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Auditory Cortical Activity after Intracortical
Microstimulation and Its Role for Sensory
Processing and Learning
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Several studies have shown that animals can learn to make specific use of intracortical microstimulation (ICMS) of sensory cortex within
behavioral tasks. Here, we investigate how the focal, artificial activation by ICMS leads to a meaningful, behaviorally interpretable signal.
In natural learning, this involves large-scale activity patterns in widespread brain-networks. We therefore trained gerbils to discriminate
closely neighboring ICMS sites within primary auditory cortex producing evoked responses largely overlapping in space. In parallel,
during training, we recorded electrocorticograms (ECoGs) at high spatial resolution. Applying a multivariate classification procedure, we
identified late spatial patterns that emerged with discrimination learning from the ongoing poststimulus ECoG. These patterns contained
information about the preceding conditioned stimulus, and were associated with a subsequent correct behavioral response by the animal.
Thereby, relevant pattern information was mainly carried by neuron populations outside the range of the lateral spatial spread of
ICMS-evoked cortical activation (~1.2 mm). This demonstrates that the stimulated cortical area not only encoded information about the
stimulation sites by its focal, stimulus-driven activation, but also provided meaningful signals in its ongoing activity related to the
interpretation of ICMS learned by the animal. This involved the stimulated area as a whole, and apparently required large-scale integra-
tion in the brain. However, ICMS locally interfered with the ongoing cortical dynamics by suppressing pattern formation near the
stimulation sites. The interaction between ICMS and ongoing cortical activity has several implications for the design of ICMS protocols

and cortical neuroprostheses, since the meaningful interpretation of ICMS depends on this interaction.

Introduction

Electrical stimulation of sensory cortex has recently regained in-
terest as a tool for establishing causal links between cortical activ-
ity and perception (Cohen and Newsome, 2004). Furthermore, in
clinical research, sensory cortical neuroprostheses are developed
with the aim of replacing lost functions of afferent pathways
based on electrical stimulation (Brindley and Lewin, 1968;
Dobelle et al., 1973; Normann et al.,, 1999; Donoghue, 2002;
Kipke et al., 2008).

This renewed interest in sensory cortex stimulation originates
in part from experiments using intracortical microstimulation
(ICMS) techniques, which yield defined perceptual effects based
on a focal cortical activation. In animal models it has been shown
that electrically evoked percepts vary in accordance with the lo-
cation of the stimulation site within retinotopic (Bradley et al.,
2005), tonotopic (Scheich and Breindl, 2002; Otto et al., 2005),
and somatotopic (Leal-Campanario et al., 2006; Fitzsimmons et
al., 2007) map representations. Several studies have specifically
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demonstrated that psychophysical properties of electrically
evoked percepts can be linked to the representational topogra-
phies of cortical maps at the stimulation site (Romo et al., 2000;
Bartlett et al., 2005), in some cases even to tuning properties of
small sets of directly excited neurons located within one or a few
cortical columns (Tehovnik et al., 2006).

Although psychophysical properties of electrically evoked
percepts can often be explained by the local activation of cortical
representations, the puzzling question remains how the focal,
artificial activity imposed onto an extended, complex network
like the cortex (Butovas and Schwarz, 2003) can yield a meaning-
ful signal that can be interpreted in the context of a behavioral
task. Thereby, beyond the local encoding of stimulus features,
learning plays an important role, as by learning, meaning is at-
tributed to the electrical stimuli (Scheich and Breindl, 2002;
Bradley et al., 2005; Fernandez et al., 2005; Leal-Campanario et
al., 2006). When animals learn to discriminate or categorize nat-
ural, e.g., visual, auditory, or somatosensory stimuli, large-scale
stimulus-specific patterns emerge from the ongoing activity of
sensory cortex as has been demonstrated by recording electrocor-
ticograms (ECoGs) at high spatial resolution (Barrie et al., 1996;
Freeman, 2000; Ohl et al., 2001). Whereas evoked cortical activity
mainly carries information about physical stimulus properties
(Ohl et al., 2000), these distributed patterns carry learning-
dependent information about the behaviorally relevant stimulus
classes, and thus rather reflect the meaning attributed to stimuli
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within a behavioral context by learning (Ohl et al., 2001; Ohl and
Scheich, 2005). Here, we investigate how the focal, artificial acti-
vation of sensory cortex by ICMS gives rise to similar spatial
activity patterns, when animals learn to perceptually interpret
electrical stimuli. For this, we trained gerbils to discriminate
closely neighboring ICMS sites within primary auditory cortex
evoking responses largely overlapping in space. In parallel, we
recorded ECoGs at high spatial resolution from the stimulated
area. A combined analysis of evoked potentials and of the ongo-
ing ECoG using a multivariate pattern classification procedure
allowed us to shed light on the interaction between ICMS and the
ongoing activity, which generates patterns that constitute mean-
ingful signals with respect to the behavioral interpretation of
ICMS.

Materials and Methods

In our study we trained 6 Mongolian gerbils (Meriones unguiculatus) to
discriminate between two different sites of ICMS at a distance of ~0.7
mm across the tonotopic gradient of right primary auditory cortical field
AT (Figs. 1, 2A). During training, we recorded ECoGs at high spatial
resolution (~0.6 mm interelectrode-distance) from the 18 channels of a
3 X 6 electrode array positioned epidurally onto Al, above the simulation
electrodes (Fig. 1A). The recording array covered the entire tonotopic
gradient along the rostrocaudal extent of Al, about two thirds of its
dorso-ventral extent, and parts of the neighboring auditory fields. The
male, adult Mongolian gerbils had an age of ~6 months, weighed 85-100
g, and were housed under a 12 h light-dark cycle with free access to water
and food between experimental sessions. All animal experiments were
surveyed and approved by the animal care committee of the Land
Sachsen-Anhalt (No. 43.2-42502/2-325; IfN MD).

Multielectrode arrays. For the application of ICMS, a 2 X 1 array of
depth electrodes was built from two Teflon-insulated platinum-
iridium microwires (51 um diameter) aligned in parallel at distance
of ~0.7 mm. For recording of high resolution multichannel ECoGs,
rectangular 18-electrode arrays were built from Teflon-insulated
stainless steel microwire (256 wm diameter) arranged in a 3 X 6
matrix and embedded in dental acrylic at a distance of ~0.6 mm (Fig.

Positioning of electrodes. 4, A pair of stimulation electrodes S (dark green) and S2 (light green) was implanted into
the depth of the right Al close to its input layer IV. Electrode tips were positioned along the rostrocaudal axis of Al (caudal electrode
S1, rostral electrode S2) with an interelectrode distance of ~0.7 mm. A 3 X 6 ECoG recording array (red) with 0.6 mm interelec-
trode distances was centered epidurally over the right Al. Anatomical directions are indicated by arrows (d, dorsal; ¢, caudal; I,
lateral; m, medial; r, rostral; v, ventral). B, Nissl-stained horizontal section showing two small lesions (arrows) at the tips of the two
implanted stimulation electrodes indicating their location within temporal cortex. The cortical layering is marked by the curly
brackets. The rostrocaudal extent of the auditory core fields [Al and anterior auditory field (AAF)] is indicated by dashed lines, and
can be approximately determined from the pronounced layer IV in these fields identifiable by the band of densely packed cells ata
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1) (cf. Ohl et al., 2000). The interelectrode
distances of ~0.6 mm had been optimized by
spatial spectral analysis of recorded poten-
tials (cf. Freeman and Baird, 1987).

Preparation and electrode implantation. Elec-
trode arrays were chronically implanted under
deep anesthesia, induced by halothane (4 vol
%), and maintained by ketamine (20 mg/100
g body wt) and xylazine (2 mg/100 g body
wt). Cranial skin was removed from the in-
teroccipital, parietal, and frontal bones. A
Teflon-insulated stainless steel microwire
(256 wm diameter), and a Teflon-insulated
platinum-iridium microwire (128 wm diam-
eter), both with bared and looped endings,
were placed onto the median blood sinus
through holes drilled between the parietal
bones. The stainless steel microwire served as
common ground/reference for recording,
and the platinum-iridium microwire as re-
turn electrode for ICMS.

Craniotomy over the right temporal cortex
and positioning of the electrode arrays was
guided by anatomical landmarks, by stereotac-
tic coordinates, and by the visual inspection of
the vascularization pattern (Ohl et al., 2000).
Stimulation ~ electrodes were implanted
through the incised dura into the depth of Al in
a sagittal plane parallel to the lateral surface of
the lissencephalic cortex. Implantation depth
was approximated by a medial offset of ~0.5
mm of this plane to the lateral surface, close to the thalamic input layer IV
of AL Electrode tips were oriented along the rostrocaudal axis and thus
positioned along the tonotopic gradient of AI (Figs. 1, 2).

The recording array was positioned epidurally onto Al, right above the
tips of the stimulation electrodes. Its length axes was rostrally inclined
into the ventral direction, 10° from the horizontal plane (Fig. 1A) to
achieve orientation parallel to the tonotopic gradient in AI (Ohl et al.,
2000). All electrodes and connectors were fixed with dental acrylic. After
implantation, animals were allowed to recover for 3-5 d.

Histology. To verify the positioning of the stimulation electrodes and
to analyze the effects of chronic implantation and ICMS, animals were
deeply anesthetized using halothane (4 vol %) and killed by an intrapul-
monary injection of T61 (Intervet) ~1 week after finishing the training.
Nissl-stained sections (40 wm) were prepared from the removed, frozen
brain cut in a cryostat microtome (Fig. 1B).

Training, stimulation, and recording. Training was performed in an
acoustically and electrically shielded shuttle-box, in 7 consecutive ses-
sions with sessions succeeding in intervals of 1-3 d (Ohl et al., 1999).
Before the start of each session, animals were allowed to explore the
shuttle-box for 3 min, to adapt to the environment. At the beginning of
each trial ICMS delivered through one of the two stimulation electrodes
served as conditioned go-stimulus (CS,,), and stimulation at the other
electrode as conditioned no-go-stimulus (CS,, ), respectively (Fig.
2A, B). The use of caudal and rostral electrodes for go- and no-go stim-
ulation was balanced across animals (Fig. 1). ICMS was generated by an
isolated pulse stimulator (model 2100, A-M Systems), and consisted of
610 ms long, 100 pps trains of current pulses. Pulses were biphasic
(charge-balanced), cathodic first, with 200 us phase duration, and 50— 80
MA current amplitude.

After go-trials, animals received a footshock as unconditioned stimu-
lus (US) after a randomly selected delay of 3.5 s, 4.5 s, or 5.5 s after the
onset of the CS,,, unless it changed its compartment within the delay
(Fig. 2A). The US lasted for up to 6 s and could be terminated by the
animal in changing the compartment. In no-go-trials, an unconditioned
error-footshock (US,) was given for 1 s, if the animal did not stay in its
momentary compartment for at least 3.5 s (Fig. 2 B). Current amplitudes
for US and US, were adjusted individually for each animal between 200
and 600 wA (Ohl et al., 1999). By introducing a delay of at least 3.5 s
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Figure2. ICMSand behavioral paradigm. 4, B, Gerbil Al has a tonotopic organization with a
caudal-to-rostral gradient of increasing frequencies. Accordingly, the caudal stimulation elec-
trode S1 was positioned in a lower-frequency part of Al than the rostral electrode S2. The
schematic views show the case of a (Sg0 delivered at ST (4) and a (Sn(,,gD at S2 (B). Using a
go/(no-go) active avoidance paradigm, animals were trained in a two-compartment shuttle-
box to discriminate between twossites (S1and S2) of ICMS (0.61 s train length). At the beginning
of go-trials (4), ICMS was delivered through one of the two stimulation electrodes ((Sgo), andin
no-go-trials (B) through the other electrode (CS,,,.4,), respectively. Within arandom delay after
(S0 0nsetof 3.5, 4.5, or 5.5 s (indicated by the dashed arrow in ), animals had to change the
shuttle-box compartment (go response, CRgo), to avoid a mild electrical foot shock (US, 6.0's
maximum duration, terminated by compartment change). When the CS,,, , was presented,
animals had to stay in their compartment (no-go response, (R,,,_,,) to avoid a mild electrical
error-footshock (US,) with 15 duration, given immediately after a compartment change (gray
arrow in B) within the first 3.5 s after CS,,,_;, onset. Behavioral responses were sorted in one of
four categories: hit ((Ry, to the (Sy,), miss (CR,,.g, to the CSy,), false-alarm (CRy, to the
(S, , and correct-rejection (CR . to the CS

no-go
nu—go) no-go nofgo)'

between conditioned stimulus (CS) onset and US onset, we performed
trace conditioning to put sufficient demand on cortical processing (Leal-
Campanario et al., 2006).

In each session, 60 CS,, and 60 CS,,, trials were presented in a
pseudo-random sequence with an intertrial interval varying randomly
between 15 and 19 s. If the animal changed compartment within 3.5 s
after CSgo onset, its response was counted as a hit, otherwise as a miss. If
the animal changed compartment within 3.5 s after CS onset, its

no-go
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response was counted as a false-alarm, otherwise as a correct-rejection.
For each trial, response type and reaction times were stored to disk by the
shuttle box system.

Concurrently with the training, ECoGs were recorded from all elec-
trodes of the 6 X 3 epidural surface array monopolarly against a common
reference/ground-electrode. The signals recorded from the 18 electrodes
were fed into an amplifier by a harness of thin, flexible cables permitting
the animal to move freely and to turn around in the shuttle-box. The
signals were amplified either 5000 or 10, 000 times and bandpass filtered
between cutoff frequencies of 0.1 Hz and 100 Hz (Xcell-3x4; FHC). Data
from 2 s prestimulus and 3 s poststimulus were sampled at 1 kHz and
stored to disk.

Analysis of behavioral data. Rates of hit and false-alarm responses cal-
culated session-wise for each animal. To quantify the behavioral discrim-
ination performance (d') independent of experimental conditions
biasing the response of the animal (Green and Swets, 1966), d’ values
derived from signal detection theory were calculated for each session and
animal, as well. For this, z-scores of hit and false-alarm rates were derived
from the inverses of a standardized normal distribution function, respec-
tively. d" values were then calculated by subtracting these z-scores. For a
statistical analysis of hit- and false-alarm rates and of d’ values, repeated-
measure ANOVAs were calculated using SPSS 8.0. If necessary, we ap-
plied a Huynh-Feldt correction of sphericity (Huynh and Feldt, 1976).

Preprocessing of electrophysiological data. Digitized ECoG-recordings
were analyzed session-wise and trial by trial using Matlab (The Math-
Works). Amplifier clippings, as they occurred with movements of the
animal, and large, fast oscillations in the recording associated with mus-
cle artifacts were identified by visual inspection and regarded as artifacts.
Trials containing these artifacts at more than two channels were excluded
from analysis. In trials with no more than two channels affected by the
artifact, the signals from bad channels were replaced by averages across
the signals at their neighboring channels. The first session of training was
excluded from analysis, because of the high incidence of movement arti-
facts in this session with sometimes <<50% of the trial remaining after
artifact removal.

In our ECoG-recordings, an electrical stimulus artifact occurred with
each ICMS pulse which consisted of a short (~1 ms) negative peak fol-
lowed by a positive peak decaying within <8 ms (see Fig. 4 A). Hence, the
pulse train (61 pulses at an interval of 10 ms) created an artifact compo-
nent in a narrow frequency band around 100 Hz (see supplemental Fig.
1 A, available at www.jneurosci.org as supplemental material). An inter-
polation procedure was chosen to remove these electrical stimulus arti-
facts, because we wanted to exclude all ECoG data points affected by this
artifact from any further analysis. For this, in the time window from 1 ms
before to 609 ms after stimulus onset, all data points were discarded
except for those unaffected by the artifact 1 ms before and/or 9 ms after
the onset of each pulse. The signal was then reconstructed by interpolat-
ing between these remaining points which expanded the down-sampled
input vector (62 “artifact-free” data points) to its original length (609
data points). This was achieved by inserting zeros between the remaining
data points, and by applying a specially designed symmetric FIR filter that
minimized the mean-square errors between the interpolated points and
their ideal values (Matlab’s interp.m function, The MathWorks) (cf. Dig-
ital Signal Processing Committee, 1979). The procedure was applied to
the raw signal, separately at each channel before digital filtering and
further analysis. By this, we avoided filter-ringing due to the sharp arti-
fact peaks (see supplemental Fig. 1C, available at www.jneurosci.org as
supplemental material). Down-sampling and interpolation sufficiently
suppressed the electrical stimulus artifact (see supplemental Fig. 1B,
available at www.jneurosci.org as supplemental material), and did
not introduce any changes in the raw signals outside the interval from
1 ms before to 609 ms after stimulus onset. Also, the distortion of the
evoked signal by down-sampling to 100 Hz and subsequent interpo-
lation in the stimulation interval (—1 to 609 ms) was small, as the
spectrum of the evoked potential was dominated by frequencies be-
low 50 Hz (see supplemental Fig. 1 B, available at www.jneurosci.org
as supplemental material).

Nevertheless, after artifact removal, our analyses included digital fil-
tering in the 3- and y-band (15 Hz to 80 Hz), and time windowing (time
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frames of classification), by which remaining minor distortions of the
evoked signals could have still affected results outside the interval from 1
ms before to 609 ms after stimulus onset. To exclude any of these effects,
the time interval affected by ICMS was defined from 290 before to 900 ms
after stimulus onset. This interval included the 610 ms pulse train, the
half lengths of time frames of classification (90 ms; see below), and the
length of the filter kernel (200 ms; see below).

After the removal of the electrical stimulus artifact, 50 Hz power line
interference was largely reduced by subtracting a 50 Hz sine wave fitted
channel- and trial-wise to the data.

Analysis of electrically evoked potentials. Electrically evoked potentials
(EEPs) were calculated separately for each channel, stimulus condition
(CS,, or CS, ), session, and animal by averaging ECoGs across
artifact-free trials in reference to stimulus onset. The mean of a baseline
1.0 s before stimulus onset was subtracted to remove offsets. To charac-
terize the early input evoked by ICMS, we determined the amplitude and
the latency of the first peak of the EEP in a time window from 0 to 50 ms
after stimulus onset at its maximum across channels. Furthermore, the
spatial distribution of the EEP amplitude across the recording array was
determined at the maximum peak latency. The spatial maximum of this
distribution of EEP amplitudes was used to precisely define the position
of the CS,, and the CS,,,_,, stimulation sites relative to the coordinates of
the recording array.

To determine the lateral spatial spread of the early cortical activation
evoked by ICMS, we analyzed the variation of EEP amplitudes at the
maximum peak latency as a function of distance to the stimulation site.
For this, separately for the CS,, and the CS,,,_,,, each spatial distribution
of EEP amplitudes was normalized to zero and one between the maxi-
mum peak amplitude at the stimulation site and the lower amplitude
offset in each session (see Results). This offset was estimated by the mean
of the three lowest EEP amplitude values at the maximum peak latency.
We then calculated for each recording channel its distance to the stimu-
lation site, respectively. Close to the stimulation sites, channels with
equal distances were binned. At larger distances broader bins were used,
to obtain amplitude values for the same bins in each stimulus condition
and animal. This was due to the fact that the position of stimulation sites
varied relative to the recording array across stimulus conditions and
animals (see Results). For each bin, normalized EEP amplitudes were
averaged across the channels of the bin. After averaging across sessions,
the resulting distance functions of the normalized EEP could be fitted
well with a Gaussian (Freeman, 1975) using nonlinear least-square fitting
(Press et al., 2007). Adjusted goodness-of-fit statistics for grand mean
distance functions weighted by the variances in the means of the data
points across animals yielded x? = 11.14, p = 0.29 for the CS,,,and X’ =
40.47, p = 0.68 for the CS,,,, ,,. This allowed us to quantify the range of
the lateral spread of early ICMS-evoked activity by the half-width of the
Gaussian fitted to the mean distance functions of the EEP amplitude in
response to CS,, and the CS,,,_,, respectively.

Analysis of spatial patterns in the ongoing ECoG using a multivariate
classification procedure. As has been shown previously, spatial patterns
containing information about the behaviorally relevant stimulus classes
emerge from the ongoing cortical activity with learning. Such learning-
dependent activity patterns are carried by aperiodic oscillations in the 8-
and y-range of the ECoG, and cannot be retrieved by temporal ensemble
averages of the ECoG across trials, because at each time a pattern emerges
the waveform carrying the pattern is different (Barrie et al., 1996; Ohl et
al,, 2001). Therefore, to identify spatial patterns carrying information
about the stimulus classes CS,, and CS,,, ,,,, we obtained instantaneous
spatial amplitude distributions of oscillations in the B- and y-range
(15-80 Hz), and analyzed them trial-by-trial as a function of time using
a multivariate classification procedure. For this, we determined for each
of the 18 channels the signal power in 180 ms time frames that were
stepped through the 5.0 s single-trial recordings in 20 ms steps. Signal
power was quantified by the root mean squared (RMS) amplitude within
in a 180 ms time frame after digitally bandpass-filtering the ongoing
ECoGs (FIRfilter of order 200) in the 8- and y-range (15-80 Hz). No-
tably, RMS- and FFT-based estimation of signal power in the 8- and
y-range actually have yielded similar results in classification studies com-
parable to our study (cf. Barrie et al., 1996). However, the RMS method is
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computationally much more effective than FFT-based methods. For re-
moving baseline offsets, mean RMS values calculated from a 1.0 s pre-
stimulus baseline were subtracted channel-wise, and trial by trial.
Furthermore, a frame-wise z-standardization across the 18 recording
channels (subtraction of mean, and division by the SD) removed activity
common to all channels, and pronounced the spatial variation of power.
Parameters of this procedure like window lengths and filter bands had
been optimized for yielding best classification results in a previous study
(Barrie etal., 1996). A detailed description of the classification procedure
can be found in the studies by Barrie et al. (1996) and Ohl et al. (2003a).
In short, sets of all artifact-free CS,, trials and all artifact-free CS,,, 4,
trials of a session were each split in half by even and uneven set indices.
This gave four disjunctive trial subsets: CSgO_ " CSgo-B’ CSnO_gn_ A and
CS,y0-go-- For each subset, a centroid of the spatial distribution of nor-
malized RMS values was calculated within each time frame across the
trials of the subset. Based on Euclidean distances, the question was asked
whether an instantaneous spatial RMS distribution in a trial of subset
CS,,_a Was closer to the centroid of CS,  or of CS,,,, 4, p- In the former
case, the RMS distribution was said to classify correctly; in the latter case
it was said to classify incorrectly. In the same manner, the RMS distribu-
tions from set CS,, , o were classified against the centroids of CS,
and CS,, ,, 5. Analogously, the RMS distributions in of CS,, 5 and
CS,0-go-5 Were classified against the centroids of CS,, 5 and CS,,, 4, s>
respectively (cross classification). The number of correctly classified tri-
als was summed up over trials and subsets, separately for each time frame.
Goodness of pattern classification was quantified in percentage of cor-
rectly classified trials in each time frame. Significance of pattern classifi-
cation was tested against the null hypothesis of randomly sorting the
instantaneous RMS distributions into the stimulus classes. The probabil-
ity p,,(i) for obtaining at least the observed number of correctly classified
trials N(i) from a total number of trials n, by chance (p = 0.5) was
determined for each time frame 7 using the cumulative binomial distri-
bution (N(i), number of correctly classified trials at time step i; 1, total
number of classified trials; ,,: number of 20 ms time steps; n, number of
classified trials in a subset), as follows:

1o 4
pai) = (’;")p"u —p)TVYAE (L= D (1)
n=N(i) s=1

In a second statistical analysis, we investigated how the information dis-
criminating between the stimulus classes was spatially distributed over
the recording array. For this discriminant analysis, we determined how
recording sites contributed to pattern classification in the last session of
training (session 7), when all animals had reached high levels of discrim-
ination performance, and significant pattern classification (see Results).
For each of the possible 262,142 combinations of the 18 recording chan-
nels the goodness of classification was determined in selected time
frames, i.e., in an early time frame coinciding with the first peak in the
EEP, and in late time frames yielding maximum goodness of classifi-
cation in the poststimulus/preresponse interval (between 900 ms after
stimulus onset and the behavioral response time quantified by the
mean hit reaction time in each session). To obtain a measure for the
relative contribution of a channel to pattern classification, the mean
of goodness of classification across all possible sets of channels con-
taining this channel (n = 14,563) was calculated, and normalized to 0
and 1 between its minimum and its maximum across recording chan-
nels. This measure was used to quantify the discriminant pattern
information contributed to classification independently by each sin-
gle recording channel. To compare the distribution of discriminant
pattern information across the recording array with the lateral spread
of ICMS-evoked activity (see Results, Electrically evoked potentials),
we again calculated distance functions relative to the stimulation
sites. For this we determined the minimal distance of each recording
channel to the two stimulation sites. Minimal channel-distances were
binned in a similar way as in the analysis of the lateral spread of the
first peak in the EEP. The relative contribution of recording sites to
classification was then averaged across the channels of each bin, sep-
arately for early and late time frames. By this we obtained for each
animal, a distance function of discriminant pattern information for
early and late time frames, respectively.
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Figure3. Discrimination learning. 4, Learning curves. Mean and SEs of the hit (red) and the
false-alarm (blue) rate across animals is plotted over training sessions. B, Discrimination per-
formance. Mean and SE of the sensitivity measure d’ across animals is plotted over training
sessions.

Correlation analysis. Common correlation coefficients between good-
ness of classification and discrimination performance, d', over sessions
were calculated using the Fisher z-transform corrected for small sample
size (Hotelling, 1953). First, single correlation coefficients were calcu-
lated for each animal, and transformed to Fisher z-values. Using a x*-
statistics with 5 degrees of freedom (Hotelling, 1953), Fisher’s z-values
were tested for homogeneity across animals. If the null hypothesis of
homogeneity could not be rejected on a significance level of p < 0.01,
Fisher’s z-values were averaged across animals, and transformed back to
yield a common correlation coefficients across animals. Limits of signif-
icant positive and negative correlation were calculated on a significance
level of c. For this the SD for the Fisher’s z-values was estimated (Hotelling,
1953) and the range including 1-a% of the variance around zero was calcu-
lated. The upper and lower limit of this range was transformed back into
limits of significant correlation.

Results

Discrimination behavior

Using a go/(no-go) active avoidance paradigm (Fig. 2 B), gerbils
were trained for 7 daily sessions in a two-compartment shuttle
box (see Materials and Methods) to discriminate two nearby
ICMS sites within the right cortical field AI. From the learning
curves (Fig. 3A) it can be seen that from session 3 on mean hit rate
steeply increased over sessions finally reaching values of ~0.8 in
the last session, whereas the mean false-alarm rate always stayed
below 0.2. Thus, on average, animals started to show significant
discrimination performance from session 3 on. A biphasic rise-
fall time course of the false-alarm rate could be observed between
session 3 and 6 (Fig. 3A) indicating a certain amount of general-
ization between CS,, and CS,,,_,, during early training sessions.
Huynh-Feldt-corrected two-way repeated-measures ANOVA of
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the conditioned-response rates yielded significant main effects
for the factors “stimulus condition” (CS,, and CS,,, 40, F15) =
156.274, p < 0.001), and “session” (F 3 34416719y = 28.621, p <
0.001), and a significant interaction between these 2 factors
(Fla581,22.905) = 47.579, p < 0.001). The increase of the difference
between hit and false-alarm rates over sessions was therefore
highly significant. Discrimination performance quantified by the
mean of the sensitivity measure d’ across animals (Fig. 3B)
showed a significant monotonic increase of values around zero
(chancelevel) to valueslarger than 1.3 (~75% correct) was found
over sessions (one-way repeated measure ANOVA with Huynh-
Feldt correction: F 55y = 40.168, p < 0.001). High discrimina-
tion performance (d’ > 1.3) was reached within ~5 sessions.

Electrically evoked potentials

To characterize the electrically evoked input to Al, electrically
evoked potentials (EEPs) were calculated from the ECoG-
recordings during training in response to CS,, and CS,,,_,,, Te-
spectively (see Materials and Methods). Thereby, our two main
objectives were to determine the stimulation sites within the co-
ordinates of the recording array, and to quantify the lateral spatial
spread of cortical activation evoked by ICMS. Before all analyses,
electrical stimulus artifacts in the ECoG had been largely re-
moved in each trial by an interpolation procedure (Fig. 4A) (see
Materials and Methods). A first prominent early negative peak 20
ms after stimulus onset (N20) was reliably found in the EEPs of all
sessions and stimulus conditions (Fig. 4 A). Presumably, this peak
reflects early, transsynaptic excitation of the auditory cortex by
ICMS (see Discussion). Amplitudes and latencies of the N20 peak
at its maximum were averaged across sessions in each animal (see
Materials and Methods). No significant differences were found in
the grand mean of this N20 amplitude and N20 latency between
CS,, (amplitude mean = SE: —335 = 94 uV; latency mean * SE:
22 = 2ms) and CS,,, ,, (amplitude mean = SE: —385 = 95 uV;
latency mean = SE: 20 = 1 ms) across animals (pairwise Wil-
coxon sign-rank tests, n = 6, p > 0.1).

To characterize the lateral spatial spread within auditory cor-
tex evoked by ICMS, spatial distributions of EEP amplitudes
across the recording array were determined at the N20 latency for
each stimulus condition, session and animal. Spatial amplitude
distributions where focal, i.e., they displayed a single spatial peak
(Fig. 4B). In 5 of the 6 animals these spatial N20 peaks were
centered within the array. Only in one animal the spatial maxima,
both for CS,, and CS,,, ,,, were located at the ventral edge of the
array. Stimulation sites seemed to be located ventral to the re-
cording array in this animal. Notably, in all animals, spatial dis-
tributions of the EEP amplitude at the N20 latency displayed a
constant offset across channels (~40% of the N20 amplitude),
which was estimated by the mean of the three lowest EEP ampli-
tude values at the N20 latency within the recording array. In the
session-mean, this offset did not differ between stimulus condi-
tions across animals (pairwise Wilcoxon sign-rank test, n = 6,
p>0.1).

Although the cortical regions activated by caudal and rostral
ICMS had a large overlap, the positions of the spatial maxima of
the N20 peak were systematically located at more caudal and
rostral positions in the tonotopic map, respectively. In accor-
dance with a distance of ~0.7 mm between the implanted stim-
ulation electrodes, the mean distance between N20 peak maxima
averaged across sessions and then across animals was 0.74 * 0.13
mm (mean * SE), and did not differ significantly from 0.7 mm
(pairwise Wilcoxon sign-rank test, n = 6, p > 0.1). The maxima
of the spatial distributions of EEP amplitudes at the N20 latency
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animal, session and time frame the good-
ness of pattern classification (percentage
correct classification) and its significance
quantified by the p value for obtaining the
observed number of correctly classified
trials in a session just by chance.

Figure 6 shows a representative exam-

time (s)
B . animal 4: CS,frostral (S2)

4 L 1

0 0.5 1.0 1.5 20 2.5 3.0
R

v animal 4: CS,, ,/caudal (S1)
0 ;

0 0.5 1.0 1.5 2.0 25 3.0
X (mm)

Figure 4.

the rostral stimulation electrode (top) and toa CS,

no-go

were therefore be used to precisely define the positions of the
stimulation sites relative to the coordinates of the recording array
(see Materials and Methods).

We then determined for each stimulus condition the lateral
spread of ICMS-evoked cortical activation by analyzing the EEP
amplitude at the N20 latency as a function of distance to the
stimulation sites (Fig. 5A,B). Normalized and binned distance
functions were averaged across sessions, and then across animals
for CS,, (Fig. 5A) and CS,,, , (Fig. 5B), respectively. To quantify
the lateral spatial spread, the fall-off of the grand mean of the
normalized EEP amplitude with distance from the stimulation
site was fitted to a Gaussian (see Materials and Methods). The
range of the lateral spatial spread defined as the half-width of the
Gaussians (Fig. 5A, B) was highly similar for the CS,, (1.25 mm,
99% confidence interval from 1.09 to 1.41 mm) and the CS,, .,
(1.22 mm, 99% confidence interval from 0.98 to 1.47 mm). Thus,
ICMS imposed transsynaptic activity onto the cortex up to a
distance of at least 1.2 mm lateral to the stimulation sites, well
beyond the range of significant effects by volume conduction (see
Discussion).

Classification of cortical activity patterns

We then studied the interaction between ICMS and the learning-
dependent ongoing cortical dynamics. After filtering the ECoGs
in the 8- and y-band (15-80 Hz), spatial distributions of activity
were obtained by determining the root mean squared (RMS)
amplitude for each of the 18 channels in 180 ms time frames
stepped through the 5.0 s single-trial recordings in 20 ms steps.
To identify spatial patterns carrying information about the stim-
ulus classes CS,, and CS,,,_,,, we applied a multivariate classifi-
cation procedure to the spatial distributions of normalized RMS
values, time frame by time frame (see Materials and Methods).
From this pattern classification analysis we obtained for each

Time course and spatial distribution of early ICMS-evoked activation. A, Typical example of an EEP from a single
animal averaged across (S, trials in a single session of training. The EEP is shown before (black) and after (red) removal of single
pulse stimulus artifacts in the ECoG-recording (see Materials and Methods). A fiist, prominent negative peak in the EEP can be seen
ata latency of ~20 ms (N20, red arrow). B, Typical example of spatial distributions of the N20 amplitude in response toa (S, at
atthe caudal stimulation electrode (bottom). Anatomical directions relative
to the recording array are indicated by arrows (d, dorsal; ¢, caudal; |, lateral; m, medial; r, rostral; v, ventral).

ple of this pattern analysis from a single
animal. Results are displayed for a session
before the steep increase of discrimina-
tion performance (Fig. 6A, session 3; see
also Fig. 3), and for the last session of
training, when all animals had obtained
high levels of discrimination performance
(Fig. 6B, session 7). The decadic loga-
rithm of the p value of pattern classifica-
tion is plotted as a function of time (from
—2 to 3 s relative to stimulus onset), and
each point includes filtered ECoG data of
a 180 ms frame of classification (from
—90 to 90 ms relative to that point in time;
cf. Barrie et al., 1996). The stimulus inter-
val was defined as the time interval af-
fected by ICMS (from —290 to 900 ms
relative to stimulus onset) (Fig. 6 A, B) in-
cluding the 610 ms pulse train, the half
lengths of the classification frame (90 ms)
and the length of the applied filter kernel
(200 ms). Highly significant (defined as
log,o( p,) < —3) early peaks of pattern
classification were found around stimulus onset (Fig. 6 A, B, blue
arrows), and lasted for ~11 consecutive classification frames
from about —90 = 90 ms to 110 * 90 ms. Thus, the early peak of
pattern classification was temporally overlapping with the N20
peak of the EEP (Fig. 4 A). Moreover, these early peaks were time-
locked to stimulus onset, and occurred in almost all of the train-
ing sessions, independent of the learning state of the animals.
This suggests, that they reflect the discernible focal activation
patterns of the N20 peak in the EEP in response to CS,, and
CSo-go» respectively (see Electrically evoked potentials).

In the course of training, further late peaks of significant pat-
tern classification were found in the poststimulus time interval
(Fig. 6 B, red arrow). Similar to what has been observed in gerbils
learning to discriminate acoustic stimuli (Ohl et al., 2001), these
late significant peaks of pattern classification were more likely to
occur with higher levels of behavioral performance, in our case
after the steep increase of discrimination performance between
session 3 and 5. Thus, before session 4, late significant peaks
rarely occurred, whereas such peaks were found in each of the
animals in session 7 (Fig. 6 B), i.e., when all animals had reached
high levels of discrimination performance. Notably, significant
pattern classification almost never occurred during prestimulus
time.

To evaluate the behavioral relevance and learning dependence
of the observed classifiability of cortical activity patterns, we stud-
ied the correlation between goodness of classification and behav-
ioral discrimination performance over training sessions as a
function of time within the trial (Fig. 7A, B). In consecutive 0.5 s
time windows, maximum goodness of classification values were
obtained for each session and animal. Common correlation co-
efficients (see Materials and Methods) were calculated for each
time window between maximum goodness of classification val-
ues (z-standardized across sessions) and discrimination perfor-
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Figure5. Lateral spatial spread of ICMS-evoked activation. 4, B, The normalized and binned
EEP amplitude at the N20 latency is displayed as a function of distance to the stimulation site in
response to CSg0 (A) and CS“O,gn (B). Up to 1.3 mm from the stimulation site, normalized EEP
amplitudes were binned and averaged across channels of equal distance (see Materials and
Methods). As the position of stimulation sites varied relative to the recording array, broader bins
had to be used at larger distances, to obtain amplitude values for all stimulus conditions and
animals (the penultimate bin included N20 amplitudes at 1.7, 1.8, and 1.9 mm and the last bin
N20 amplitudes between 2.1and 3.2 mm). Grand mean and SE of the distance functions of EEP
amplitudes across animals are displayed by circles and error bars. The lateral spread of early
cortical activation evoked by (S, and CS,,, 4, Was estimated by the half-width of a Gaussian
fitted to each of the two grand mean distance functions, respectively (indicated by the vertical
dashed lines) (see also Materials and Methods). Confidence intervals of the half-widths are
displayed by horizontal bars.

mance quantified by d’ over sessions. A highly significant peak of
positive correlation (Fig. 7A, p < 0.01, r = 0.68, asterisks) was
found in the poststimulus time interval between 1.0 and 1.5 s
after stimulus onset preceding the behavioral response character-
ized by the grand mean and the SD of the hit reaction times across
animals and sessions (n = 23). Correlation was also significant
(p<0.01,r = 0.43) in the late stimulus interval between 0.5 and
1.0 s after stimulus onset. No significant correlation was found in
the early stimulus interval between 0.0 and 0.5 s after stimulus
onset, and in the prestimulus intervals. From this it can be in-
ferred, that late after stimulus onset, in the poststimulus/prer-
esponse interval, spatial patterns of cortical activity develop,
when animals learned to discriminate the stimulation sites.

To further characterize the temporal occurrence of late pat-
terns within the trial, the latency of the most significant time
frame of classification in the poststimulus/preresponse interval
(between 0.9 s after stimulus onset and the mean hit-reaction
time in a session) was determined for each session with signifi-
cant pattern classification. In the grand mean, most significant
late peaks of pattern classification occurred at 1.36 = 0.32 s, and
significantly 0.69 = 0.3 s before the reaction time at 2.1 = 0.43 s
after stimulus onset (mean = SD, paired-wise t tests, p < 0.01,
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0 animal 1, session 3
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Figure 6. Spatial patterns in the - and y-bands of the ongoing ECoG. Significance of ECoG
pattern classification (decadic logarithm of the p value) as a function of time relative to stimulus
onset (time is given as the center of each 180 ms classification time frame stepped through the
ECoGin 20 ms steps). A, B, A typical example is shown for sessions from the beginning (A) and
the end (B) of training. Mean and SD of hit reaction times in the last session are displayed by
vertical and horizontal orange lines, respectively. The time range affected by the electrical
stimulus, including the half-length of the classification frame (90 ms) and the length of the filter
kernel (200 ms), is marked by a green area. Arrows indicate highly significant peaks of pattern
classification ( p << 0.001, red dashed horizontal line) in the stimulus interval reflecting early,
ICMS-evoked patterns (blue arrows), and late, learning-dependent patterns in the poststimu-
lus/preresponse interval (red arrow).

n = 23, data pooled across sessions with significant patterns clas-
sification and animals, Fig. 8 A, B). As indicated by the SDs, laten-
cies of late peaks of pattern classification largely varied across
sessions and animals, both, relative to stimulus onset and behav-
ioral response. Thus, in contrast to the early peaks, late peaks
were not precisely time-locked, neither to stimulus onset, nor to
the behavioral response. Furthermore, there was no stimulus
evoked activity, which could be related to ECoG pattern classifi-
cation in the poststimulus interval, neither in the unfiltered EEP
(Fig. 4A), nor in the filtered 8- and y-band EEP (data not
shown). Obviously, significant poststimulus classification relied
on discernible spatial patterns emerging from the ongoing corti-
cal B- and y-band activity, when animals learned to make use of
the site of ICMS for solving the discrimination task. Maximum
goodness of classification in the poststimulus/preresponse inter-
val reached significance with classification performance levels al-
ready between 70% and 80%. This is consistent with the finding
that late patterns occurred at variable latencies, and thus not
always within the same time-frames across trials.

At this point, several open questions remain referring to the
information used by the classifier. Since classification was always
performed in reference to a CS,, and a CS,,,, , centroid, it must
be based on differences in the spatial activity distributions be-
tween the go and no-go conditions, and thus should in principle
rely on information about the conditioned stimuli. However, for
the late patterns, this information might be related only indirectly
to the preceding conditioned stimuli, e.g., by reflecting the differ-
ential motor responses associated with the go and no-go condi-
tions in the course of learning. By this, the correlation between
pattern classification and discrimination performance in the late
poststimulus/preresponse interval might be spurious, and rather
related to the conditioned go responses occurring with increasing
frequency over sessions, than to the learning process itself. As late
peaks of pattern classification occurred on average 0.69 s before
the actual go responses, and also were not precisely time-locked
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Figure7. Late spatial patterns in the ongoing ECoG and their relation to discrimination
learning. A, Correlation between behavioral d’ and goodness of classification over ses-
sions is plotted as a function of time relative to stimulus onset. Common correlation
coefficients across animals were calculated over sessions between d” values and maxi-
mum goodness of classification values selected from consecutive 500 ms time windows
relative to stimulus onset in each session (z-standardized across sessions for each time
window). Highly significant correlation ( p << 0.01) is marked by asterisks. Statistical
testing showed that homogeneity of correlation coefficients across animals held for all
time windows (see Materials and Methods). Grand mean and SD of hit reaction times in
the last session (pooled across animal) are displayed by vertical and horizontal orange
lines, respectively. The time range affected by the electrical stimulus is marked by the
green area. B, Detailed plots of the correlation for a prestimulus interval (—1.5to —0.55,
blue) and for the poststimulus/preresponse interval (1.0-1.5 s, red). €, Interaction plot
showing the effects of factors CR (CRy, and (R,,,.g,), and CS (CSy, and CS,,,. ) 0N correct
pattern classification. Percentage correct classification was calculated separately for sub-
sets of hit ((Rgo,(Sgo), miss ((Rno,go,CSgo), false-alarm (CRgo,CSno,go), and correct-
rejection ((R 40/ CS0-go) trials, at the latency of the maximum goodness of classification
in the poststimulus/preresponse interval of the sessions containing the trials (behavioral
response time was quantified by the mean hit reaction time in the session). Subsets
consisted of the last n hit, miss, false-alarm, and correct-rejection trials collected across
sessions 3—7 in each animal, respectively. To avoid biases due to different set sizes, n was
matched to the size of the smallest set in each animal (n = 18 == 9, mean = SD), which
always was the false-alarm set. Percentage correct values are plotted as a function of the
factor CR, separately for the (Sy, (red line) and the CS,,, g, (blue dashed line). Higher
percentage correct values were found for hit (mean = SE, 0.79 % 6%) and correct-
rejection (69 == 4%) trials compared with false-alarm (57 = 3%) and miss (59 = 3%)
trials. A two-way ANOVA (Huynh-Feldt corrected) with factors CR (CRy, and (R, _4,) and
(S (€S, and CS,,,g,) Was then applied to the percentage correct values across animals
based on these trial subsets. A significant interaction was found between the factors (R
and CS (F 5 = 7.417, p < 0.05), but no significant main effects, either for the factor (R
(Fi1,5) = 1.553, p = 0.05) or the factor CS (F; 5) = 2.259, p = 0.05).
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Figure8. Timing of late spatial patterns relative to stimulus onset and behavioral response.
A, Mean and SD of hit reaction time (top bar) and the latency of the most significant peak of
pattern classification in the poststimulus/preresponse interval relative to stimulus onset (bot-
tom bar). Data were pooled across animals and sessions with significant pattern classification.
B, Mean and SD of the latency of the most significant peak of pattern classification as in 4, but
relative to the behavioral response in each session (mean of hit reaction times). Data were
pooled as in A.

to it, it seems very unlikely that our results were directly related to
movements or even movement artifacts occurring with the go
responses. Still, our classification might reflect brain signals re-
lated to the preparation of the go response, independent from
learning. Alternatively, pattern classification might not be based
on different patterns discriminating between the two condi-
tioned stimuli, but only on a pattern related to the mere detection
of one of the two conditioned stimuli, which also could lead to
spurious correlation.

Therefore, we tried to further elucidated the nature of the
information used by the classifier by investigating how late pat-
tern classification was influenced by the factors conditioned re-
sponse (CR) and CS. We determined at the latency of the
maximum goodness of classification in the poststimulus/prer-
esponse interval for each trial of a session, whether it was classi-
fied correctly. We then selected the last # trials from the sets of
hit-, miss-, false-alarm, and correct-rejection trials across ses-
sions 3—7 in each animal, respectively, and obtained the percent-
age of correctly classified trials in each of these subsets. To avoid
biases due to different set sizes, n was matched to the size of the
smallest set in each animal (n = 18 = 4, mean * SE), which
always was the false-alarm set. A two-way ANOVA-analysis
(Huynh-Feldt corrected) with factors CR (CR,, and CR,,,,,) and
CS (CS,, and CS,,,, 4,) was then applied to the percentage correct
values derived in each animal from the subsets of hit (CR,,,CS,,),
miss (CR,4.40,CS,), false-alarm (CR,,,CS,,,.40), and correct-
rejection (CR,,, ¢5,CS,, o) trials. We found a significant interac-
tion between the factors CR and CS (F, 5y = 7.417, p < 0.05), but
no significant main effects, neither for the factor CR (F, 5, =
1.553,p > = 0.05), nor the factor CS (F, 5, = 2.259, p > = 0.05).
Thus, correct classification did not depend on the presented
stimulus or the type of response made by the animals. From the
interaction plot (Fig. 7C) it can be seen that classification perfor-
mance was better for the trial sets in which animals responded
correctly (hits and correct responses), and closer to chance level
(50%) in the other trial sets (misses and false-alarms). Obviously,
late patterns predominantly occurred in trials in which animals
correctly interpreted ICMS (hit and correct-rejection trials). This
further suggests that late patterns carried information about the
preceding conditioned stimuli, and were associated with a subse-
quent correct response by the animal. Thus, late patterns appar-
ently reflected the meaning attributed to the presented electrical
stimuli by the animal and therefore were closely related to the
process of discrimination learning.
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Figure9.  Spatial organization of early and late cortical activity patterns. Distance functions
of discriminant pattern information are shown for early (blue) and late (red) patterns. Relative
contribution of recording sites to pattern classification (see Materials and Methods) is displayed
as a function of their minimal distance to the stimulation sites. Up to distances of 1.2 mm,
relative contributions to classification were binned and averaged across channels with the same
minimal distance. Larger distances from 1.3 to 3.2 mm were pooled in a single bin before
averaging. Shown is the mean of the resulting distance functions across animals interval in the
last session of training, for early patterns (blue), i.e., in the time frame of classification tempo-
rally overlapping the N20 peak in the EEP, and for the late patterns (red), i.e., in the time frame
yielding most significant pattern classification in the poststimulus/preresponse. The green
curve shows for comparison the mean and the SE of the distance function of EEP amplitudes at
the latency of the N20 peak maximum across animals in the last session of training. Normalized
EEP amplitudes were binned in the same way as for the distance function of discriminant
information. In each animal, the resulting distance functions of the EEP were averaged across
stimulus conditions.

Spatial organization of cortical activity patterns

How does the information carried by early and late cortical activ-
ity patterns correspond to the lateral spatial spread of cortical
activation evoked by ICMS? To shed light on this question, we
analyzed how the information discriminating between the stim-
ulus classes was spatially distributed over the recording array. For
this we determined how recording sites contributed to pattern
classification in early and late patterns, respectively (see Materials
and Methods). This discriminant analysis was performed in the
last session of training (session 7), when all animals had reached
high levels of discrimination performance (see Materials and
Methods). For the early patterns, the relative contribution of
recording sites to pattern classification was calculated in the time
frame coinciding with the N20 peak of the EEP. For the late
patterns, the relative contribution of recording sites was calcu-
lated in the time frames yielding maximum of goodness of clas-
sification in the poststimulus/preresponse interval (behavioral
response time quantified by the mean hit reaction time in the
session). The distance functions of discriminant pattern informa-
tion and EEP amplitude in Figure 9 show how recording sites
contributed to classification as a function of their distance to the
stimulation sites in dependence on the early EEP amplitude. For
the early pattern, recording sites proximal to the stimulation site
contributed relatively more information to classification than
distal sites. At distances larger than 1.2 mm (Fig. 9, blue curve)
the relative contribution to classification reached a lower plateau.
In the late patterns, however, recording sites near the stimulation
site contributed less information compared with distal recording
sites. At distances larger than 1.2 mm, the relative contribution to
classification approached an upper plateau (Fig. 9, red curve). For
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comparison, an average distance function of the EEP amplitude
at the N20 latency across stimulus conditions is shown, which
was binned in the same way as the distance functions of discrimi-
nant information (Fig. 9, green curve). Repeated measure two-
way ANOVA (Huynh-Feldt-corrected) with factors “distance”
and “pattern” (early vs late) yielded a weakly significant interac-
tion (F, 50 = 2.522, p < 0.1), and no significant main effects.
This indicates that in early patterns, recording channels within
the spatial spread of the evoked N20 peak (~1.2 mm), where
early EEP amplitudes (Fig. 9, green curve) were high, contributed
more information than more distal recording sites, where early
EEP amplitudes were low. In the late patterns, however, within
the spatial spread of ICMS-evoked activation, pattern informa-
tion was reduced. Surprisingly, more discriminant information
was contributed by the cortical sites distal to the stimulation site.

To evaluate the relevance of this finding on the level of indi-
vidual animals, pattern classification was recalculated with sub-
sets of recording channels, proximal and distal to the stimulation
sites. In a first step, the range of the lateral spread of ICMS-evoked
activation was quantified for each animal, by estimating the half-
widths of a Gaussian function fitted to the distance function of
the normalized early EEP amplitude at the N20 latency averaged
across session (nonlinear-least-square fitting) (see Electrically
evoked potentials). The mean of the estimated half-widths across
animals (CS,, mean * SE: 1.25 * 0.07 mm; CS,,, ,, mean = SE:
1.28 = 0.16 mm) lay within the 99% confidence interval of the
half-widths estimated from the grand mean of the distance func-
tion of the EEP amplitude across animals. Half-widths were av-
eraged across stimulus conditions to quantify the lateral spread of
early ICMS-evoked activity in each animal. The (minimal)
channel-distance to the stimulation sites closest to the lateral
spread (dming,) was used to define distal and proximal sets of
recording sites. The distal set of recording sites included the n,
channels that were at least dmin, away from the stimulation site
(Fig. 10A). The set of proximal recording channels consisted of
the n4, channels closest to the stimulation site. By this, distal and
proximal channel sets were matched in size, to exclude effects
solely based on differences in set size, and not on differences in
the distance to the stimulation site. As shown in the example of
Figure 6 A, significance of pattern classification in the poststimu-
lus interval was largely reduced in the proximal subset of record-
ing channels (Fig. 10A, red arrow). In 5 of the 6 animals,
significant pattern classification in the poststimulus/preresponse
interval was only found for the distal, but not for the proximal
channel-subset (Fig. 10 B, right). In animal 3, however, signifi-
cant pattern classification occurred in both subsets. Interestingly,
the spatial maximum of the N20 peak in this animal was located
at the ventral edge of the recording array (see Electrically evoked
potentials). Maybe, due to a ventral offset, the actual stimulation
sites were at a larger distance to the recording sites as determined
from the N20 peak maxima, and thus well outside the range of
lateral spread of cortical activation. Early pattern classification
was always significant with both, distal and proximal subsets (Fig.
10B, left). Only in two animals, it was reduced with the distal
compared with the proximal subset. Thus, in the early pattern,
proximal as well as distal cortical sites provided sufficient infor-
mation to discern the patterns. Finally, we analyzed whether pat-
tern information carried by proximal and distal subsets was
learning dependent. As with the full set of recording channels
(Fig. 7A), correlation analysis between the goodness of classifica-
tion and d’ yielded a highly significant peak of correlation for the
distal channel-subset in the poststimulus/preresponse time inter-
val between 1.0 and 1.5 s (Fig. 10C, p < 0.01, r = 0.59, red curve
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determined from current distance con-
stants K reported for pyramidal neurons
(Stoney et al., 1968). However, the range
of the lateral spatial spread of the first EEP
peak (N20) was ~1.2 mm, and thus
largely exceeded the effective current
spread. This discrepancy can be explained
by the fact that the EEP is generated by
synaptic currents, and thus relies on more
widespread, transsynaptic effects of direct
excitation (Tehovnik et al., 2006). By us-
ing the surface EEP, we further might have
overestimated the actual spread of trans-
synaptic activation due to a spatial blur by
volume conduction. A considerable over-
estimation seems however unlikely, since
a highly similar range of lateral spread has
been reported previously by Butovas and
Schwarz (2003), who analyzed spiking ac-
tivity of cortical units in rat somatosen-
sory cortex in response to single-pulse
ICMS. These authors demonstrated exci-
tatory effects up to a distance of 1.350
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Pattern classification with subsets of recording sites distal and proximal to the stimulation sites. 4, Typical results of

mm. Thus, the focal N20 peak in our
study most likely reflects an early, excita-
tory, transsynaptic activation of the cortex
by ICMS. If ICMS directly excites mixed
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pattern classification with distal and proximal sets of recording channels from a single animal in the last session of training. In the
top box, the selected distal and proximal recording channels are marked by red circles and blue squares, respectively. Stimulation
sites determined within the coordinates of the recording array by the maxima of the spatial distribution of EEP amplitudes (Fig. 38)
areindicated by a + (CS, at the rostral stimulation electrode) and by an x (CS,,,. o, at the caudal stimulation electrode). Distal and
proximal sets of channels were defined in each animal on the basis of the lateral spread of ICMS derived from the spatial analysis of
the N20 peak in the EEP (see Results). Both sets matched in size. In the bottom, significance of ECoG pattern classification (decadic
logarithm of the p value) is shown as a function of time relative to stimulus onset (Fig. 4 A), separately for the distal (red) and the
proximal (blue) set of recording channels. Mean and SD of hit reaction times are indicated by orange lines. B, p values obtained with
distal (red circles) and proximal subsets (blue squares), and with the full set (black triangles) of recording channelsin a time frame
of classification temporally coinciding with the N20 component in EEP (left, early patterns), and in the time frame yielding most
significant pattern classification in the poststimulus/preresponse interval (right, late pattern). Results are shown for all animals in
the last session of training. A predefined level of significance ( p << 0.001) is indicated by red dashed horizontal lines. €, Correlation
between behavioral d’ and goodness of classification with distal (red) and proximal (blue) subsets of recording channels as a
function of time relative to stimulus onset (Fig. 4 B). Highly significant common correlation coefficients ( p << 0.01) are marked by
asterisks. Significant deviation from homogeneity across animals was found only for the correlation coefficientsin the time interval
between 0 and 500 ms after stimulus onset, with the proximal subset of recording channels (black circle).

populations of bypassing excitatory and
inhibitory axons (Nowak and Bullier,
1998a,b; Butovas and Schwarz, 2003), its
functional spread would rather be deter-
mined by the length of horizontal fibers
which is on the order of 1 to 3 mm in
gerbil neocortex (Budinger et al., 2000),
and by the spatiotemporal interaction of
ICMS-evoked excitatory and inhibitory
activity, than by the effective current
spread alone. This would be consistent
with the observed large range of the lateral
spread of ~1.2 mm.

The observed offset of the N20 ampli-
tude could be due to the activation of yet

and asterisks). For the proximal subset, no such highly significant
correlation could be found (Fig. 10C, blue curve). In summary,
these findings suggest that late, learning-dependent pattern in-
formation was carried mainly by cortical sites distal to the stim-
ulation sites. Formation of late patterns was suppressed within
the range of the lateral spread of activation evoked by ICMS at
stimulus onset. Obviously ICMS interfered with the ongoing cor-
tical dynamics from which late spatial activity patterns emerge
with learning.

Discussion

Spatial spread and transsynaptic activation by ICMS

In our study, ICMS led to an early, focal, activation of auditory
cortex at the stimulation sites ~20 ms after stimulus onset. With
the applied current amplitudes (between 50 wA and 70 nA), the
radius of direct neural excitation around the stimulation site due
to passive spread of current (effective current spread) (Tehovnik,
1996) was expected to range between 0.120 mm for high-
threshold neurons (K = 3460 wA/mm?) and 0.507 mm for low-
threshold neurons (K 272 wA/mm?), as heuristically

undetermined cortical elements that are

spatially distributed across large parts of
the recording area. Using monkeys, Tolias et al. (2005) reported
in an fMRI study that the functional spread in response to ICMS
was ~2.6 mm in radius (cf. Tolias et al., 2005, their Fig. 6A; 4 s
pulse trains, 100 wA amplitude, other parameters identical to our
study). Also, in their unit-recordings Butovas and coworkers
(Butovas and Schwarz, 2003; Butovas et al., 2006) found inhibi-
tory effects up to distances of 1.8 mm. Alternatively, deep tha-
lamic sources activated by the direct excitation of efferent
corticothalamic axons through ICMS (DeYoe et al., 2005) might
have led to a widespread offset of surface potentials due to vol-
ume conduction.

Behavioral relevance of cortical dynamics in response

to ICMS

In our study, stimulation sites were spaced ~0.7 mm, close to
reported distance thresholds for ICMS (Schmidt et al., 1996; Otto
etal., 2005). Therefore, with a spatial spread of ~1.2 mm, cortical
activations at the two stimulation sites were largely overlapping
in space (~57% overlap), although the amount of current used
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for directly evoking percepts in our study (50—70 pA) was in a
moderate range (Rousche et al., 2003). Still, animals quickly
learned to discriminate the two stimulation sites. Whether infor-
mation was read out from these overlapping activations by spatial
integration within sensory cortex, or by other cortical and/or
subcortical areas excited via connections preserving information
about the stimulation sites (Tehovnik et al., 2006), cannot be
resolved by our analysis. However, our study provides important
insight in cortical processing during the meaningful, behavioral
interpretation of ICMS, which presupposes readout of site infor-
mation from the evoked cortical activation.

Early cortical activity patterns identified by our multivariate
classification approach were largely independent from learning,
and time-locked to stimulus onset at a latency corresponding to
the first EEP peak (N20). Furthermore, cortical sites near the
stimulation sites contributed more information to early patterns
than distal sites. Obviously, early patterns reflected the different
location of the focus of activation evoked by CS,, and CS,, 4,
respectively. Thus, similar to early patterns found with acous-
tic stimulation (Ohl et al., 2000, 2003a,b), they represented a
topographically organized cortical activation encoding infor-
mation about physical stimulus properties, in our case the
stimulation site.

Late patterns also carried information about the conditioned
stimuli. However, in contrast to early patterns, they emerged with
discrimination learning from the ongoing activity at variable la-
tencies after the end of the stimulus. Thereby, late patterns pre-
dominantly occurred in trials when animals correctly interpreted
the conditioned electrical stimuli.

Using a similar classification approach, late spatial patterns
have been also identified in the course of auditory discrimination
(Barrie et al., 1996; Ohl et al., 2003a,b) and categorization learn-
ing (Ohl et al., 2001). As in our study, these patterns emerged
from the ongoing poststimulus activity and were rather related to
the meaningful interpretation of the stimuli, like their belonging
to categories formed by previous experience, than to physical
stimulus properties per se like their spectral content. This indi-
cates a similar functional role of late patterns in auditory learning,
and in learning with artificial, electrical stimuli. Animal and
human studies further suggest that electrical stimulation
might generate different pitch-sensations depending on the site
of stimulation within the tonotopic map of primary auditory
cortex (Dobelle et al., 1973; Otto et al., 2005). Animals in our
study might therefore have actually performed pitch discrimina-
tion. The question how the late patterns are specifically linked to
cognitive functions like perception, decision making, or memory
retrieval, needs further investigation (Scheich et al., 2007).

Information of late patterns induced by auditory learning was
distributed over a large cortical region in a nontopographical way
(Ohl et al., 2003a,b). In contrast, with ICMS, late pattern infor-
mation was rather confined to cortical sites distal to the stimula-
tion site, outside the range of the lateral spatial spread (>~1.2
mm) of the first EEP peak (N20). This demonstrates that the
stimulated cortical area not only encoded information about the
stimulation sites by its focal, stimulus-driven activation, but also
provided meaningful signals in its ongoing activity related to the
interpretation of ICMS by the learning animal. This involved the
stimulated area as a whole, and apparently required large-scale
integration in the cortex. Consistently, ICMS in sensory cortex
can generate percepts, regardless of the hierarchical level of the
stimulated area (Murphey and Maunsell, 2007). As further indi-
cated by the long, variable latencies, late pattern formation pre-
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sumably involved feedback interactions with other brain areas
like prefrontal cortex, hippocampus, and amygdala.

However, ICMS locally interfered with the ongoing cortical
dynamics by suppressing late pattern formation near (<~1.2
mm) the stimulation sites. As reviewed by Freeman (2000), late
patterns are carried by ongoing cortical oscillations in the 8- and
v-band that remain transiently coherent for up to ~200 ms over
distances of millimeters. Cortical regions strongly affected by
ICMS were apparently not included into this global coherent
state. This might be due to alocal, artificial synchronization or to
imbalances between cortical excitation and inhibition caused by
ICMS, which actually can lead to highly synchronized responses
with each single pulse, to entrainment of cortical activity, pro-
longed inhibition, and rebound excitation (Butovas and
Schwarz, 2003). Also, ICMS might have interfered with plastic
changes involved in pattern formation (Recanzone et al., 1992;
Freeman, 2000). Hence, it would be important to study how
pattern suppression depends on stimulus parameters like pulse
rate and amplitude, or location, and whether it is transient within
trials or long-lasting across trials.

Despite the observed local pattern suppression, animals
learned to discriminate stimulation sites within a few sessions of
training, comparable to pure tone discrimination learning (Ohl
et al., 1999). Still, pattern suppression might have more subtle
effects, not observable by our behavioral measures. Thus, a re-
striction of pattern formation to subpopulations of neurons dis-
tal to the stimulation sites could limit the capacity of the cortex
for large-scale integration. Also, behavioral effects might arise
from a more widespread pattern suppression, e.g., by simulta-
neous ICMS at spatially distributed, multiple sites. Although
speculative, pattern suppression might relate to the fact that
ICMS-evoked percepts are always simple and stereotyped
(Dobelle et al., 1973; Schmidt et al., 1996), and that a meaningful
interpretation of more complex spatial ICMS patterns seems to
be difficult both for humans and animals (Schmidt et al., 1996;
Fitzsimmons et al., 2007).

As the interaction between ICMS and ongoing cortical activity
isinvolved in the meaningful interpretation of ICMS, it should be
taken into account in the design of ICMS protocols and cortical
neuroprostheses. For example, a proper timing between incom-
ing electrical stimuli and state changes in the ongoing cortical
dynamics might be important for the meaningful interpretation
of ICMS, especially with complex stimulation patterns (Freeman,
2000). Thus, the development of bidirectional, interactive corti-
cal interfaces that guarantee proper timing and shaping of ICMS
conditional on the momentary cortical state, could improve the
functioning of such interfaces (Kipke et al., 2008).
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