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Spatial Pattern Coding of Sensory Information by Climbing
Fiber-Evoked Calcium Signals in Networks of Neighboring
Cerebellar Purkinje Cells
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Climbing fiber input produces complex spike synchrony across populations of cerebellar Purkinje cells oriented in the parasagittal axis.
Elucidating the fine spatial structure of this synchrony is crucial for understanding its role in the encoding and processing of sensory
information within the olivocerebellar cortical circuit. We investigated these issues using in vivo multineuron two-photon calcium
imaging in combination with information theoretic analysis. Spontaneous dendritic calcium transients linked to climbing fiber input
were observed in multiple neighboring Purkinje cells. Spontaneous synchrony of calcium transients between individual Purkinje cells
falls off over ~200 wm mediolaterally, consistent with the presence of cerebellar microzones organized by climbing fiber input. Syn-
chrony was increased after administration of harmaline, consistent with an olivary origin. Periodic sensory stimulation also resulted in
a transient increase of synchrony after stimulus onset. To examine how synchrony affects the neural population code provided by the
spatial pattern of complex spikes, we analyzed its information content. We found that spatial patterns of calcium events from small
ensembles of cells provided substantially more stimulus information (59% more for seven-cell ensembles) than available by counting
events across the pool without taking into account spatial origin. Information theoretic analysis indicated that, rather than contributing
significantly to sensory coding via stimulus dependence, correlational effects on sensory coding are dominated by redundancy attribut-
able to the prevalent spontaneous synchrony. The olivocerebellar circuit thus uses a labeled line code to report sensory signals, leaving

open a role for synchrony in flexible selection of signals for output to deep cerebellar nuclei.

Introduction

Multiple-electrode recording studies have shown that Purkinje
cell spontaneous complex spiking (CS) activity is synchronized in
narrow bands along the rostrocaudal axis of the cerebellum on a
millisecond timescale (Bell and Kawasaki, 1972; Sasaki et al.,
1989). The functional significance of this synchrony is not clear,
although an increase in synchrony during skilled movement
(Welsh et al., 1995) and after electrical stimulation of motor cor-
tex (Schwarz and Welsh, 2001) suggests a role in coordinating
motor behavior. To understand the functional role of CS syn-
chrony for sensorimotor behavior, however, we must address the
following key issues: first, the fine-scale spatiotemporal structure
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of synchrony; second, how sensory stimulation shapes synchro-
nous ensembles; and third, how it affects sensory coding.

Multiple-electrode arrays typically have an intersite spacing of
several hundred micrometers, and, thus, whereas CS correlation
and its relationship to the anatomical zonal structure of the cer-
ebellum is understood on a broad spatial scale (Sugihara et al.,
2007), the fine-scale spatial correlation structure on the level of
neighboring neurons is unknown. To examine our first question,
we thus ask how synchrony falls off with mediolateral distance
between cells.

To understand the role of the cerebellum in sensorimotor
integration, we must know whether and how CS synchrony de-
pends on sensory stimulation. A motor role is suggested by a
study showing absence during passive sensory responses but
presence during a tongue-extension movement (Welsh, 2002).
Others have emphasized that climbing fibers are activated syn-
chronously in response to unexpected sensory consequences of
motor actions (Lou and Bloedel, 1992). In anesthetized rat Crus
ITa and rabbit vestibulocerebellum, sensory stimulation has been
found to modulate CS synchrony (Llinds and Sasaki, 1989; Wylie
et al., 1995). These results leave open how sensory stimulation
spatiotemporally shapes the prevalent spontaneous synchrony.

The third crucial question concerns how sensory signals are
combined across neurons. Is the spatial pattern of activity impor-
tant, or just the number of events? If the identity of the neuron
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firing a spike “tags” the spike with some informational value, we
refer to this as a “labeled line” code. In contrast, in a “pooled”
code, spikes have the same meaning regardless of their cellular
origin and spatial information is neglected. In a labeled line code,
correlations might further lead to coding by combinatorial pat-
terns across cells. To test which of these three population coding
strategies is used, we quantify the information present in both
pooled spike count and spike pattern codes, and we ask how
much of this information is attributable to spatial correlations.

We have addressed these questions using two-photon imaging
of calcium signals in the dendrites of multiple Purkinje cells bulk-
loaded with AM ester calcium dye (Stosiek et al., 2003). By cali-
bration with simultaneous electrophysiology, we show that this
technique allows us to examine the spatiotemporal dynamics of
the CS sensory population code. We find that calcium signals in
nearby Purkinje cells are synchronized well above chance levels,
with synchrony falling off over several hundred micrometers me-
diolaterally. We also find that somatosensory stimulation in-
creases synchrony during a brief period (up to several hundred
milliseconds) after stimulus onset. Finally, we examine the fidel-
ity of the CS population code for the timing of stimulus onset,
finding that the spatial pattern of CS activity carries considerably
more information than is available by counting spikes.

Materials and Methods

The care and experimental manipulation of animals was performed in
accordance with the regulations of the United Kingdom Home Office.

Surgery. Sprague Dawley rats (postnatal days 18-29) were anesthe-
tized with urethane (1.2 g/kg) or with a ketamine (50 mg/kg)—xylazine (5
mg/kg) mixture. The level of anesthesia was routinely monitored by
observing whisker movements and/or monitoring the hindlimb leg-
withdrawal reflex and supplementary doses of anesthetic administered if
required. A craniotomy was made to expose folium Crus ITa, the dura was
carefully removed, and a stainless steel frame was glued to the skull with
dental cement. The craniotomy was filled with 1.5-2% agarose in Ring-
er’s solution, and a coverslip was clamped above the agarose to suppress
brain movement, leaving an opening for microelectrode access (Svoboda
etal., 1999). Body temperature was maintained at 37-38°C using a heat-
ing blanket.

In vivo multiphoton imaging. Bulk loading of AM ester calcium indi-
cator dye was performed using a protocol similar to those described
previously (Stosiek et al., 2003; Sullivan et al., 2005; Gao et al., 2006).
Briefly, for each experiment, 1 aliquot (50 ug) of Oregon Green
BAPTA-1 (OGB-1) AM calcium indicator dye (Invitrogen) was dissolved
in DMSO containing 20% w/v Pluronic F-127 (Invitrogen) and diluted
3:100 in a buffer solution containing 150 mm NaCl, 2.5 mm KCl, and 10
mM HEPES, pH 7.4, to give a final dye concentration of 300 um OGB-1
AM. Alexa 594 was also added to the solution to aid visualization of dye
ejection (final concentration, 10 um). A micropipette was filled with this
solution and inserted into the cerebellar molecular layer (depth typically
100-150 wm below pia). Dye was ejected by applying pressure at 40 kPa
for ~1 min using a Picospritzer (General Valve) or by repeated brief puffs
with a 5 ml syringe.

Imaging was performed >30 min after dye ejection, using a two-
photon laser scanning microscope (Prairie Technologies). Excitation was
provided by a pulsed titanium/sapphire laser system operating at 810 nm
(Mai Tai; SpectraPhysics) with <100 fs pulse width and 80 MHz repeti-
tion rate, focused using a 40X, 0.8 numerical aperture objective lens
(Olympus). Images were acquired using Scanlmage (Pologruto et al.,
2003) for MATLAB (MathWorks). For every region imaged, a high-
resolution reference image was first acquired (512 X 512, average of five
frames), followed by a spontaneous activity run (typically 256 X 64 or
256 X 32 resolution, 1000—2000 frames, 128 s of data) and, if appropri-
ate, a series of one to five sensory-evoked runs (typically 500—-1000
frames, 64 s each). Raster lines making up each frame were of 2 or 2.3 ms
duration, resulting in frame rates of 7-16 Hz. In some experiments,
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harmaline was administered by intraperitoneal injection (10 mg/kg) as
described by Lamarre et al. (1971). Imaging resumed 7-10 min after
harmaline injection.

Electrophysiology. Targeted extracellular recordings were made from
imaged neurons using patch pipettes (~4 MQ)) filled with artificial CSF
and containing Alexa 594. The pipette was navigated until the tip was
adjacent to a Purkinje cell soma or dendrite and complex spikes could be
detected with high signal-to-noise ratio (SNR). Electrophysiological and
imaging data were then simultaneously acquired from the same Purkinje
cell; identification of regions containing calcium signals corresponding
to electrophysiological complex spike activity was performed offline.

Sensory stimulation. Brief air-puff stimuli (50 psi, 50 ms) were applied
to the perioral surface or ipsilateral whiskers via a glass tube mounted on
a micromanipulator, timed by a Picospritzer. Sensory-evoked trials con-
sisted of a nonstimulated period of 12-15 s, followed by a periodic train
of 20-32 pulffs separated by 1.28-3.68 s.

Data analysis. Regions of interest (ROIs) corresponding to individual
Purkinje cells were identified offline via three methods described in the
supplemental data (available at www.jneurosci.org as supplemental ma-
terial): human operator-driven identification based on both a time-series
movie and high-resolution reference image, pixel cross-correlation
maps, and spatial independent component analysis (Reidl et al., 2007).
All three methods resulted in pixel clusters lining up in a narrow rostro-
caudal plane, with qualitative agreement in area definition. Fluorescence
time series corresponding to the average intensity of pixels within an ROI
were extracted. Cross-covariance and joint poststimulus time histogram
(JPSTH) analyses were performed directly on the fluorescence time-
series traces. Calcium transient event trains were obtained from time-
series traces by applying a custom-written template-matching algorithm,
the performance of which was verified by simultaneous electrophysiol-
ogy (supplemental Fig. S3, available at www.jneurosci.org as supplemen-
tal material).

Information theory. Information calculations were performed using a
binary code produced by the template-matching procedure, in which a
bin took the value of 1 if it corresponded to the beginning of a template
match and 0 otherwise. Responses, r, were formed via either of two
methods. For spike pattern codes, the response r = {r,} was the vector of
single cell responses r;, where i is the cell index; for spike count codes,

r= zr, (1)

is in this special case a scalar quantity. The spike pattern response code
thus had a cardinality of 2 where C is the number of Purkinje cells, and
the spike count code had a cardinality Q + 1, where Q is the maximum
count of 1 values observed from individual ROIs on any trial. One key
difference between these codes is that, for spike pattern codes, the iden-
tity (spatial location) of the cell firing a spike matters, whereas for spike
counts, only the pooled number of events across the population can carry
information. The conditional response distribution matrices P(r]s) were
formed, where s indicates the time bin relative to stimulus onset from
which the responses were drawn. In a reduced version of the calculation
to compute signal detection information, only two such response time
bins were used to form the conditional response matrix: one before stim-
ulus onset and one at the peak response time. Results were similar using
both approaches, and, for the sake of generality, the former has been
presented in this study. The mutual information for both spike pattern
and spike count codes was obtained by computing the difference between
a total entropy H(R) and a noise entropy H(R|S):

I(R;S)=H(R)—H(R|S) (2)

where

H(R) = — >, P(r)log, P(r), (3)

with H(R|S) similar but for the conditional distribution P(r|s) and aver-
aged over stimuli s.
To analyze the contributions of different aspects of the statistical struc-
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ture of neural population activity to the information, we broke the total
pattern information down into a number of information components
that reflect different contributions to neural coding: I = I 4 + I or5na +
Liordep- We calculated the information that would be conveyed by a
fictional ensemble of neurons with identical firing rate profiles but zero
“noise correlation” (correlation across neurons of the response variabil-
ity from trial to trial with the same stimulus, as is induced by synchrony).
This can be calculated by shuffling the stimulus-conditional response
trials separately for each neuron. However, calculating this information
quantity amounts to replacing P(r|s) with

Pina(tls) = [ [P(rfs) (4)

(Schneidman et al., 2003; Pola et al., 2003; Montemurro et al., 2007), and
direct implementation of the latter expression is more efficient in sam-
pling terms. Comparing the value I,, 4 obtained by inserting this distri-
bution into the mutual information equation with the total information
allows us to measure the overall effect of correlations (which can be
positive or negative) on the amount of information conveyed. The com-
ponent of the information attributable to the effect of correlations can be
calculated as I, = I- I, 4.

There are, however, a number of ways in which noise correlation can
affect information transmission. For instance, stimulus modulation of
synchrony might be used explicitly as an information channel. The con-
tribution of this mechanism to information coding can be measured as

Lograey = 1= 2, DAP(r]s) log, P(rfs)), + >, P()log, Pug (), (5)

ri T

where

Pipa(r) = 2 P(s) P(x]s). (6)

This quantity is identical to the Al measure proposed for the information
loss to a decoder in neglecting correlations (Nirenberg et al., 2001). The
average level of correlation can, however, also affect fidelity of informa-
tion transmission, either improving or decreasing it (Panzeri et al., 1999);
this can easily be measured as I, ind = leor — Leor,dep- We thus break the
total pattern information into a number of information components that
reflect different contributions to neural coding: I = I, 4 + I, inga T
Icor,dep‘

Another comparison we can make is to compare the total pattern
information with that obtained by linear summation of the information

from each cell separately,

Iin= 2, 1(RsS). (7)

This comparison examines not just the effect of noise correlation but also
of similarity of tuning (signal correlation); in fact, Ij,q = Ly + Ligsimo
where I, ., is @ negative correction to [;,,4 attributable to the similarity
of signals conveyed. If the pattern information is greater than the sum of
the single-cell information, the coding is synergistic; if less, the informa-
tion carried by each cell is on average redundant. We normalize this to

calculate a redundancy fraction (Gawne et al., 1996):

Ilin =1
T .

Fractional redundancy = (8)
Entropies were estimated using the Nemenman—Shafee—Bialek algo-
rithm (Nemenman et al., 2004). Our information-theoretic analysis pro-
cedures have been described in more detail previously (Montani etal., 2007).
One hundred to 200 trials per stimulus were typically available for entropy
estimation. Supplemental Figure S5 (available at www.jneurosci.org as sup-
plemental material) demonstrates that this provides adequate sampling for
both spike count and pattern codes with the dimensionalities examined. For
the results shown in Figure 5B, animals under ketamine/xylazine and ure-
thane anesthesia were combined, because the mean information values were
similar in both cases. The mutual information contained by responses about
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the time of their occurrence relative to stimulus onset was computed. The
robustness of our information estimates with respect to finite sampling bias
are shown in supplemental Figure S5 (available at www.jneurosci.org as
supplemental material).

Results are given as mean * SEM unless otherwise indicated.

Results

Purkinje cells in cerebellar folium Crus II were loaded with
OGB-1 AM and imaged using two-photon microscopy (Fig. 1
and supplemental Movie 1, available at www.jneurosci.org as
supplemental material) (Stosiek et al., 2003; Sullivan et al., 2005).
Spontaneous dendritic calcium transients were observed at a rate
of ~1 Hz. To identify the origin of the dendritic signals, we made
simultaneous targeted extracellular recordings from the respec-
tive Purkinje cells using a patch pipette containing Alexa 594 (Fig.
1 and supplemental Movie 2, available at www.jneurosci.org as
supplemental material). ROIs corresponding to individual Pur-
kinje cells were determined using time-series fluorescence movies
(supplemental Movie 3, available at www.jneurosci.org as sup-
plemental material) (see Materials and Methods). As shown in
Figure 1C, each complex spike observed on the electrophysiolog-
ical trace corresponds to an event in the selected ROIL. When a
pair of CS occurred in rapid succession, a single large dendritic
calcium transient was observed, indicating that CS rate observed
using our approach (0.58 = 0.01 and 1.02 = 0.03 Hz using ket-
amine/xylazine or urethane anesthesia, respectively) represents a
slight underestimate, which nevertheless is consistent with previ-
ous results using two-photon imaging (Sullivan et al., 2005), as
well as conventional electrophysiological approaches (Ito, 1984).
The observed CS rates are also similar to those observed in the
awake rat (Lang et al., 1999). We conclude that the overwhelming
majority of the detected spontaneous dendritic calcium tran-
sients under our conditions reflect spontaneous climbing fiber
input.

We next examined the degree of spontaneous CS synchrony
across nearby Purkinje cells up to 200 wm apart. Figure 2, A and
B, shows an experiment in which spontaneous activity was im-
aged in dendrites from 15 different Purkinje cells. The fluores-
cence time series for the Purkinje cell dendritic regions were ob-
tained (Fig. 2C), and cross-covariance between these time series
were calculated to quantify synchronicity of spontaneous CS be-
tween each Purkinje cell pair (Fig. 2D). The dendrites of neigh-
boring Purkinje cells show partial synchrony (mean cross-
covariance, 0.32 * 0.01 for 569 pairs located up to 25 wm apart
mediolaterally), decreasing with mediolateral separation (Fig.
2E). Cross-covariance declined over several hundred microme-
ters (Fig. 2F) (decay constant, 225 wm; 95% confidence interval,
189-261 um; pooled results from 2235 pairs of Purkinje cells
under ketamine/xylazine and urethane anesthesia). If the syn-
chrony observed is the result of gap junctional coupling between
inferior olive cells, it should increase after administration of har-
maline, which enhances subthreshold oscillations and network
synchrony in the olive (Llinds and Yarom, 1986). Indeed, harma-
line significantly increased CS synchrony (Fig. 2G) (70 = 0.2%;
n = 164 pairs from 5 experiments), consistent with previous
results using electrophysiological techniques (Llinds and Sasaki,
1989; Sasaki et al., 1989; Lou and Bloedel, 1992; Welsh et al.,
1995) with lower spatial resolution.

We triggered sensory input using brief perioral air-puff stim-
uli (Brown and Bower, 2002; Chadderton et al., 2004). When
sensory-evoked calcium signals were detected (Fig. 3A), neigh-
boring cells showed varying sensory response reliability: some
responded to nearly every stimulus (e.g., the seventh cell in Fig.
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Two-photon imaging of climbing fiber-evoked calcium signals in Purkinje cell dendrites. 4, Side projection of a three-dimensional image stack (251 wm total depth) showing in vivo

staining of cerebellar Purkinje cell dendrites by pressure ejection of the dye 0GB-1 AM. B, Three-dimensional slice reconstruction of an experiment in which two-photon targeted extracellular
recording was performed in the Purkinje cell layer, followed by calcium imaging in the molecular layer above. The green channel shows 0GB-1 labeling, and the red shows the pipette containing
Alexa 594. For clarity, the bottom slice has been replaced by a maximum-intensity projection through the surrounding 20 wm of tissue. €, Calcium imaging of the region indicated by the inner gray
squarein B. Of the two regions of interest defined here, one (red) corresponds to the recorded cell. The electrophysiological trace at the bottom contains both simple spikes and climbing fiber-evoked
(S, the latter defined by crossing the threshold (gray line) and marked above the calcium traces by tick marks (repeated identically above both traces for convenience). In the red trace, there is a
one-to-one relationship between calcium transients and the recorded CS; the same is not true for the second region (blue trace). This results in a strong CS-triggered fluorescence waveform for the
red region (at right), with the blue region showing a smaller CS-triggered average attributable to the presence of regional CS synchrony. Bottom right, Expanded timescale showing the average (S

waveform observed extracellularly.

3A), whereas others (with equally large calcium transients) were
more sporadic (first and fourth cells). Sensory stimulation at
similar (0.3—0.8 Hz) rates to spontaneous CS rate did not signif-
icantly increase the time-averaged rate of calcium transient events
across cells (Kolmogorov—Smirnov test; n = 113; p = 0.17), as
shown in Figure 3C. This held whether comparing template-match
event rates or the underlying rate of fluorescence fluctuations (sup-
plemental Fig. S3, available at www.jneurosci.org as supplemental
material). Given the presence of clear sensory-locked responses vis-
ible in single cells, this suggests that the sensory stimulus results in
entrainment of CS activity (Marshall and Lang, 2004) rather than the
production of additional complex spikes.

CS trains can be described as a highly irregular renewal pro-
cess under spontaneous conditions (Shin et al., 2007). How is this
affected by sensory stimulation? We computed the coefficient of
variation statistic (CV,) interspike interval (ISI), equal to the SD
divided by the mean of the distribution of successive ISIs, which
measures the local irregularity of interspike intervals (Holt et al.,
1996). We found that interevent intervals were more regular un-
der stimulated than spontaneous conditions (Fig. 3D) (two-
sample Kolmogorov—Smirnov test, p = 7 X 10 ~®). Although this
might be expected as a natural consequence of regular stimula-
tion, it does suggest that more reliable CS temporal coding may
be possible than is suggested by stochastic descriptions based on
spontaneous activity.

As aresult of sensory entrainment, a high degree of synchrony
would be expected simply because of each neuron in a pair tend-
ing to respond to the stimulus at a similar time; this is what we
observed (Fig. 3E). Correcting for this effect by subtracting a shift

predictor, the time-averaged cross-correlogram was observed to
be not significantly different under sensory-driven compared
with spontaneous conditions (two-sample Kolmogorov—Smir-
nov test, p > 0.2; n = 70 pairs with SNR >0.4; urethane anesthe-
sia). However, this leaves open the possibility that synchrony is
temporally modulated, which could mean that spatial patterns
occurring at particular times relative to stimulus onset might
convey information.

To examine the effect of sensory stimulation on CS synchrony
in more detail, we computed the normalized JPSTH (nJPSTH)
(Fig. 4) (Aertsen etal., 1989). Approximately half of the respond-
ing pairs of cells were found to have greater sensory-modulated
synchrony than expected by chance (21 of 43 pairs with geomet-
ric mean SNR exceeding 0.2; Student’s £ test, p < 0.05). The # test
used to assess this is a conservative statistical measure. The exam-
ple shown in Figure 4 A is typical, showing a brief period of strong
synchrony shortly after stimulus delivery. The average nJPSTH
for pairs of cells with geometric mean of the SNRs of each cell
exceeding 0.2 is shown in Figure 4 B. Although these pairs do not
all show the same time dependence of either synchrony or firing
rate, common features are apparent across the dataset, such as
modulation along the JPSTH diagonal after stimulus onset, and
less joint events than expected (from the PSTH marginals) at
longer asynchronies (>0.4 s). Pairs containing at least one mem-
ber unresponsive to the stimulus instead show an nJPSTH reflect-
ing “spontaneous synchrony”: an unmodulated diagonal band in
the JPSTH, with no suppression on the flanks of the cross-
correlogram (Fig. 4C shows the average for pairs with geometric
mean SNR <0.05). These effects are unlikely to be accounted for
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by residual sensory modulation attribut-
able to inadequate correction for PSTH ef-
fects, because this would be reflected in a
correlation between the nJPSTH magni-
tude and the amplitude of stimulus-
induced responses, and no such correla-
tion was evident (supplemental Fig. S4,
available at www.jneurosci.org as supple-
mental material). The sensory effect on
synchrony, as measured by the peak height
of the correlation poststimulus histogram
(CPSTH), was dependent on mediolateral
distance (correlation coefficient, —0.37;
n = 123 pairs; significant at p < 0.001)
(Fig. 4D), as found for spontaneous syn-
chrony. The space constant of decay was
186 wm (95% confidence interval,
102-270 pum), comparable with that ob-
served for spontaneous synchrony.

The modest stimulus dependence of CS
synchrony we observed raises the question
of whether modulation of synchrony (or
of CS patterns of which the synchrony may
be a second-order signature) may convey
significant sensory information beyond
that available to a downstream deep cere-
bellar nucleus (DCN) neurons simply by
counting the spikes fired by the input neu-
rons in a short time window. Addressing
this question requires knowledge of, first,
whether patterns of CS in a local area mat-
ter or just their total number (i.e., making
the distinction between pattern and
pooled codes), and, second, whether the
important aspects of those patterns relate
to synchrony or to cell identity (in the lat-
ter case, we have a very particular case of
the pattern code, the labeled line code, in
which downstream neurons can make use
of the identity of the neuron firing each
spike but in which a combinatorial code
across neurons is not used). There are thus
three population coding approaches that
might be used: pooled coding, labeled line
coding, and more general pattern coding.
Explicit sensory modulation of synchrony
might a priori be expected to lead to the
latter. We therefore examined the infor-
mation contained in calcium signals from
local populations of neurons about when
responses occurred relative to stimulus
onset, i.e., information about stimulus
timing. The higher this quantity, the more
accurately the local population represents
the time of stimulus occurrence. This mu-
tual information quantity is bounded by
the stimulus entropy, here determined by
the temporal precision with which re-
sponses are binned, for example, with a
frame duration of 64 ms (typically used in
our study), the stimulus entropy including
time bins from 0.0 to 1.0 s after stimulus
onset is 4 bits.
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Figure 3.

Sensory stimulation entrains climbing fiber-evoked activity. A, Fluorescence time-series traces for a region in which ROIs corresponding to seven Purkinje cells have been identified.

Triangles indicate air-puff stimuli applied to the lower lip every 1.28's. Imaging frame rate is 8 frames/s for this example, and the traces have been high-pass filtered (first-order Bessel filter, cutoff
of 0.4 Hz). Calcium transient events detected using a template-matching algorithm have been indicated above the time series by gray dots. B, Average fluorescence increase evoked by air-puff
stimulation for each of the regions indicated in 4 (at left) and PSTH for calcium transient events (at right). ¢, Calcium transients evoked by climbing fiber activity occur at the same rate under
sensory-induced and spontaneous activity conditions. Cells shown were selected according to the criterion that the sensory signal-to-noise ratio exceeds 0.1. D, Sensory stimulation increases the
reliability of interspike intervals, leading toareduction in CV, ISI. Gray dots indicate cells with SNR >0.1, and open circles indicate cells with SNR >0.4 (strongly responding). E, Under sensory-driven
conditions, the time-averaged level of synchrony increases, but this can be accounted for by stimulus locking.

We computed the information carried by events detected us-
ing the template-matching procedure from ensembles of single
Purkinje cell ROIs as described in the supplemental data (avail-
able at www.jneurosci.org as supplemental material). Figure 5A
shows the information carried by ensembles of up to seven of the
dendrites shown in Figure 3, for both spike pattern and spike
count codes. In this population of neurons, a more reliable esti-
mate of stimulus timing is available to a receiver (e.g., DCN neu-
rons) capable of distinguishing between different spatial patterns
of its inputs than to one restricted to counting the number of
active inputs without taking into account their origin (pooling).
This result cannot be explained by finite sampling bias differen-
tially affecting these two population codes, because the 200 trials
per stimulus available were more than adequate to sample both
codes with the entropy estimation approach used (supplemental
Fig. S5, available at www.jneurosci.org as supplemental mate-
rial). The result held across the dataset (1 = 8 animals), with on
average 59% additional information available from patterns in
the activity of seven-cell ensembles (n = 9) (Fig. 5B,C).

What is the origin of this spatial pattern information? A clue is
provided by comparing the pattern information with that pro-
vided by responses that have been shuffled to destroy any
stimulus-conditional (noise) correlations but preserve firing rate
profiles (we refer to this information value as I, 4; see Materials
and Methods). We found that the information conveyed is higher
when correlations are destroyed than when they are present (Fig.
5A, C, green lines; D). This suggests that, despite the presence of a
modest amount of stimulus dependence of the correlations (Fig.
4), the overall effect of the prominent CS synchrony is a reduction
in the total information transmitted. This is surprising because
synchrony is an obvious candidate code for reading out the time
of occurrence of the sensory stimulus (but see Discussion). This
result, together with that of the previous paragraph, would ap-
pear to fit with a labeled line picture of cerebellar CS population
coding.

I,q captures the component of the total information that is
preserved if noise correlations are neglected. However, some
forms of correlation can still affect I;, ;— signal correlations, which
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Figure 4.  Sensory stimulation temporally modulates synchrony of calcium signals in nearby Purkinje cells. A, nJPSTH for a
typical pair of cells (third and fifth examples from Fig. 3A), showing synchronous activity immediately after stimulus onset, beyond
that expected attributable to individual responses. The stimulus-triggered average fluorescence response of each dendrite is
shown at bottom and left; at right is shown the CPSTH from the diagonal of the nJPSTH. Averaging instead across time yields the
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may be thought of as correlations between
the tuning profiles of the cells. If there is
neither signal correlation nor noise corre-
lation, then we have “informational inde-
pendence,” in which the information
available from each cell can simply be
added linearly to obtain the total ensemble
information. This distinction between
conditional response independence (as
captured by the quantity I, 4) and infor-
mational independence has been made
previously (Schneidman et al., 2003). Our
results show that the pattern information
is both lower than what would be expected
from response independence (Fig. 5D)
and lower than what would be expected
from informational independence (Fig.
5E); both noise and signal correlations
have the effect of reducing the information
that can be transmitted.

We can analyze the contributions of
different aspects of pattern correlations to
neural coding in more detail using infor-
mation component analysis (Panzeri et al.,
1999; Panzeri and Schultz, 2001; Pola et al.,
2003; Montani et al., 2007), which involves
breaking up the total pattern information
into contributions that do and do not de-
pend on noise correlations: I = I, 4 + I,,.
For a labeled line code, I;,4 might be ex-
pected to dominate, but nevertheless if the
lines were correlated, there would be an
unavoidable effect on the information,
which would be captured by I_,. Examin-
ing the distributions of these quantities
computed for pairs of neurons (Fig. 6A),
we observe that, whereas I,,4 contributes
the most to the total information (0.129 *
0.008 bits; n = 77 pairs for which geomet-
ric mean SNR >0.2), the correlational
contribution I, is almost always negative
and distributed around small negative val-
ues (—0.018 = 0.002 bits). To examine ex-
actly how this correlational contribution
arises from the interplay between the aver-
age level of correlation [which can either

<«

expectation-corrected cross-correlogram. Scaling is such that
all correlation quantities can be interpreted as Pearson’s coef-
ficients. Gray bar on CPSTH indicates height of peak in this
plot. B, The average nJPSTH for 103 pairs of cells with SNR
>0.2. CPSTHand cross-correlogram on same scale asA. C, The
average JPSTH for 430 pairs of cells, of which neither re-
sponded strongly to the sensory stimulus (SNR <C0.05), shows
only spontaneous synchrony. D, Peak CPSTH values reflecting
stimulus-evoked correlation for each pair of cells fall off with
transverse separation between the cells. Filled circles, Peak
nJPSTH for all pairs with geometric mean SNR >0.2. Blue
open squares, Mean in 25-um-wide bands. Solid blue line,
Single-exponential fit. Red symbols and line show a similar
result for the baseline period 0.4 — 0.2 s before stimulus onset.
Error bars indicate SEM.
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6A shows that, in this case, the contribu-
tion of correlations to the information is
almost entirely dominated by the average
level of correlation (I .y ;g = —0.028 =
0.003 bits and Iy, 4., = 0.010 * 0.001 bits,
respectively).

An important question that arises is
whether the role of interactions between
Purkinje cells (such as synchrony) in sen-
sory coding differs according to whether
the cells are nearby or farther apart. Figure
6B shows a breakdown of the results de-
scribed above according to mediolateral
separation. The total information provided by the pair increases
the farther the pair of cells are spaced apart. This is primarily
attributable to an increase in the independent component of the
information (means for pairs located <40 wm from each other
mediolaterally were significantly different from those with >40
pm separation; p = 0.029; t test). This situation can occur if signal
correlation between the cells (i.e., correlation attributable to
common tuning) decreases with distance apart. No significant
effect of distance on the contribution of either spontaneous syn-
chrony or the stimulus dependence of synchrony to the informa-
tion was apparent. This suggests that strong distance dependence
in the underlying correlation variables can in some cases be very
much reduced in terms of impact on sensory coding, an effect not
expected a priori.

Spatial correlations can in principle either increase or decrease
the information provided by a neuronal population, but the fact
that they lead to a decrease under conditions in which the stim-
ulus tuning is similar in the spatial locality (as discussed above)
implies that, in this case, the system operates in a redundant
coding regimen (Panzeri et al., 1999). This provides additional
evidence against a combinatorial spatial pattern code for sensory
information, a signature of which would be a positive (synergis-
tic) contribution to population coding by correlations. Figure 5E
captured this explicitly by comparing the total pattern informa-
tion available from an ensemble to the sum of the information
values provided by each constituent cell. In all ensembles exam-
ined, the pattern information is below the sum, indicating redun-
dant coding between the cells examined. Quantifying this as the
fractional redundancy (see Materials and Methods), we exam-
ined the relationship between redundancy and the mediolateral
distance between Purkinje cell dendrite pairs (Fig. 6C). Redun-

about stimulus onset time, obtained by comparing the conditional response distributions for time bins at various latencies to
stimulus onset, for ensemble sizes 1-7. Two response codes are considered: the spatial pattern of spikes in the ensemble (black
squares) and a reduced code obtained by counting the number of spikes fired by the ensemble (disregarding their spatial origin;
blue open squares). This is the same example region shown in the previous two figures. Error bars indicate SEs obtained by
bootstrap resampling. Also shown is the information that would be conveyed by a fictional neuronal ensemble with the same
firing rates but no correlations between neurons (green squares). B, A comparison of the full CS spatial pattern information with
the countinformation for ensembles of different sizes (SNR >0.2). €, Population averages of information quantities forincreasing
ensemble sizes. Error bars indicate SEM over all ensembles of size indicated by the ordinate. D, Correlations between nearby
Purkinje cells reduce the amount of sensory information transmitted. The full spike pattern information is generally lower than the
information carried by an equivalent ensemble of cells whose responses are uncorrelated (here we make a comparison with
response independence). E, The spike pattern information is lower than the sum of the information values computed for each
neuron individually (making a comparison with informational independence).

dancy was highest between nearby pairs of cells, falling off signif-
icantly with distance (correlation coefficient, r = —0.26; p =
0.018; n = 80 pairs). Spike count redundancy was higher than
spike pattern redundancy, suggesting again that taking into ac-
count the spatial origin of CS events is important for efficient
sensory coding.

Discussion

We have taken advantage of the spatial resolution offered by in
vivo two-photon microscopy to reveal that neighboring Purkinje
cells in cerebellar cortex can exhibit tightly synchronized CS ac-
tivity. This spontaneous CS synchrony falls off over ~200 wm
mediolaterally in cerebellar cortex and is increased by sensory
stimulation and harmaline administration. Because harmaline
acts to enhance subthreshold oscillations in the inferior olive
neurons, which give rise to the climbing fibers (de Montigny and
Lamarre, 1973; Llinés et al., 1974), this suggests that local CS
synchrony originates in the inferior olive, consistent with studies
of climbing fiber connectivity (Sugihara et al., 2001, 2007). Our
results, obtained using a technique affording much higher spatial
resolution than previously available, are in close agreement with
and extend previous studies using multielectrode arrays
(Yamamoto et al., 2001; Blenkinsop and Lang, 2006). This local
synchrony, in conjunction with subthreshold oscillations at ~10
Hz in the somatomotor inferior olive (Urbano et al., 2006), pro-
vides a set of discrete time points at which the olivocerebellar
feedback circuit is updated.

We found that periodic sensory stimulation entrained Pur-
kinje cell CS activity, as demonstrated by more regular interspike
interval structure without a significant change in the average fir-
ing rate. Although the overall time-averaged level of synchrony
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Figure 6.  Information component analysis of the sensory code. 4, The total information can be broken down into two com-
ponents, | = [, 4 + I, (histograms of component values shown above). For all 77 pairs of Purkinje cells (SNR >0.2) examined,
the correlational component /., was negative. The correlational component can be further broken down into the sum of a
component attributable to the average level of correlation /., ;,4 and the contribution of stimulus-dependent correlation /,; e,
The overall effect of correlations is dominated by redundancy effects attributable to the high average level of correlation. B, The
information provided about the sensory stimulus by nearby pairs of Purkinje cells increases with distance of separation. Panels
show information components averaged for pairs within three distance bands (025, 25-50, >50 m), pooled over all regions.
Color code as for A. The increase in information is primarily attributable to an increase in the independent component (reflecting
adecreasein extent of sensory tuning overlap). ¢, Redundancy in the information carried between pairs of neurons decreases with
their mediolateral separation. Spike count redundancy is greater than that for spatial pattern information. Average fractional
redundancy between the information content of pairs of cells (computed as described in Materials and Methods) is shown for pairs
within four bands of spatial separation.

was similar under spontaneous and sensory-driven conditions,
JPSTH analysis revealed that sensory stimulation modulates the
synchrony transiently after stimulus onset. This led us to ask
whether DCN neurons receiving small populations of input sig-
nals (either complex spikes from Purkinje cells or direct climbing
fiber inputs) could make use of the spatial pattern of spikes to
indicate whether or when a sensory stimulus occurred. We found
that, under our experimental conditions, the pattern of events
from ensembles of seven Purkinje cells (the largest ensembles we
could systematically examine) provided on average 59% more
stimulus-related information than was available simply by count-
ing the number of complex spikes fired across all cells.

What are the implications of these results for the function of
the cerebellar cortical circuit? Our approach effectively measures
the sensory population code represented by the climbing fiber
outputs of the inferior olive. As well as producing complex spikes
(and their associated calcium transients, which we measure) in
Purkinje cells, climbing fibers form excitatory synapses with
DCN neurons. Purkinje cell connections to DCN neurons are
inhibitory; in turn, DCN neurons provide an inhibitory projec-
tion to the inferior olive, completing a feedback loop (for review,
see Bengtsson and Hesslow, 2006). Thus, there are two routes via
which the signals we measure can drive DCN neurons (one of
which also carries the simple spikes). Simultaneous recordings
from Purkinje cells and DCN neurons suggest that the latter may
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combine the responses of a small pool of
Purkinje cells (Palkovits etal., 1977), and it
has therefore been proposed that syn-
chrony among DCN inputs could prefer-
entially drive the recipient neurons
(Gauck and Jaeger, 2000). Many theories
of cerebellar function involve an olivocer-
ebellar feedback loop in which climbing
fiber sensory input to the cerebellum is
gated by some kind of expectation or error
signal (Ito, 2006). Our results suggest that
this feedback circuit operates on a popula-
tion code represented by the spatial pat-
tern of activity in a local set of climbing
fibers comprising a microzone. Further-
more, our results indicate that, in that spa-
tial pattern code, sensory signals are repre-
sented by a labeled line code: synchronous
firing across the pattern does not aid sen-
sory information transmission or discrim-
ination. This leaves open a role for syn-
chrony in flexible selection of certain
“lines” for output to the DCN.

Simple spikes in Purkinje cells are in-
visible to our imaging technique because
they generate no detectable dendritic cal-
cium signals (Lev-Ram et al., 1992), but
they are of course present in the outputs to
DCN neurons. Are DCN neurons required
to distinguish between simple and com-
plex spikes to make use of the CS popula-
tion activity examined here? This is not
necessarily the case, because some DCN
neurons receive direct inputs from climb-
ing fibers (which convey a signal akin to
that we measure here). However, prefer-
ential driving by synchronous inputs, as
discussed above, could effectively result in

the multiplexing of two information channels in the DCN inputs.
The complex spike modulates simple spiking of Purkinje cells,
e.g., by simple spike pauses after a complex spike (Latham and
Paul, 1971; Armstrong and Rawson, 1979), which may in turn
elicit rebound firing of DCN neurons (Aizenman and Linden,
1999) (but see Alvifia et al., 2008). Synchronous CS activity across
Purkinje cells may therefore result in activation of downstream
neuronal populations in the DCN, with spatial activation pat-
terns representing information at discrete time points marked
out by subthreshold oscillations in the olive.

We have shown that an important aspect of the spatial pattern
sensory code is that preserving the identity of the cell producing
each CS event (labeled line coding as opposed to pooled coding)
is essential to make use of a substantial fraction of the informa-
tion available. In contrast, second- or higher-order statistical re-
sponse structure appears to lead to a coding regime in which the
information conveyed by neighboring cells within an ~200 wm
wide region is partially redundant. To make use of this informa-
tion, DCN neurons might not simply “integrate and fire” but
rather make use of spatially compartmentalized dendritic inte-
gration rules (Hausser and Mel, 2003; Williams and Stuart,
2003). We hypothesize that the particular spatial patterns ob-
served here may not be random but rather reflect cell combina-
tions that are most useful for movement control [i.e., local scale
“motor synergies” (Welsh and Llinds, 1997)].
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An important, and related, question to ask is not just whether
the spatial pattern of activation provides information beyond
that available from a pooled code but whether the source of that
information is correlation between Purkinje cells. For instance,
one hypothesis might be that synchrony among particular en-
sembles of neurons could be switched on or off to signal a partic-
ular stimulus condition. We used the information component
analysis approach (Panzeri etal., 1999; Panzeri and Schultz, 2001;
Polaetal., 2003) to address this question quantitatively. If switch-
ing of synchrony provides or adds to information content, this
should be apparent in the information component capturing
stimulus dependence of correlation (I, 4, in our notation),
which should provide a significant proportion of the correla-
tional component of the information and of the total informa-
tion. In our experiments, however, I, 4, turned out to be neg-
ligible, which would appear to discount this hypothesis, at least as
far as analysis of the present sensory variable is concerned.

How does the fact that sensory-evoked CS synchrony does not
convey any significant information about presence/absence of a
sensory stimulus accord with the intrinsic properties of DCN
neurons, which as we have discussed may be preferentially driven
by CS synchrony? First, we note that this does not preclude CS
synchrony from carrying other information (such as about task
or motor configuration). Second, in general terms, the presence
of synchrony affects (negatively) the information throughput ofa
downstream receiver, whether or not it is tuned to detect it (Pan-
zeri et al., 1999). The intrinsic properties of DCN neurons thus
emphasize the importance of our result for cerebellar function:
because DCN neurons are preferentially driven by synchrony and
synchrony reduces sensory information throughput in this sys-
tem, transmission of high-fidelity sensory signals cannot be the
functional role of synchrony. Information selection, rather than
information transmission, may therefore be a better way to view
the function of CS synchrony.

What is the role of the spontaneous CS synchrony that we have
observed? One way in which it might play a role in “tagging”
spatial assemblies of neurons is that spontaneous synchrony over
some time interval might define a functional circuit, within
which sensory information is encoded via a labeled line spatial
pattern code. In this case, synchrony does not act as part of the
coding strategy per se but rather plays an important functional
role in establishing/maintaining a dynamic and flexible circuit
configuration within which the sensory code is represented. Syn-
chronous ensembles would in this view change according to mo-
tor/task configuration rather than according to sensory input
received (Welsh et al., 1995; Welsh and Llinas, 1997; Welsh,
2002). By selecting certain labeled lines for output to the DCN,
synchrony might effectively act to discard sensory information
that is superfluous to the current task. The downside of using
synchrony in such a way is a small reduction in the information
that can be transmitted per fiber attributable to redundancy;
however, redundancy itself may be a feature because it can allow
some degree of fault-tolerance or error-correcting behavior (Pu-
challa et al., 2005; Montani et al., 2007).

The neural coding mechanisms examined here are spatially
precise, with many defining features falling off significantly over a
scale of the order of 200 um mediolaterally, confirming the pre-
diction of cerebellar microzones made three decades ago
(Andersson and Oscarsson, 1978). Understanding the fine-scale
structure of the sensory code used within a cerebellar microzone
thus crucially requires the spatial resolution provided by two-
photon microscopy. Our results should lead to many additional
lines of investigation: in particular, simultaneous calcium imag-
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ing from multiple Purkinje cells and electrophysiological record-
ing from DCN neurons would allow DCN synaptic integration
and “decoding” properties to be examined directly. In addition,
detailed compartmental modeling of DCN neurons, together
with electrophysiological investigation of their properties (Gauck
and Jaeger, 2003), would allow the hypothesis that the CS spatial
population code can be read out by a receiver to be tested. Finally,
improved multiphoton imaging acquisition rates may allow the
effects observed here to be more specifically related to the 10 Hz
subthreshold rhythm that is a prominent feature of olivocerebel-
lar dynamics.
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