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Abstract

Introduction—To evaluate the public health benefit of yearly influenza vaccinations, CDC
estimates the number of influenza cases and hospitalizations averted by vaccine. Available input
data on cases and vaccinations is aggregated by month and the estimation model is intentionally
simple, raising concerns about the accuracy of estimates.

Methods—We created a synthetic dataset with daily counts of influenza cases and vaccinations,
calculated “true” averted cases using a reference model applied to the daily data, aggregated the
data by month to simulate data that would actually be available, and evaluated the month-level
data with seven test methods (including the current method). Methods with averted case estimates
closest to the reference model were considered most accurate. To examine their performance under
varying conditions, we re-evaluated the test methods when synthetic data parameters (timing of
vaccination relative to cases, vaccination coverage, infection rate, and vaccine effectiveness) were
varied over wide ranges. Finally, we analyzed real (i.e., collected by surveillance) data from 2010
to 2017 comparing the current method used by CDC with the best-performing test methods.

Results—In the synthetic dataset (population 1 million persons, vaccination uptake 55%,
seasonal infection risk without vaccination 12%, vaccine effectiveness 48%) the reference model
estimated 28,768 averted cases. The current method underestimated averted cases by 9%. The two
best test methods estimated averted cases with <1% error. These two methods also worked well
when synthetic data parameters were varied over wide ranges (<6.2% error). With the real data,
these two methods estimated numbers of averted cases that are a median 8% higher than the
currently-used method.

Conclusions—We identified two methods for estimating numbers of influenza cases averted by
vaccine that are more accurate than the currently-used algorithm. These methods will help us to
better assess the benefits of influenza vaccination.

*The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the
Centers for Disease Control and Prevention.
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1. Introduction

Each year in the United States, there are an estimated 9-35 million illnesses and 139,000—
707,000 hospitalizations due to influenza [1]. Because of the high frequency and potential
severity of this illness, CDC recommends an influenza vaccination for everyone 6 months or
older each year [2]. Yearly surveillance and identification of circulating influenza viruses as
well as vaccine formulation, manufacture, and distribution require considerable effort and
expense. Therefore, it is useful to assess the public health benefit that influenza vaccination
provides.

Each season, CDC performs surveys to estimate the numbers of persons receiving influenza
vaccine, observational studies to estimate the effectiveness of the season’s vaccine, and
surveillance for influenza-associated hospitalizations [3-6]. In addition, since 2010, CDC
has used these figures in a model to estimate the numbers of influenza cases and
hospitalizations averted by vaccination [1,7,8]. However, the estimates may have
inaccuracies. Vaccination and influenza cases occur continuously over the course of a
season, and the use of available data aggregated by month may introduce error. The current
model for calculating averted cases is intentionally simple, creating transparency but
possibly sacrificing accuracy. Additionally, self-reported vaccine coverage estimates
reported annually by CDC may exceed actual vaccine receipt as determined by
immunization records [3]. We undertook this project to assess the accuracy of the current
method for estimating influenza cases averted by vaccination, as well as several alternate test
methods. We identify improved estimation methods and make updated estimates of the
numbers and fraction of total influenza cases averted by vaccination.

2. Methods

2.1.

Data inputs

We evaluated routinely available U.S. data on influenza cases, influenza vaccination
coverage, and vaccine effectiveness from 2010-11 to 201617 by age group (6 months-4
years, 5-17 years, 18-49 years, 50-64 years, and =65 years). The number of influenza cases
(including both medically-attended and non-attended) occurring each month was estimated
from the Influenza Hospitalization Surveillance Network (FluSurv-NET) [5,9,10]. In brief,
influenza hospitalization rates from 9% of U.S. hospitals are adjusted for testing frequency,
converted to counts and multiplied by a previously-estimated ratio of cases to
hospitalizations to derive the total number of influenza cases. For each age group, the
number of cases is a constant multiple of the number of hospitalizations, and so in this
manuscript we will refer only to cases. We obtained the prevalent proportion of the total
population vaccinated at the end of each month from survey data [3], and used this figure to
determine the incident number vaccinated during each month. We obtained vaccine
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effectiveness estimates from the U.S. Influenza Vaccine Effectiveness Network [11] and age-
group specific population data from U.S. census estimates [12].

2.2. Reference model

We built a reference model with seven compartments defined by combinations of persons
that were ill or well, vaccinated or non-vaccinated, and immune or susceptible (Fig. 1 and
Supplemental Table 1). We found that accounting for persons with pre-existing immunity at
the start of the season (Fig. 1, G) had a minimal effect when the probability of vaccination
did not differ by prior immunity status (data not shown); therefore, all calculations presented
here assume no pre-existing immunity. Accordingly, all population members are susceptible,
non-vaccinated, non-cases at the beginning of each season (Fig. 1, A). When vaccinated,
persons move to compartment B for the immune lag period (generally 14 days), during
which they are susceptible to infection and after which they either remain susceptible (C) or
become immune (D). We assumed no indirect protection (i.e., herd immunity) and an all-or-
none vaccination effect: vaccinated persons either developed complete immunity or
remained fully susceptible. We assumed that vaccine would be given with equal frequency to
both previously uninfected persons and those who had been infected earlier in the season.
Susceptible persons (Fig. 1, A-C) could become infected and move to compartment E or F,
after which they would be immune to further infection.

If the daily number of cases in the absence of vaccination is specified, calculations can be
made for infection risk (=cases/number at risk without vaccination) and cases with
vaccination (=infection risk - number at risk with vaccination; Supplemental Table 1). In
contrast to some infectious disease models, in our model infection risk did not depend on the
number of cases on prior days. Conversely, the number of cases with vaccination can be
specified and cases without vaccination calculated (Supplemental Table 2, Method 7). The
number of averted cases is the difference between the numbers of cases without vs. with
vaccination. The number of averted cases estimated by the reference model was the “gold
standard” to which we compared each test method.

2.3. Creation of synthetic data and evaluation of test methods

Using information from a descriptive analysis on available monthly-aggregated influenza
cases and vaccinations observed during the 2010-11 to 2016-17 seasons stratified by age
group, we created a synthetic dataset. The dataset had a population of 1,0, 000 and rates of
vaccination and illness typical of the real (i.e., collected by surveillance/observational
studies) data, including: 55% vaccination coverage, 48% vaccine effectiveness, and 12%
infection rate in the absence of vaccination (Supplemental Table 3). Daily counts of
vaccinations and influenza cases were simulated using the normal distribution probability
density function (Fig. 2A). We applied the reference model (Fig. 1, Supplemental Table 1) to
this synthetic daily data to determine the true numbers of cases that would have occurred
with vaccination and the cases averted by vaccination. We then aggregated the synthetic
daily counts by month to simulate the format of real data (Fig. 2B), analyzed this aggregated
data by seven test methods (see below), and compared the numbers of calculated averted
cases between the reference model and the test methods. We considered test methods with
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the smallest differences in averted case estimates relative to the reference model to be the
most accurate.

Next, we performed more detailed evaluations of the two most accurate test methods across
a variety of potential influenza seasons. We created several additional synthetic datasets with
normal-distribution daily case and vaccination counts but with variation of the following
characteristics: proportion of vaccine given before cases (or “vaccination timing”; 5-98%),
vaccine effectiveness (10-70%), vaccine coverage (10-80%) and infection risk (2%-50%).
We also evaluated the test methods in skewed distributions and datasets with distributions
similar to real data (Supplemental Table 4); because results were similar, we do not show
these additional results.

We wanted to determine how the methods performed with less separation between months of
vaccine administration and case occurrence. To measure this, we defined “vaccination
timing” as the proportion of vaccinations occurring before case accrual. Vaccination timing
could vary from 0% (no vaccine given before cases occurred) to 100% (all vaccine given
before cases) and was defined as the sum over all months of vcy, (1-case_cumy,), where vcy,
is the proportion of total vaccine given in month m and case_cumy, is the proportion of total
cases that occurred by the end of month m.

2.4. Specifications of test methods

We evaluated the following seven test methods (Supplemental Table 2):

. Method 1. Current method: uses a month time-scale, incorporates a 14-day
immune lag by averaging the current and prior month’s vaccination coverage,
and applies vaccine coverage and effectiveness to the susceptible (i.e., non-cases
not effectively vaccinated) population.

. Method 2. Similar to method 1, uses a month time-scale, but does not incorporate
an immune lag and applies vaccine coverage and effectiveness to the non-case
population (Supplemental Table 5).

. Method 3. Simplified version of reference model, uses a month time-scale, does
not include an immune lag, and calculates proportions infected and vaccinated by
applying current-month case and vaccination counts to prior-month compartment
values.

. Method 4. Similar to method 3 but uses the average of the prior- and current-
month compartment values.

. Method 5. Uses a month time-scale and calculates the number of cases without
vaccination by dividing cases with vaccination by one minus the product of
vaccine coverage and vaccine effectiveness.

. Method 6. Similar to method 5 but calculations done using data aggregated over
an entire season.

. Method 7. Similar to reference model but uses a proxy for daily values of cases
and vaccinations created by dividing monthly values by the number of days per
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month. The resulting daily values form a step-function as shown in Fig. 2C and
thus simulate the effect of converting real monthly-aggregated data to daily data.

2.5. Analysis of real data with best test methods

We analyzed real month-level data from 2010-11 to 2016-17 by age-group and season to
compare the numbers of averted cases estimated by method 1 (the current method) and the
two best-performing test methods. We created all-age estimates by umming age-group-
specific estimates. Finally, we performed a sensitivity analysis to examine the effect on
estimates if true vaccine coverage were 10-20% lower than estimated by CDC using self-
reported vaccination status [3].

Data for this analysis came from publicly available sources, preexisting research projects
with human subjects approval, and public health surveillance systems that have been
determined to not require human subjects review. Calculations were done using SAS version
9.4 (Cary, N.C.) and R [13].

3. Results

Among seven seasons and five age groups, median vaccine effectiveness was 48%, vaccine
coverage 55% and 9% of the total population became infected (Table 1). Median month of
vaccination was mid-October and median month of illness was late January. The median
percentage of vaccine given before cases occurred was 90%. Observed data on vaccinations
were skewed to the right (skewness = 1.1) and cases to the left (skewness = —0.4).

3.1. Assessment of test methods using simulated data

In the initial synthetic dataset, there were 120,000 cases in the absence of vaccination and
55% of the population was vaccinated. The reference model estimated 91,232 cases with
vaccination and 28,768 cases averted by vaccination (Table 2). Compared with the reference
model, the test methods varied from a 9% underestimate (method 1) to a 14% overestimate
(method 6) of averted cases. Estimates from methods 2 and 3 were most accurate (<1%
error).

We next compared the current method (method 1) and the two best-performing test methods
(methods 2 and 3) in simulated datasets with widely varying characteristics (Table 3). As
vaccination timing (the proportion vaccinated before cases) increased from 5% to 98%, true
averted cases increased from 1630 to 31,159, and method 1 errors varied from an 90%
overestimate to an 12% underestimate. In contrast, relative errors for methods 2 and 3 were
much lower; of note, the maximum errors of 6.0-6.2% for methods 2 and 3 corresponded to
absolute differences of <100 averted cases. When we varied vaccine effectiveness, vaccine
coverage, and infection risk one at a time, we observed that method 1 errors varied but
methods 2 and 3 repeatedly performed well, with maximum relative errors of 3.1% and
2.6%, respectively. However, when multiple factors were varied to produce high numbers of
averted cases (vaccine effectiveness 70%, vaccine coverage 80%, and infection rate 50%),
methods 2 and 3 produced overestimates of up to 26% and 24%, respectively.
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We also evaluated the effect of varying the immune lag (i.e., days from vaccination to
protective immunity) from 1 to 28 days in the simulated data (Table 3). For a lag of 14 days,
methods 2 and 3 performed well with errors of 0.2% or less. However these methods
produced underestimates of up to 4% when lag was <14 days and overestimates of up to 7%
when lag was >14 days.

3.2. Analysis of real data

We analyzed the real data from 2010-11 to 2016-17 seasons, comparing averted cases
among methods 1-3 (Table 4). For all ages combined, methods 2 and 3 produced estimates
that were a median 8% higher than method 1; only in 2014-15 did methods 2 and 3 produce
estimates that were lower than method 1 (median 3% lower). Among the age groups, median
differences were highest for those 6 months-4 years (methods 2 and 3 were both 17% higher
than method 1) and lowest for those 18-49 years (methods 2 and 3 were both 2% higher
than method 1).

Using method 3 (method 2 gave nearly identical results), we determined the effect on our
estimates if true vaccine coverage was lower than reported by CDC based on self-reported
vaccination status. Among the 35 data subsets defined by season and age group, if true
coverage were 10% lower on a relative scale (e.g., a change from 50% to 45%), averted
cases would be a median 12% (range 10-15%) lower (also on a relative scale) than
originally estimated; if true coverage was 20% lower, averted cases would be a median 24%
(range 20-29%) lower than originally estimated.

4. Discussion

Influenza epidemics occur each year, causing symptomatic disease in 3-11% of the U.S.
population [9]. CDC supplements routine surveillance data with models to estimate the total
burden of influenza as well as how much illness was prevented by vaccination [1,7,8,14]. We
report our evaluation of the accuracy of our current modeled estimates of influenza
vaccination impact using simulated data and present alternative methods. We identified two
test methods that performed better than our current method compared with a reference
model. Under scenarios similar to recent influenza seasons, these two methods estimate
averted cases with <1% error. Method 3 was marginally more accurate under some extreme
circumstances, but method 2 involves fewer derived variables and could be preferred for
simplicity. Use of either of these methods will improve the accuracy of calculations of
averted cases made for future influenza seasons.

The reference model, considered the “gold standard”, uses daily vaccination and case counts
and can incorporate immune lags (days from vaccination to immune protection) of any
length. The change in counts in each model compartment depends on simultaneous
processes, €.g., as the numbers unvaccinated in oval A of Fig. 1 decrease due to vaccination,
the numbers at risk for infection also decrease. Calculations therefore must be made over
short intervals (e.g., 1 day) or inaccuracies will occur.

Because it requires daily data, the reference model can be used to calculate averted cases on
real data (which are aggregated by month) only if the data are converted to proxy daily data,
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as we did by dividing by the number of days per month (Fig. 2C). We tested this procedure
(Table 2, test method 7) but it was less accurate than methods 2 and 3, which use aggregate
data. We could evaluate more sophisticated methods to create proxy daily data or make
efforts to obtain data aggregated at shorter intervals (e.g., 1- or 2-week blocks). However,
our simulations indicate that this is unnecessary, as methods 2 and 3 work well to estimate
averted cases with month-level data.

Neither method 2 nor 3 explicitly include an immune lag, which we thought would be
important to consider and therefore included in the current method. The lag between
vaccination and immunity is commonly cited as 10-14 days [4,15] but longer or shorter
intervals are possible [16—18]. Both methods 2 and 3 are most accurate when a 14-day lag is
incorporated into synthetic data, and so empirically do account for a 14-day lag. If effective
immunity occurs before 14 days, our test methods will underestimate averted cases, and vice
versa.

As expected, higher values of vaccine effectiveness, vaccine coverage and infection risk
produced higher averted case estimates. Method 1 (current method) produced larger
underestimates as vaccine effectiveness and vaccine coverage increased. In contrast,
methods 2 and 3 were stable across the varied parameter values that we tested. Only when
multiple parameters were set to produce high numbers of averted cases did these two
methods show >6% error; however, levels this extreme (vaccine effectiveness 70%, vaccine
coverage 80%, and infection rate 50%) are unlikely during U.S. influenza seasons.

Averted cases are strongly influenced by the timing of vaccination relative to cases. When
we varied vaccination timing (the proportion of vaccinations given before cases) from 5% to
98%, the proportion of cases averted by vaccine increased from 1% to 26%. In recent
seasons, about 90% of vaccine was given before cases occurred. However, during the 2009
H1N1 pandemic, the monovalent vaccination campaign started as the second wave of cases
was peaking in October 2009 [19]. Our simulations suggest that methods 2 and 3 would
perform better than the current method under such circumstances.

Using the best-performing test methods on observed data, we estimate that averted cases
were a median 8% higher over seven recent seasons than previously reported. However, the
number of vaccinations estimated from self- or parent- reports can be higher than the
number of manufacturer-distributed doses [3] and the number documented in medical
records or immunization registries [20-22]. Using methods 2 or 3, averted case estimates
would be 12% lower if true vaccine coverage were 10% lower than the figures we used in
our calculations.

Limitations of this study include that the number of cases averted by vaccination is a
counterfactual concept without any “true” value. Input values for vaccine effectiveness were
not stratified by influenza virus type or subtype nor by vaccine preparation (e.g., high dose
vaccine for those =65 years) [1]. We do not account for possible waning of vaccine-induced
immune response [23] or for potential indirect effects of vaccination (“herd immunity”)
[24,25]. Input values for the number of cases, which are estimated from hospitalizations,
also have recognized limitations [9,10]. Finally, we also assume that influenza infection
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induces immunity for the remainder of the season, ignoring the possibility of a second
infection with a virus of a different type, subtype, or lineage.

Influenza is a unique infectious disease in that it is vaccine-preventable but remains very
common. The impact of influenza vaccine may be underappreciated because the disease is
generally mild in previously healthy people and vaccine effectiveness is typically lower than
that of other vaccines. Therefore, it is helpful to view influenza immunization from a
population perspective by estimating national numbers of cases and hospitalizations likely
averted by vaccine. While these calculations have been made for several years, our current
evaluation has identified methods that materially improve the accuracy of our estimates of
the benefits of the seasonal influenza vaccination campaign in the United States.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Regference model for calculation of numbers of cases averted by influenza vaccination.
Solid-line ovals are prevalent counts for a given time period. Rectangles are incident counts
during the time period. Persons stay in the dotted-line oval (B) for an immune lag period
(generally 14 days), during which they are susceptible to infection and at the end of which
they become either susceptible (C) or immune (D). Lower-case “b” indicates those
vaccinated on individual days; by.14 denotes the number vaccinated 14 days before.
Abbreviations: ve, vaccine effectiveness; r, infection risk; v, vaccination rate (see
Supplemental Table 1).
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Fig. 2.

Si?nulated data used to test estimation methods. A, incident daily counts of vaccinations and
cases simulated using the normal probability density distribution. B, daily data aggregated
into months was used for test methods 1-6. C, monthly aggregated data was divided by
number of days per month to create a proxy for daily data, forming a step function, and used
for test method 7.
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Tokars et al.

Data characteristics, 2010-11 to 2016-17 influenza seasons.

Table 1

Characteristic Median

Minimum  Maximum

Vaccination measures

Vaccine effectiveness, % * 47.6
Vaccine coverage, % 55.0
Vaccination timing, % 4 69.9
Month of vaccination, meanf 35
Month of vaccination, SD 16
Skewness 11
Kurtosis 1.3
1lIness measures

Infected, % 9.2
Month of onset, mean’t 6.7
Month of onset, SD 1.2
Skewness -0.4
Kurtosis 0.3

28.4
79.0

3.4

13
0.8
0.2

2.3
5.8

1.0
-17
-0.6

67.0

70.1
96.7

4.0

1.8
1.7
3.7

145
7.9

1.4
0.9
3.9

Page 12

Values were calculated from 35 data subsets defined by seven seasons and five age groups (6-months-4 years, 5-17 years, 18-49 years, 50-64
years, 265 years). Values were not weighted by population size.

Abbreviations: SD, standard deviation.

*
For most seasons, vaccine effectiveness was the same throughout the season for a given age group. However, in 2012-13 and 2014-15, vaccine
effectiveness varied, being lower during August-February when A/H3N2 viruses predominated and higher in March-April when influenza B

viruses predominated.

fPercent of vaccine given before cases occurred (see Methods).

’tMonths were counted from August of each season (e.g., month 3 was October and month 6 was January of the following year).
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