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Adaptation is a general property of sensory receptor neurons and has been extensively studied in isolated cell preparation of olfactory
receptor neurons. In contrast, little is known about the conditions under which peripheral adaptation occurs in the CNS during odorant
stimulation. Here, we used two-photon laser-scanning microscopy and targeted extracellular recording in freely breathing anesthetized
rats to investigate the correlate of peripheral adaptation at the first synapse of the olfactory pathway in olfactory bulb glomeruli. We find
that during sustained stimulation at high concentration, odorants can evoke local field potential (LFP) postsynaptic responses that
rapidly adapt with time, some within two inhalations. Simultaneous measurements of LFP and calcium influx at olfactory receptor
neuron terminals reveal that postsynaptic adaptation is associated with a decrease in odorant-evoked calcium response, suggesting that
it results from a decrease in glutamate release. This glomerular adaptation was concentration-dependent and did not change the glomer-
ular input– output curve. In addition, in situ application of antagonists of either ionotropic glutamate receptors or metabotropic GABAB

receptors did not affect this adaptation, thus discarding the involvement of local presynaptic inhibition. Glomerular adaptation, there-
fore, reflects the response decline of olfactory receptor neurons to sustained odorant. We postulate that peripheral fast adaptation is a
means by which glomerular output codes for high concentration of odor.

Introduction
In the vertebrate nasal epithelium, volatile odorants bind to
odorant receptors (Buck and Axel, 1991) located in the cilia of
olfactory receptor neurons (ORNs). There, they trigger a
G-protein-coupled cascade (Jones and Reed, 1989; Bakalyar and
Reed, 1990) that leads to the production of intraciliary cAMP and
the opening of cyclic nucleotide-gated channels (CNG) (Naka-
mura and Gold, 1987) permeable to Na�, K�, and Ca 2� (for
review, see Pifferi et al., 2006; Kleene, 2008). Ca 2� plays dual
excitatory and inhibitory roles (Matthews and Reisert, 2003). It
depolarizes ORNs and activates Ca 2�-sensitive chloride channels
which allow an efflux of chloride to further depolarize ORNs
(Lowe and Gold, 1993). It also triggers several negative feedback
processes that underlie adaptation to repeated or prolonged odor
activation. Ca 2�-binding proteins such as Ca 2�/calmodulin de-
crease the sensitivity of CNG channels (Kurahashi and Menini,
1997) but also trigger cascades leading to the hydrolysis of cAMP

(Borisy et al., 1992; Yan et al., 1995) or the inhibition of adenylyl
cyclase (Wei et al., 1998; Leinders-Zufall et al., 1999). These pro-
cesses have been extensively analyzed in vitro (for review, see
Bradley et al., 2005; Kleene, 2008), whereas in vivo, only one
group reported measurements of ORNs activity and adaptation
of firing (Duchamp-Viret et al., 2000, 2003).

Furthermore, less is known about the consequences of periph-
eral adaptation in perceptual habituation or desensitization, an
everyday experience in olfaction (for review, see Wilson and Lin-
ster, 2008). In the first and second relays of olfaction, i.e., in the
olfactory bulb and the pyriform cortex, neurons do adapt (Wil-
son, 1998; Sobel et al., 2000; Schafer et al., 2005); however, the
precise role of ORN adaptation versus local network processing
in the decrement of central neuron responses is unclear. Here, we
have simultaneously recorded the activation of the presynaptic
and postsynaptic compartments of olfactory bulb glomeruli to
investigate under which conditions peripheral adaptation can be
detected and how it affects the spatial maps of activated glomeruli
(for review, see Mori et al., 2006; Wachowiak and Shipley, 2006).
Such maps vary with the odorant concentration and are tempo-
rally dynamic (Spors and Grinvald, 2002; Spors et al., 2006;
Schaefer and Margrie, 2007). We report that under high odorant
concentration, ORN adaptation participates to the spatial redis-
tribution of active glomeruli.

Materials and Methods
Animals preparation, electrophysiological recordings, and two-photon im-
aging. Wistar rats (29 postnatal day 30 –70) were anesthetized with ure-
thane (1.65 g/kg, i.p.) and held in a standard stereotaxic apparatus. Ol-
factory bulb surgery, local field potential recordings, and focal pressure
applications of drugs were performed as described previously
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(Chaigneau et al., 2007). NBQX (2,3-dihy-
droxy-6-nitro-1,2,3,4-tetrahydrobenzo[f]qui-
noxaline-7-sulfonamide; 250 �M), D-APV
[D-2-(�)amino-5-phosphonopentatoic acid;
500 �M], and CGP35348 [(3-aminopropyl-
(diethoxymethyl) phosphoninic acid; 1–10
mM] were obtained from Tocris Bioscience. The
temperature of the animal was maintained at
37°C with a feedback-controlled heating blan-
ket (Harvard Apparatus). For all experiments,
breathing frequency was monitored through a
pneumogram transducer (BIOPAC Systems).
Olfactory nerve terminals were labeled with
Ca 2� green 1 dextran, 10 kDa (Invitrogen), 2– 8
d before experiments using the method devel-
oped by Wachowiak and Cohen (2001). Images
from subregions of the field of view were ac-
quired at rates up to 20 frames per second using
a custom-built two-photon laser-scanning microscope (TPLSM).

Olfactometer. Odorants were applied for 4 s with a custom-built olfac-
tometer. The olfactometer delivered a constant flow of humidified air in
a small teflon reservoir surrounding the rat snout. All tubes connecting
the odorant reservoir to the snout were made of teflon to minimize
odorant contamination. Odorants used were aldehydes and esters. Two
flow meters (Aalborg), one in the clean air path and one before the
odorant reservoir, allowed to control odorant concentration in a repro-
ducible manner. To reveal adaptation, high odorant concentrations were
used, i.e., from 3–100% when expressed in percentage of saturated air.

Intertrial alignments of Ca2� or local field potential responses using re-
spiratory movements. Respiration monitoring revealed spontaneous vari-
ations of inhalation frequency. Although minor, they affected the inter-
trial averaged responses, with a progressive decrease of Ca 2� and local
field potential (LFP) response amplitudes at each inhalation during sus-
tained odorant stimulation (supplemental Fig. 1 A, available at
www.jneurosci.org as supplemental material). To take into account this
respiration variability, we developed a new averaging algorithm using
respiratory movements. For each individual trial, every breathing cycle
period was detected and the position of the LFP response onset in the
cycle period determined. An averaged breathing signal was then com-
puted from several individuals, and each individual trial was
stretched to fit with this average. Ca 2� and LFP responses were then
extracted by averaging the trials. Supplemental Figure 1, available at
www.jneurosci.org as supplemental material, illustrates that our algo-
rithm allowed maintaining response amplitudes in the averages during
prolonged stimulation. These alignments were used to illustrate LFP and
Ca 2� responses (see Figs. 2, 3) but not to quantify individual LFP and
Ca 2� peaks (see Fig. 2 B, C).

Data analysis. All data were analyzed through a homemade MATLAB
program (MathWorks). In the entire study, average values are expressed
as mean � SEM.

Results
High concentration of odorant elicits two types of LFP
responses in glomeruli
To trigger ORN adaptation, odorants were applied at high con-
centrations for 4 s. LFP responses were recorded with fluorescent
extracellular glass pipettes targeted in labeled glomeruli with
TPLSM. Odorant evoked complex LFP responses with
respiration-locked rapid negativities (Fig. 1). We have previously
shown that these LFP rapid negativities reflect neuronal postsyn-
aptic activation restricted to a single glomerulus: they are odorant
and glomerular specific; they display sharp transitions in space
(laterally and in depth), they are blocked by intraglomerular ap-
plication of ionotropic glutamate antagonists; they are correlated
to mitral cell EPSPs (Chaigneau et al., 2007), indicating that mi-
tral cell dendrites participate to their generation. During sus-
tained stimulation at high odorant concentration, we observed

two types of LFP responses that differed on their level of adapta-
tion. Note that although the odorant was continuously applied,
ORN stimulation was discontinuous because stimulation oc-
curred only at each inhalation every �0.5 s. Figure 1A shows a
“weakly adapting response”: when the odorant concentration in-
creased, the first negativity, i.e., the initial field EPSP increased
and saturated. The following negativities (or peaks) were either
maintained or showed a slight decrease in amplitude as the re-
sponse developed in time. In contrast, some responses strongly
adapted with high concentration (from 10 to 100% of saturated
air) (Fig. 1B). These “strongly adapting responses” were charac-
terized by a large decrease or even an abolition of all the peaks
after the initial one. In addition, the slow negative envelop which
was crowned by the peaks at low odorant concentration also
disappeared. Occasionally, even the first peak amplitude slightly
decreased (2 of 8 animals). Differences in adaptation level (weak
vs strong) occurred between neighboring glomeruli for a given
odorant (see below) or in a single glomerulus for two different
odorants. Several mechanisms could underlie strongly adapting
responses during sustained odorant, e.g., a postsynaptic inhibi-
tion of mitral cells involving the glomerular network or a pro-
gressive decrease in ORN terminals activation, i.e., a decrease in
glutamate release.

Adaptation of Ca 2� influx in olfactory nerve terminals
during odor
To analyze the activation of ORN terminals, we imaged Ca 2�

influx in terminals loaded with organic Ca 2� sensors (see Mate-
rials and Methods). Labeled terminals outlined glomerular
boundaries and allowed to assess the kinetics of odorant-evoked
Ca 2� signals (Wachowiak and Cohen, 2001). In single glomeruli
(n � 8 animals), we simultaneously recorded presynaptic Ca 2�

and LFP responses. We therefore investigated the relation be-
tween presynaptic and postsynaptic compartments during odor-
ant responses. Figure 2A shows a typical example in which pre-
synaptic Ca 2� responses were surprisingly similar to LFP
responses. At low odorant concentration, the initial Ca 2� and
LFP peaks were similarly larger than the following ones which
maintained their amplitude during the stimulus duration. Note
that all peaks were phase-locked to respiration. At high odorant
concentration, both Ca 2� and LFP responses strongly adapted,
the third inhalation peaks being barely detectable. In half of the
cases (4 of 8 animals), Ca 2� concentration decreased below base-
line (Fig. 2, arrow). It was not attributable to photo-bleaching as
no rundown was visible before odor and as no decay with time
was observable during control experiments (no odorant applica-
tion; data not shown). It also did not involve changes in respira-

Figure 1. High odorant concentration elicits two types of LFP responses. LFP responses were recorded in different glomeruli.
Odorants elicited strong respiration-locked LFP negativities. Increasing odorant concentration revealed two types of responses
that weakly (A) or strongly (B) adapted. Arrow shows strong adaptation.
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tion frequency. To quantify adaptation at both presynaptic and
postsynaptic levels, we measured on each individual trace (i.e.,
without averaging or stretching; see Materials and Methods) the
peak amplitude of Ca 2� (�F/F increment) (Fig. 2B, top) and LFP
(�V increment) (Fig. 2B, bottom) signals at each inhalation. At
low concentration, Ca 2� and LFP peaks decreased after the initial
one but then remained similarly constant during most of the
odorant application (4 s). At high concentration, Ca 2� and LFP
peaks disappeared after the second inhalation but in one case (out
of 8) persisted during five inhalations. The average delay between
the first peak and the first inhalation without any response was
1.04 � 0.14 s (n � 8), indicating that after only two inhalations,
little glomerular excitatory output was sent to mitral cell somata.
Because LFP responses mirrored adapting Ca 2� signals and, in
some cases (see Fig. 4A), adaptation already occurred on the
initial Ca 2� peak, dye saturation could not account for adapta-
tion of fluorescence signals. Overall, these results suggest that

glomerular LFP adaptation is associated
with a concentration- and time-
dependent adaptation of Ca 2� influx in
ORN terminals and most probably from a
decrease in glutamate release.

The glomerular input– output curve
The two graphs in Figure 2B indicate that
presynaptic and postsynaptic responses
were highly correlated. To determine
whether this correlation was sensitive to
odorant concentration, we plotted LFP
peaks as a function of presynaptic Ca 2�

peaks (Fig. 2C), i.e., the input– output
curve of all recorded glomeruli. At both
low and high odorant concentration, the
linear regression curves surprisingly over-
lapped, indicating that Ca 2� peaks are ex-
cellent markers of LFP peaks, which are
themselves highly correlated to EPSPs re-
corded in mitral cells (Chaigneau et al.,
2007). The perfect overlap of the two lin-
ear regression curves also indicates that
LFP adaptation does not involve a
postsynaptic mechanism. It involves either
a presynaptic inhibition of ORN terminals
or an ORN adaptation at the nasal epithe-
lium level. Presynaptic inhibition regu-
lates glutamate release at ORN terminals
(Hsia et al., 1999; Wachowiak and Cohen,
1999; Aroniadou-Anderjaska et al., 2000;
Ennis et al., 2001; Olsen and Wilson, 2008)
by decreasing Ca 2� influx in the terminals
(Wachowiak and Cohen, 1999; McGann et
al., 2005; Vucinić et al., 2006; Pírez and
Wachowiak, 2008). To investigate the role
of presynaptic inhibition in glomerular
adaptation, we tested the effects of local
application of antagonists of ionotropic
glutamate receptors and GABAB receptors
on ORN terminals Ca 2� responses.

Fast peripheral adaptation, and not
presynaptic inhibition, underlies
glomerular adaptation
We have shown previously that odorant-

evoked local LFP responses are abolished by focal applications of
NBQX and D-APV, antagonists of glutamate AMPA and NMDA
receptors, respectively (Chaigneau et al., 2007). Here, we coap-
plied Alexa Fluor 594 and glutamate antagonists (NBQX, 250 �M;
D-APV, 500 �M) through the LFP recording pipette and main-
tained the pipette pressure until the drug diffused into the entire
glomerular and periglomerular boundaries, ensuring that we
blocked all intraglomerular and interglomerular glutamatergic
synaptic inputs. Glutamate antagonists reversibly blocked the lo-
cal LFP response, i.e., the LFP peaks and part of the slow compo-
nent (Fig. 3A,B). Note that the remaining slow component was
not locally generated because it persists in the external plexiform
layer (Chaigneau et al., 2007) and reverses its polarity in the
granule cell layer (E. Chaigneau and S. Charpak, unpublished
data), thus reflecting the activation of granule cells. In contrast,
NBQX/D-APV reversibly enhanced presynaptic Ca 2� responses
evoked by both low and high odorant concentrations. Glutamate

Figure 2. Both calcium (Ca 2�) and LFP responses show adaptation. A, Presynaptic Ca 2� influx in ORNs and LFP were recorded
in the same glomerulus. Increasing odorant concentration (bottom traces) strongly shortened both LFP and Ca 2� responses
without affecting respiration. Note that in this example, Ca 2� level reversibly decreased below baseline during high odorant
concentration (black arrow). B, Graphs of Ca 2� (�F/F, top traces) and LFP (�V, bottom traces) sniff evoked increments as a
function of inhalation numbers, in the presence of an odorant (n � 8 animals). Ca 2� and LFP peak values are raw data (i.e.,
without averaging or stretching) measured for each inhalation. At low odorant concentration (blue bars), Ca 2� and LFP peak
amplitudes were maintained, although they disappeared within two inhalations at high odorant concentration (red bars). C, The
input (Ca 2� peaks)– output (LFP peaks) relationship was not affected by odorant concentration and adaptation, as shown by the
perfect overlap of the two linear regression curves. Regression lines were drawn from all evoked responses in eight animals for low
and high odorant concentrations.
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antagonists increased the initial Ca 2� peak
to 126% of control [Ca 2� peak (percent-
age of �F/F]: control, 15.30 � 3.15;
NBQX/D-APV, 19.39 � 3.33; recovery,
15.24 � 3.26; n � 8; p � 0.013) as well as
the overall Ca 2� signal (area) to 119% of
control [Ca 2� area (arbitrary units, a.u.)]:
control, 37.34 � 5.69; NBQX/D-APV,
44.58 � 6.45; recovery, 36.11 � 5.95; n �
8; p � 0.009). These results confirm, al-
though under different anesthesia condi-
tions (Pírez and Wachowiak, 2008), that
tonic presynaptic inhibition modulates
odorant-evoked Ca 2� signals in ORN ter-
minals and as a consequence the glomeru-
lar output. Note that the increase of pre-
synaptic Ca 2� (area) by NBQX/D-APV
was similar for odorant stimulations at low
and high concentration (117 � 7% and
125 � 9%, respectively; p � 0.54). This
further suggests that glomerular adapta-
tion results from tonic inhibition rather
than from odorant-evoked presynaptic in-
hibition. Similarly, local application of the
GABAB receptor antagonist CGP35348
(1–10 mM) (Fig. 3C) also increased the
overall signal [Ca 2� area (a.u.)]: control,
22.86 � 2.15; CGP35348, 27.97 � 2.20;
n � 8; p � 0.01), indicating that presynap-
tic tonic inhibition involved GABAB re-
ceptors (Pírez and Wachowiak, 2008). In
contrast to presynaptic Ca 2� signals, LFP
responses were either maintained or
slightly decreased (data not shown) on CGP35348, suggesting
that GABAB receptors are involved at both presynaptic and
postsynaptic sites, and their activation induces a complex mod-
ulation of the glomerular network activity. More importantly,
blockade of presynaptic inhibition did not significantly affect the
adaptation of Ca 2� influx. Ca 2� responses to low odorant con-
centration in control conditions continued to be significantly
larger than responses to high odorant concentration in the ab-
sence of presynaptic inhibition. The general shape of Ca 2� re-
sponses was not modified by glutamate or GABAB receptor an-
tagonists, implying that in urethane anesthetized animals,
peripheral adaptation of ORNs underlies the glomerular adapta-
tion that occurs during high odorant concentration.

Peripheral adaptation modulates glomerular maps
What are the consequences of peripheral adaptation on glomer-
ular maps? TPLSM imaging of large fields of view comprising
several glomeruli, with a lower temporal resolution, allowed as-
sessing the spread of odor-evoked Ca 2� signals with odorant
concentration. Figure 4, A and B, illustrate two experiments
where several neighboring glomeruli were activated by an odor-
ant. At low concentration, odor evoked a rapid Ca 2� response in
a single glomerulus (Fig. 4A,B, traces), confirming the glomeru-
lar specificity of odorant stimulation at low concentration. The
Ca 2� response had a sustained plateau-like shape, showing little
attenuation during the 4 s stimulation. Note that the absence of
Ca 2� peaks resulted from the low temporal resolution, each im-
age lasting �200 ms. In each “odorant specific” glomerulus, in-
creasing the odor concentration drastically shortened the
plateau-like response observed at low concentration (Fig. 4A,B,

traces in red) and even decreased, in some cases, the initial am-
plitude (Fig. 4A). In contrast, high odorant concentration re-
cruited neighboring glomeruli, which showed little adaptation of
Ca 2� responses. Such spatial redistribution of activated glomer-
uli was observed in all tested animals (n � 5). The graph in Figure
4C quantifies this effect on three groups of glomeruli (n � 11
glomeruli), which were tested for at least 3– 4 odorant concentra-
tions. In each group, one glomeruli showed a marked Ca 2� re-
sponse decrease at high odorant concentration (red traces).
These results show that because of peripheral adaptation, the
relative glomerular output of a “specific” glomerulus (responsive
to low odorant concentration) versus its neighbors changes dras-
tically at high odor concentration.

Discussion
Peripheral adaptation depends on Ca 2� influx in ORNs and as a
consequence on odorant concentration. Spatial maps of glomer-
ular activity vary with odorant concentration; however, most of
the variability is assigned to the low specificity of odorant recep-
tors. Here, we investigated under which conditions odor could
modulate glomerular activation through a mechanism involving
peripheral adaptation. We specifically analyzed postsynaptic glo-
merular responses that expressed strong adaptation under high
odorant concentration. We found that glomerular adaptation
resulted from a decrease in ORN terminals activation, i.e., in
glutamate release, which did not involve local presynaptic inhi-
bition. Our study, thus, indirectly demonstrates that peripheral
adaptation of ORNs underlies glomerular adaptation, without
hypothesizing which peripheral adaptation processes are in-
volved. Direct demonstration would require firing measure-

Figure 3. In vivo blockade of postsynaptic activity reveals peripheral ORN adaptation. A, B, Simultaneous recordings of pre-
synaptic and postsynaptic activity in control condition and after local NBQX/D-APV (250 �M/500 �M) application. Single (A) and
averaged (B) responses (n � 8 animals) revealed that glutamate antagonists reversibly blocked LFP responses and increased
Ca 2� peak amplitudes. The first Ca 2� peak was also increased, indicating tonic presynaptic inhibition. NBQX/D-APV barely
affected adaptation of Ca 2� responses at high odorant concentration. C, Presynaptic activity in control condition and after local
application of the GABAB antagonist CGP35348 (1–10 mM). Single (top) and averaged (bottom) responses (n � 7) confirmed that
tonic presynaptic inhibition is mediated through GABAB receptors but not responsible of adaptation at high odorant concentra-
tion. D, Summary graphs showing the effects of NBQX/D-APV and CGP35348 on Ca 2� responses.
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ments of targeted axons converging in an adapting glomerulus.
Such tour de force is not necessary because reported ORN prop-
erties fully account for glomerular adaptation. In addition, our
pharmacological experiments confirm the existence of a tonic
presynaptic inhibition of ORN terminals (Petzold et al., 2008;
Pírez and Wachowiak, 2008). They also show that at high odorant
concentration, peripheral adaptation widely dominates evoked-
presynaptic inhibition.

We believe that the observed adaptation is a general mecha-
nism that simply depends on the level of ORN activation. As a
consequence, we postulate that odorant stimulation of increasing
intensity will first increase and then progressively shorten specific
glomerular responses such that at high concentration, only the
first few inhalations will transmit information to second-order

neurons. In contrast, the surrounding less
specific glomeruli will become more active
and relay peripheral information. Al-
though LFP negativities strictly indicate
what glomerular output (EPSPs) is trans-
mitted to mitral/tufted cell somata, and
gives no quantitative indication on the
spiking output to the cortex, we hypothe-
size that peripheral adaptation is a major
modulatory determinant of mitral/tufted
cell firing during strong odorant stimula-
tion. The validation of our hypothesis will
require challenging experiments to mea-
sure mitral/tufted cell activity, first none
invasively (in cell attached mode) and to
extract in a second step (in whole-cell
mode) the respective weights of peripheral
adaptation and lateral inhibition in shap-
ing the spiking output. It is also important
to stress that the persistence of an odor
response during the first inhalation re-
mains compatible with the ability to dis-
criminate odors. Indeed, recent studies
have demonstrated that discrimination
tasks can be achieved within few hundred
milliseconds (Uchida and Mainen, 2003;
Abraham et al., 2004; Rinberg et al., 2006;
Slotnick, 2007). In fact, it has been shown
that successful odor discrimination occurs
before full development of the first inhala-
tion glomerular map (Wesson et al., 2008).
In addition to coding of high odor concen-
tration, the fast peripheral adaptation un-
derlying glomerular adaptation could in-
crease the dynamic range of glomerular
activation. Such a role had been proposed
but not observed for evoked-presynaptic
inhibition (Pírez and Wachowiak, 2008)
and is classically reported at the level of
ORN transduction (for review, see Kleene,
2008).
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