa-
tiotemporal frequency tuning of the optimal filter using the am-
plitude spectrum of natural scenes (Fig. 5A) (Materials and
Methods). For a range of SNRs, we found that the optimal filter
exhibited inseparable spatiotemporal frequency tuning, in which
the preferred SF is negatively correlated with the preferred TF
(Fig. 5B). As this method of optimization can be extended to
derive the optimal SF and optimal TF for a population of filters
(Materials and Methods), Figure 5B also represents the joint dis-
tribution of SF and TF selectivity for ensemble filters that are
optimized to transmit information of natural scenes. Thus, the
inseparable STF tuning of LGN neurons resembles the feature of
the optimal spatiotemporal filter, which suggests that LGN STF
tuning may serve as an efficient strategy to maximize the infor-
mation carried by the neural responses about natural scenes. Of
course, there are important limitations of the theory, since the
optimal filters are derived within a linear framework, based on
specific assumptions on the Gaussian statistics of the input sig-
nals and on the sources of noise (Atick, 1992; van Hateren, 1992).
Nevertheless, it provides a useful approximation for understand-
ing how the spatiotemporal RF properties of LGN neurons con-
tribute to optimal coding of natural stimuli.
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LGN frequency tuning matches the variation of natural

power spectrum

In addition to the inseparability of SF and TF tuning, another
noticeable feature in the ensemble STF map is the low-pass SF
tuning and the bandpass TF tuning (Fig. 3D). Since this feature
was not observed in the optimal spatiotemporal filter computed
atarange of SNRs, we further explored whether it is related to the
statistics of natural scenes. In particular, we speculated that the
power at specific range of frequencies may vary among different
natural scenes, similar to that in natural sounds (Woolley et al.,
2005), and a possible coding strategy of LGN neurons is to tune to
the frequency components that are relevant for distinguishing
one scene from another. To examine such a possibility, we ana-
lyzed the variation of natural power spectrum by calculating the
coefficient of variation (CV) across the spectra of thousands of
natural scenes movies (Materials and Methods). Higher CV val-
ues were found for low SF and intermediate TF components (Fig.
6A, left), indicating that the power at these frequencies is highly
variable across different movies. Interestingly, the shape of CV



11414 - ). Neurosci., September 9, 2009 - 29(36):11409-11416

Tan and Yao e LGN Frequency Tuning Facilitates Discrimination

A
[
=
=
©
=2 »
200 =
T [}
x 100 @
[ ”
o 0o 9
B _
8
L
b=
2 @
200 =
z | 100 &
[ A ¢ AP0 N e 0 P AL R e L A e ..u\d\.A.Ju”L. LI 8 KA AN AN T ..|.1hll“|mhu.l i o g
o o
0 5 10 15 20 25
Time (sec)
C D Response Stimulus Linear Prediction
4 y 40 , 25 ’
L’ . °© /'
o s 3 .
> p . L
3 _ . _ 38 _ &
T © ig [ ‘e . © °® id
o fos on 2.7 - " . e ged
g gof I3 - BPRC A B B
© = ° ',' 4 s = L,
g 0" . ‘ % 4
S I 34 -
= T e o
0 32 15
25 -125 0 125 25 9 2 32 34 36 38 40 1.5 2 2.5
Temporal Frequency (Hz) Artificial Artificial Artificial
Figure7.  Comparison of spike train distance between natural and artificial stimuli. 4, PSTH (bottom) of an example cell in response to the natural stimulus (top). The mean spike train distance

between two randomly sampled response segments was 2.1. B, PSTH (bottom) of the same cell in response to the artificial stimulus (top), with a mean spike train distance of 1.6. , The variability
of power spectrum for the natural stimulus (solid) is different from that for the artificial stimulus (dotted). For each stimulus, the maximum CV was normalized to 1. D, Left, Spike train distance for
the neural responses to natural versus artificial stimulus (n = 25,p <10 ~* Wilcoxon signed rank test). Middle, Stimulus distance for natural versus artificial stimulus ( p << 0.005, Wilcoxon signed
rank test). Fach data point represents one set of natural and artificial stimulus. Right, Spike train distance for the predicted responses to natural versus artificial stimulus ( p << 10 ~*, Wilcoxon signed

rank test).

map largely resembled that of the eSTF map of LGN neurons (Fig.
64, right), with a CC of 0.79. Because the SF in the CV map is
scalable depending on the visual angle of the natural images, we
examined the relationship between the CV map and the eSTF
map by collapsing both maps into the TF domain (Fig. 6 B). The
CV of natural temporal power spectrum (Fig. 6B, red) is high
~10 Hz, and its peak overlaps with the peak of LGN TF tuning
(Fig. 6B, gray) mapped with noise and with movie (Fig. 6C,
cyan). Clearly, the frequency tuning of ensemble LGN neurons
selectively amplifies the range of frequencies in which power var-
ies most among different natural scenes.

Better neural discrimination for natural than for

artificial stimuli

Given the similarity between LGN temporal frequency tuning
and the CV of natural temporal power spectrum (Fig. 6 B), we
wondered whether it can facilitate neural discrimination for nat-
ural stimuli. We tested this hypothesis by comparing the neural
responses to natural and artificial stimuli, in which the mean
power spectrum was similar as natural but the variability of the
spectrum did not match the LGN temporal frequency tuning
(Materials and Methods) (Fig. 7C). For the example cell in Figure
7, A and B, the mean spike train distance between two randomly
sampled response segments was 2.1 for the natural stimulus (Fig.
7A, top) and 1.6 for the artificial stimulus (Fig. 7B, top). Over the
population of neurons, the spike train distance was significantly

larger for the natural stimulus than for the artificial stimulus (n =
25, p < 10 % Wilcoxon signed rank test) (Fig. 7D, left), despite
the fact that the distance for two segments of natural stimulus was
smaller than that for two segments of artificial stimulus (p <
0.005, Wilcoxon signed rank test) (Fig. 7D, middle). This indi-
cates that LGN RF is able to transform the input signals in such a
way that neural discrimination is enhanced for natural stimuli.
When we analyzed the predicted responses obtained by convolv-
ing the STRF with the stimuli, we found that the spike train
distance of the predicted response was also larger for natural than
for artificial stimulus ( p < 10 ~*, Wilcoxon signed rank test) (Fig.
7D, right), indicating that the enhanced neural discrimination
can be accounted for by the linear STRF properties. Thus, the
match between the LGN temporal frequency tuning and the vari-
ation of natural temporal power spectrum may facilitate neural
discrimination of different natural stimuli.

Discussion

In the present study, we have shown that LGN neurons exhibit
spatiotemporal coupling in the frequency domain at single cell as
well as at population level. The inseparability of spatial and tem-
poral frequency tuning is consistent with the predicted spatio-
temporal filter optimized for information transmission of
natural scenes, and is similar to the feature of variation of natural
power spectrum. Such spatiotemporal frequency tuning assists in
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the processing of natural scenes through redundancy reduction
and better neural discrimination of natural stimuli.

Relationship to the decorrelation theory and response
equalization hypothesis

Theory based on efficient coding hypothesis proposed that the
early visual system serves to decorrelate the incoming signals that
contain redundant information (Atick, 1992). Using the second-
order statistics of natural scenes (Field, 1987), the theory cor-
rectly predicted that the gain of the neural filter should change
with frequency so that the output response to natural scenes has a
flat spectrum over a range of frequencies (Atick, 1992; Dong and
Atick, 1995; Dan et al., 1996).

However, the decorrelation theory used the second-order
statistics to capture all information about natural scenes by as-
suming that the power density distribution is Gaussian with zero-
mean for each frequency (Atick, 1992). For natural scenes, the
mean of power density in each frequency channel is always non-
negative instead of zero, and the variation of power in each
frequency channel is unlikely to be always proportional to the
mean power in the corresponding channel. Since the variation
of power makes the power density unpredictable, more infor-
mation is contained in those frequency channels in which the
power varies more. Thus, the match between LGN frequency
tuning and the CV of natural power spectrum is an efficient
strategy for dense sampling the range of frequencies that con-
tain more information.

Another theory addressing the flattening of output spectrum
is the response equalization hypothesis (Field, 1987; Graham et
al., 2006). This theory states that, neurons preferring higher spa-
tial frequency exhibit higher gain, so that each neuron responds
with the same average activity to natural scenes. Previous study in
the retina (Croner and Kaplan, 1995) showed that the peak sen-
sitivity of retinal ganglion cell is inversely proportional to the
spatial area, which leads to lower gain for cells with larger RF
(or lower spatial frequency). For cortical neurons, the spatial
frequency bandwidths were shown to increase with optimal
frequency, which results in increased gain in proportion to
spatial frequency (De Valois et al., 1982). Since SF and TF
selectivity are negatively correlated in LGN (Fig. 3C), at low
TF, LGN cells preferring high SF will have higher gain relative
to those preferring low SE. Therefore, the negative correlation
between optimal SF and optimal TF over the LGN population
can also serve as a potential mechanism to implement re-
sponse equalization.

Higher-order statistics

In the present study, we have examined the natural power spec-
trum and the variation of the spectrum. Previous studies showed
that, higher-order statistical regularities of natural images, which
may arise from edges and lines, are more perceptually important
(Thomson, 1999; Simoncelli and Olshausen, 2001). Using differ-
ent algorithms that belong to the class of independent compo-
nents analyses, several theoretical studies predicted linear filters
that maximally reduce the higher-order redundancy in natural
stimuli, and these filters largely resembled the structure of simple
cells in the visual cortex (Olshausen and Field, 1996; Bell and
Sejnowski, 1997; van Hateren and Ruderman, 1998). Although
the analysis of higher-order structure remains a computational
challenge, further investigation on the relationship between RF
and higher-order statistics is required to reveal the coding strat-
egy of the visual system.
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