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Recognition of actions and complex movements is fundamental for social interactions and action understanding. While the relationship
between motor expertise and visual recognition of body movements has received a vast amount of interest, the role of visual learning
remains largely unexplored. Combining psychophysics and functional magnetic resonance imaging (fMRI) experiments, we investigated
neural correlates of visual learning of complex movements. Subjects were trained to visually discriminate between very similar complex
movement stimuli generated by motion morphing that were either compatible (experiments 1 and 2) or incompatible (experiment 3) with
human movement execution. Employing an fMRI adaptation paradigm as index of discriminability, we scanned human subjects before
and after discrimination training. The results of experiment 1 revealed three different effects as a consequence of training: (1) Emerging
fMRI-selective adaptation in general motion-related areas (hMT/V5�, KO/V3b) for the differences between human-like movements. (2)
Enhanced of fMRI-selective adaptation already present before training in biological motion-related areas (pSTS, FBA). (3) Changes
covarying with task difficulty in frontal areas. Moreover, the observed activity changes were specific to the trained movement patterns
(experiment 2). The results of experiment 3, testing artificial movement stimuli, were strikingly similar to the results obtained for human
movements. General and biological motion-related areas showed movement-specific changes in fMRI-selective adaptation for the dif-
ferences between the stimuli after training. These results support the existence of a powerful visual machinery for the learning of complex
motion patterns that is independent of motor execution. We thus propose a key role of visual learning in action recognition.

Introduction
Recognition and understanding of complex movements and ac-
tions is critical for survival and social interactions in the dynamic
environment we inhabit. Thus, it is no surprise that the human
visual system is highly skilled in action recognition even from
highly impoverished stimuli like point-light displays (for review,
see Blake and Shiffrar, 2007).

Since the discovery of the “mirror system” (Rizzolatti et al.,
1996), many studies have investigated the interplay between ob-
servation and execution of movements and its neural substrates
in the human and monkey brain (Decety et al., 1997; Iacoboni et
al., 1999; Buccino et al., 2001; Johnson-Frey et al., 2003; Rizzolatti
and Craighero, 2004). More recently, several studies have focused
on the specific relationship between movement observation and
ones own motor expertise, showing a direct influence of motor

learning on the visual recognition of actions (Hecht et al., 2001;
Calvo-Merino et al., 2006; Casile and Giese, 2006; Cross et al.,
2006). However, the role of visual learning in the processing of
action patterns remains largely unexplored. Does learning of
nonimitable complex movements affect cortical areas in the same
way as the learning of natural human movements? Previous stud-
ies have reported minor differences between the neural substrates
representing human and nonhuman movements (Pelphrey et al.,
2003; Pyles et al., 2007). However, it remains unclear whether
these differences reflect disjoint neural machineries, or if they
reflect signatures of different levels of visual expertise of a com-
mon neural representation.

To address these questions, we tested whether training to dis-
criminate movements, results in changes in functional magnetic
resonance imaging (fMRI)-selective adaptation (Kourtzi and
Kanwisher, 2000; Grill-Spector and Malach, 2001) in visual areas
involved in processing of human actions, including the human
middle temporal complex, the kinetic occipital area, biological
motion selective areas in temporal cortex and action-responsive
regions in prefrontal cortex. The stimuli comprised point-light
walkers (Johansson, 1973), generated by morphing between
three prototypical movements (Giese and Poggio, 2000; Jastorff
et al., 2006). We parametrically controlled the spatiotemporal
similarity of the movements by varying the weights of the proto-
types. In experiments 1 and 2, prototypes were drawn from orig-
inal human movements (e.g., walking), while in experiment 3,
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the prototypes contained artificial complex movements that
could not be executed by humans. These artificial movements
shared some basic properties of human movements (articulation,
average speed), but were based on skeletons that did not resemble
naturally occurring species. To test whether learning shapes the
neural representations of movements with and without relevance
for motor execution, we scanned observers before and after train-
ing on a discrimination task. We reasoned that areas involved in
the discrimination of movements would show fMRI-selective ad-
aptation; that is higher fMRI responses for different movements
than the same movement presented repeatedly. We predicted that
enhanced fMRI-selective adaptation for similar movements after
training would indicate learning-dependent changes in the neural
representations of movements, and that this effect might be more
prominent for human movements compared with artificial stimuli
in frontal and temporal areas, whereas general motion-related areas
might not differ in their response to the two stimulus groups.

Materials and Methods
Participants
Thirty-three students from the University Tübingen participated in this
study: eleven in each of the three experiments. The data from one subject
in experiment 1 and two subjects in experiment 3 were excluded due to
either excessive head movement or poor psychophysical performance in
the training sessions. All experiments were approved by the local ethics
committee and informed consent was obtained from all participants.

Stimuli
All stimuli (5 � 10 degrees of visual angle) were point-light displays,
presented as 10 white dots (0.5 degrees of visual angle) on a black back-
ground. To minimize the effect of low-level position cues, the points were
not presented exactly at the joint positions, but were randomly jittered along
the segments of the skeleton. The displacement varied randomly between
0% and 20% of the segment length in every frame of the animation. Previous
psychophysical studies had shown the suitability of these stimuli for discrim-
ination learning of complex movements (Jastorff et al., 2006).

The natural human-like stimuli used for experiments 1 and 2 (Fig. 1A)
were obtained by tracking the two-dimensional joint positions in video
movies of a human actor facing orthogonally to the view axis of the
camera while performing different movements. Eighteen movements
were recorded including locomotion, dancing, aerobics and martial arts
sequences. Twelve points were tracked manually (head, shoulders, el-
bows, wrist, hip, knees, and ankles) but the positions of the shoulder and
the head markers were averaged for stimulus presentation.

The artificial movement stimuli used in ex-
periment 3 (Fig. 1 B) were generated by anima-
tion of 18 different artificial skeleton models
with 9 segments. The skeletons were chosen to
be highly dissimilar from naturally occurring
body structures. Debriefing of the observers
showed that the stimuli did not result in any
consistent interpretation, in contrast with the
natural human-like stimuli that were recog-
nized accurately as human movements by all
observers. None of the observers interpreted
any artificial pattern as a human action.

The joint angle trajectories �n(t) of each
skeleton were given by sinusoidal functions of
the form: �n(t) � an � bnsin(�t � �n). Their
frequency � and amplitude bn were matched
with that of typical joint trajectories of human
actors during natural movements. Moreover, we
assured that the movement of the individual points
fulfilled the “two-thirds power law” that links the
curvature and the speed of approximately planar
human movements (Viviani and Stucchi, 1992)
(for details, see Jastorff et al., 2006). Following
this procedure, we generated 18 artificial move-

ment prototypes. In addition, the segment length and the area covered by the
artificial stimuli were matched with the natural human-like movements to
control for differences in the low-level properties of the two stimulus classes.

All stimuli were generated using motion morphing. We applied an algo-
rithm known as spatiotemporal morphable models (Giese and Poggio, 2000;
Giese and Lappe, 2002) that generates new trajectories by linear combi-
nation of prototypical movement patterns in space-time. Each stimulus was
defined as linear combinations of three prototypical movements: New motion
pattern � c1 � (Prototype 1) � c2 � (Prototype 2) � c3 � (Prototype 3).

The weights ci determined how much the individual prototypes con-
tributed to the morph. When the weight of one prototype was very high,
the linear combination strongly resembled this prototype. (Weight com-
binations always fulfilled c1 � c2 � c3 � 1). The weight vectors (c1, c2, c3)
defined a Euclidian space of movement patterns that provided a metric of
the spatiotemporal similarity between the patterns. This has been verified
in studies applying multidimensional scaling to similarity judgments be-
tween stimuli generated by this method (Giese et al., 2008). The metric space
allowed us to precisely manipulate the difficulty of the discrimination task by
varying the distance between the movements in morphing space.

The morphing technique was used to generate three different classes of
stimuli: (1) Center Stimuli, for which each of the three prototypes contrib-
uted to the resulting morph with equal weights (33.33%), (2) near Off-
Center Stimuli, for which the weight for one of the prototypes slightly
exceeded the weights for the other two prototypes, and (3) far Off-Center
Stimuli, for which the weight for one of the prototypes was much higher
compared to the other two prototypes (Fig. 1C). These weights resulted in a
gradual change in the physical similarity between morphs as indicated by
measurements of the Euclidean distances between the stimulus trajectories.
For natural human-like movements, the mean distance between the trajec-
tories of the center and the near off-center stimuli was 0.073, the center and
the far off-center stimuli 0.117, and the center and the prototype stimuli
0.172. For the artificial movements, the Euclidean distance between the ar-
tificial center and near off-center stimuli was 0.085, indicating that the phys-
ical differences in the stimulus space generated for the human-like
movements and the artificial patterns were very similar.

To ensure that the morphed human movements appeared natural, we
morphed between prototypes from the same movement category (e.g.,
running, limping and marching or three different types of boxing move-
ments). Previous studies have shown that the technique of spatiotemporal
morphing interpolates smoothly between quite dissimilar gait patterns
(e.g., walking and running), resulting in motion morphs that look highly
natural (Giese and Lappe, 2002). In addition, we collected naturalness
ratings in a pilot experiment (scale 1: unnatural, 5: natural) for each of
the morphed stimuli. Only stimuli with high naturalness ratings (4 or 5)
were used in experiments 1 and 2.

A B C

Figure 1. Stimuli and morphing space. A, B, Individual frames of a natural human-like point light stimulus (A) and an artificial
pattern (B) (the dashed lines connecting the joins were not shown during the experiment). C, Metric space defined by motion
morphing. Morphs were generated by linear combination of the joint trajectories of three prototypical patterns (Prototypes 1–3).
Three groups of stimuli were generated by choosing different combinations of linear weights: (1) Center Stimuli, for which each of
the three prototypes contributed to the resulting morph with equal weights (33.33%), (2) near Off-Center Stimuli, for which the
weight for one of the prototypes was on average 60% and for each of the other two prototypes 20%, and (3) far Off-Center Stimuli,
for which the weight for one of the prototypes was on average 75% and for each of the other two prototypes 12.5%.
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Finally, the scrambled point light stimuli used for the localizer of bio-
logical motion-related areas were generated by randomizing the initial
starting position of every point in the intact point-light displays of the
prototypical actions, while preserving the original motion vector of each
individual point. The scrambled and intact point-light displays were
matched for area and dot density (Grossman et al., 2000).

Design and procedure
In addition to the experimental runs, each subject participated in five
localizer runs. These were used to map the early retinotopic areas (1 run),
the kinetic occipital area, KO/V3b (1 run), the middle temporal area:
hMT/V5� (1 run) and biological motion-related areas (2 runs), namely
the posterior superior temporal sulcus (pSTS) and the extrastriate and
the fusiform body area (EBA/FBA).

Experiment 1: learning of novel natural movements
Pretraining scanning session (day 1). Six different groups of natural
human-like movements were presented. Each group consisted of movement
morphs between three prototypical natural human actions from the same
category (e.g., three different locomotion patterns or three kinds of boxing
movements). Four different conditions were tested: (1) Identical: the same
center stimulus was presented twice, (2) Very Similar: a center stimulus was
presented, followed by a near off-center stimulus, (3) Less Similar: a center
stimulus was followed by a far off-center stimulus, and (4) Dissimilar: a
center stimulus was followed by a prototype (Fig. 1C).

The scanning session consisted of four event-related runs without
feedback. The participants were instructed to judge whether two succes-
sively presented stimuli were the same or different. Each run started and
ended with an eight second fixation epoch. Every run consisted of 20
experimental trials for each of the four conditions and 20 fixation trials
that were interleaved with the experimental trials. Each trial lasted 4 s and
started with the first stimulus (one movement cycle) presented for 1300
ms, followed by a 100 ms blank, the second stimulus for 1300 ms and
ended with a blank interval of 1300 ms. The history of the conditions was
matched so that each condition, including the fixation condition, was
preceded equally often by trials from each of the other conditions [anal-
ogous to the experiment by Kourtzi and Kanwisher (2000)]. Over the
whole scanning session, four stimulus groups were shown 13 times and
two stimulus groups were shown 14 times for each condition. The two
groups that were presented 14 times differed between subjects.

Training sessions (days 2– 4). Each subject participated in three training
sessions in the laboratory on consecutive days. Each session consisted of
a total of 150 trials, 25 trials per movement group. In all trials participants
had to compare center stimuli with off-center stimuli in a paired com-
parison paradigm (Fig. 1C). Each trial started with the presentation of a
center stimulus for four gait cycles (5200 ms), followed either by the same
center stimulus or by an off-center stimulus (generated from the same
triple of prototypes, presented for four movement cycles). The prototype
contributing with the highest weight to the off-center stimulus was cho-
sen randomly. Participants were not trained in the Dissimilar condition,
as their discrimination performance was high already before training. In
a two-alternative forced choice paradigm, participants had to report
whether the second stimulus matched the first one.

On each day, the training session consisted of three test blocks that
were interleaved by two training blocks. In the test blocks, center stimuli
had to be discriminated from near off-center stimuli. Each stimulus
group was presented 3 times in random order, resulting in 18 trials per
test block. During test trials no feedback about correct discrimination
was provided. Based on a pilot experiment with a different set of observ-
ers, we adjusted the similarity of the near off-center to the center stimuli
to achieve an average performance level of �50% before training. The
morphing weights for the other types of stimuli were rescaled accord-
ingly. The training blocks consisted of 48 trials (8 repetitions per stimulus
group). During training, participants had to discriminate between center
and far off-center stimuli and received feedback about their perfor-
mance. After each training session, the observers’ performance was tested
in one experimental run without feedback, matching the situation during
scanning (supplemental Fig. S1, available at www.jneurosci.org as sup-
plemental material).

Post-training scanning session (day 5). After completion of the training
sessions, the subjects were tested on the following day in the scanner in
the same way as in the pretraining scanning session.

Experiment 2: trained versus untrained natural movements
The experiment consisted of 3 d of training, followed by one scanning
session (day 4). The training procedure was similar to that of experiment
1 with the exception that three out of the six different movement groups
were selected for training (trained stimuli) while the other three groups
were only presented during the scanning session without any training
(untrained stimuli). The stimuli used for training and the untrained
stimuli were counterbalanced across subjects.

Four conditions were tested in the post-training scanning session: (1)
Identical Trained: the same trained center stimulus was presented twice in a
trial, (2) Very Similar Trained: a trained center stimulus was followed by a
trained near off-center stimulus, (3) Identical Untrained: the same untrained
center stimulus was presented twice in a trial, (4) Very Similar Untrained: an
untrained center stimulus was followed by an untrained near off-center stimu-
lus. Despite the conditions, the design of the runs was identical to experiment 1.

Experiment 3: learning of novel artificial movements
The experiment consisted of a pretraining scanning session (day 1) fol-
lowed by three consecutive days of training (days 2– 4), and a post-
training scanning session (day 5). The procedure and design for the
training and scanning sessions was the same as in experiment 2 with the
exception that artificial movement stimuli were presented.

Imaging
Data were collected with a 3T Siemens scanner (University Clinic, Tü-
bingen) with gradient echo pulse sequence [repetition time (TR) � 2 s,
echo time (TE) � 30 ms] for 24 axial slices (voxelsize: 3�3 mm in plane,
5 mm thickness) using a standard head coil. The 24 slices in one volume
covered the entire brain from the cerebellum to the vertex. A three-
dimensional (3D) high resolution T1-weighted image covering the entire
brain was acquired in each scanning session and used for anatomical
reference. A single scanning session lasted �90 min.

fMRI data analysis
The fMRI data were processed using the Brain Voyager 2000/QX soft-
ware package. After removing linear trends, temporal filtering as well as
correcting for head movements, the 2D functional data were aligned to
the 3D anatomical data and transformed into Talairach space. The ana-
tomical scans across sessions were carefully aligned to each other ensur-
ing good correspondence of voxels across scanning sessions. That way,
the regions of interest (ROIs) defined in one scanning session could also
be used for the second session.

For each individual subject, 8 regions of interest were defined. The
definition was based on the overlap of functional activations and ana-
tomical landmarks reported in previous studies as being characteristic of
the cortical locus of the area. The retinotopic visual areas V1 and V2 were
mapped based on standard procedures (Engel et al., 1994). The radius of
the rotating wedge was 5 degrees visual angle. hMT/V5� was localized
by contrasting moving and static random dot texture patterns
(Tootell et al., 1995) and area KO/V3b was localized by contrasting
activation for motion defined contours and transparent motion, as
described by Van Oostende et al. (1997). Area pSTS was defined as the
set of voxels on the posterior extent of the superior temporal sulcus that
showed significantly stronger activation ( p � 10 �4) for intact than
scrambled point-light walkers, consistent with previous studies (Grossman
et al., 2000) (supplemental Table S1, available at www.jneurosci.org as
supplemental material). Similarly, stronger activation ( p � 10 �4) for
intact than scrambled point-light walkers was observed in a region in the
fusiform gyrus, corresponding to the fusiform body area (FBA) (Peelen
and Downing, 2005). In a recent study, Peelen and Downing (2006)
showed that even though area FFA and FBA are in close proximity of one
another, voxelwise correlation analysis reveals that only FBA, but not
FFA correlates significantly with biological motion processing.

We also observed significantly stronger activation for intact compared
to scrambled point-light walkers in the posterior ITS, corresponding to
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area EBA (Downing et al., 2001). Analyzing the fMRI signal within this
ROI (avoiding overlap with hMT/V5�) showed very similar activation
changes compared with area FBA (see supplemental Fig. S2, available at
www.jneurosci.org as supplemental material). Given this result, we de-
cided to focus on areas FBA and pSTS as examples of biological motion-
related areas.

The biological motion localizer was also used to map the ROIs in the
frontal cortex. In accordance with a study by Pyles et al. (2007), we did
not obtain significantly stronger activation in frontal areas when directly
comparing the fMRI signal for intact versus scrambled biological mo-
tion. However, Saygin et al. (2004) reported frontal activations selective
to point-light biological motion. To be able to investigate changes in
these areas, we compared fMRI activation for intact point-light walker
with the fixation baseline. This contrast resulted in restricted activations
in both the ventral precentral sulcus and the posterior inferior frontal
sulcus in close proximity to the locations reported by Saygin et al. (2004)
(supplemental Table S1, available at www.jneurosci.org as supplemental
material). Figure 2 displays the location of the individual ROIs for a
single subject, superimposed on the subjects’ flattened left and right
hemisphere.

In a first step of the analysis, all trials where subjects answered incor-
rectly were excluded to prevent any influence of the different number of
error trials for the different conditions. Following, we calculated the
fMRI response for each ROI by extracting the signal intensity for all
remaining trials from trial onset (0 – 14 s) and averaging across trials for
each condition. The resulting time courses were converted to percentage
signal change relative to the fixation condition and averaged across runs
and hemispheres (supplemental Fig. S3, available at www.jneurosci.org
as supplemental material). Fitting the percentage signal change in each
ROI with a hemodynamic response model based on the difference of two
gamma functions, as described by Boynton and Finney (2003), together
with an ANOVA analysis across time points for each ROI, indicated that
fMRI responses peaked between four and six seconds after trial onset,
consistent with the hemodynamic response properties (supplemental
Figs. S3, S4, available at www.jneurosci.org as supplemental material).
Thus, we used the average fMRI response at these time points for further
statistical analysis of the differences between conditions. Subsequently,
we used a standard normalization procedure to estimate relative differ-
ences in the fMRI responses (rebound index) independent of overall
signal differences across subjects, sessions and ROIs. During this proce-
dure, we subtracted the mean response across conditions individually for
each subject and added the grand mean across subjects separately for
each ROI. Repeated-measures ANOVAs and subsequent contrast analy-
ses on significant main effects and interactions (with Greenhouse–Geis-
ser correction) for training (Pretraining, Post-training scanning session),
condition (Identical, Very Similar, Less Similar, Dissimilar), and stimu-
lus (Trained, Untrained) were used for the analysis of the psychophysical
and fMRI time course data.

Results
Experiment 1: learning of novel
natural movements
Experiment 1 was designed to assess how
discrimination training changes the neu-
ral representation of movements that are
relevant for human motor behavior. Sub-
jects were scanned before and after training
with stimuli derived from natural human
movements by morphing (Fig. 1A).

Behavioral performance
Figure 3A shows the observers’ perfor-
mance (percentage of different responses)
inside the scanner for the discrimination
between novel human-like movements
before (Pretraining) and after (Post-
training) training. Statistical analysis
showed a significant interaction between
training and condition (F(3,27) � 26.7, p �

0.001). Subsequent contrast analysis revealed no significant
changes in performance for the Identical and the Different con-
ditions, but significantly improved performance for the Very
Similar and the Less Similar conditions after training (Very Sim-
ilar: F(1,9) � 30.7, p � 0.001; Less Similar: F(1,9) � 23.1, p �
0.001). Interestingly, the learning generalized from the Less Sim-
ilar to the Very Similar condition, despite the fact that observers
were not trained on this condition (see Materials and Methods).

fMRI data: general motion-related areas
Figure 3B shows the fMRI responses in the localized general
motion-related areas hMT/V5� and KO/V3b before and after
training. We observed fMRI-selective adaptation only after train-
ing. That is, a one-way repeated-measures ANOVA comparing
the activation for the different conditions showed that differences
in fMRI responses across conditions were significant after train-
ing (hMT/V5�: F(3,27) � 5.5, p � 0.01; KO/V3b: F(3,27) � 4.0, p �
0.05), but not before training (hMT/V5�: F(3,27) � 1.1, p � 0.36;
KO/V3b: F(3,27) � 1.1, p � 0.39). Comparing the fMRI signal
across scanning sessions (Pre- and Post-training) resulted in a
significant interaction between training and condition (hMT/
V5�: F(3,27) � 3.0, p � 0.05; KO/V3b: F(3,27) � 3.3, p � 0.05).
Detailed statistics are reported in supplemental Table S2, avail-
able at www.jneurosci.org as supplemental material.

To quantify the effect of learning on fMRI responses across
conditions, we computed a rebound index (Fig. 3C). This index
was calculated by dividing fMRI responses in each condition by
the response to the Identical condition. An index of one indicates
adaptation due to repetition of the same stimulus, while an index
higher than one indicates recovery from adaptation and thus
neural sensitivity to differences between the stimuli presented in
a trial. In agreement with the analyses of the fMRI responses, we
observed rebound indices significantly higher than one only after
training (Table 1). This indicates recovery from adaptation and
suggests emerging neural sensitivity to the perceived differences
between the stimuli after training. This interpretation was sup-
ported by a repeated-measures ANOVA, comparing the rebound
indices before and after training that showed a significant main
effect of training (hMT/V5�: F(1,9) � 6.3, p � 0.05; KO/V3b:
F(1,9) � 9.2, p � 0.05).

fMRI data: biological motion-related areas
In contrast to the general motion-related areas, the biological
motion-related areas pSTS and FBA (Fig. 3D) showed a significant

Figure 2. Analyzed regions of interest. Regions of interest for a single subject visualized on the flattened cortical surface of the
left and the right hemisphere of this subject. The color coded areas represent, the human MT complex (hMT/V5�), the kinetic
occipital area (KO/V3b), the pSTS, the FBA, and action responsive regions in the vPrCS, and the pIFS. White lines delineate early
visual areas V1 and V2. Dark gray, Sulci; light gray, gyri. prCS, Precentral sulcus; CS, central sulcus; STS, superior temporal sulcus; IPS,
interparietal sulcus; OTS, occipital temporal sulcus.
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difference between the conditions both before (pSTS: F(3,27) � 6.4,
p � 0.01, FBA: F(3,27) � 3.3, p � 0.05) and after training (pSTS:
F(3,27) � 6.1, p � 0.01, FBA: F(3,27) � 10.0, p � 0.001). Statistical
comparisons across scanning sessions showed a significant interaction
between training and condition in area pSTS (F(3,27) � 3.2, p �
0.05) and a similar trend in area FBA (F(3,27) � 2.4, p � 0.08),
indicating that training affected the processing of the different con-
ditions in biological motion-related areas.

Statistical analysis of the rebound indices confirmed the re-
sults of the above analyses (Fig. 3E). Rebound indices signifi-
cantly larger than one were obtained for all conditions containing
different stimuli both before and after training (Table 1). Impor-
tantly, comparison of the rebound indices before and after training
showed a significant main effect of training (pSTS: F(1,9) � 5.7,
p � 0.05, FBA: F(1,9) � 5.9, p � 0.05), whereas the main effect of
condition or the interaction between these factors were not sig-
nificant. Thus, fMRI-selective adaptation was enhanced after
training and this effect did not differ significantly across all stim-
ulus conditions.

fMRI data: frontal areas
Figure 3F shows the results from the ventral precentral sulcus
(vPrCS) and the posterior inferior frontal sulcus (pIFS). Analo-
gous to the biological motion-related areas, we obtained signifi-
cant differences in fMRI signal between the conditions before
(vPrCS: F(3,27) � 3.2, p � 0.05, pIFS: F(3,27) � 3.4, p � 0.05) and
after training (vPrCS: F(3,27) � 12.7, p � 0.001, pIFS: F(3,27) �
19.8, p � 0.001). Further, the frontal areas showed a significant
interaction across scanning sessions (vPrCS: F(3,27) � 3.1, p �
0.05, pIFS: F(3,27) � 3.0, p � 0.05).

However, unlike pSTS and FBA, recovery from adaptation in
frontal regions occurred only for specific stimulus conditions
(Fig. 3G). Before training, the only condition for which we ob-
tained rebound indices significantly higher than one, was the Less
Similar condition (vPrCS: t(9) � 2.5, p � 0.05; pIFS: t(9) � 2.7,
p � 0.05). Yet after training, only the Very Similar condition
showed rebound indices significantly higher than one (vPrCS: t(9)

� 4.1, p � 0.01; pIFS: t(9) � 4.2, p � 0.01). This observation was
supported by a repeated-measures ANOVA comparing the re-

A D

B F

GC

E

Figure 3. Results of experiment 1: Learning of novel natural movements. A, Psychophysical data obtained during the scanning sessions before training (Pretraining) and after training
(Post-training). The data are expressed as percentage of different judgments for the different conditions. Error bars indicate SEM across subjects. B, Average fMRI response across subjects in general
motion-related areas (hMT/V5�, KO/V3B) before and after training (�SEM). C, Rebound indices for the fMRI responses in general motion-related areas before and after training. Rebound values
were calculated by dividing the average fMRI responses for each condition by the fMRI responses for the Identical condition. An index of 1 indicates adaptation, while an index�1 indicates sensitivity
to changes in the stimulus. Error bars represent SEM; as they incorporate the error estimates of both numerator and denominator SEMs appear rather large. D, Average fMRI response across subjects
(�SEM) in biological motion-related areas (pSTS, FBA) before and after training. E, Rebound indices (�SEM) for the fMRI responses in biological motion-related areas before and after training.
F, Average fMRI response across subjects (�SEM) in frontal areas (vPrCS/pIFS) before and after training. G, Rebound indices (�SEM) for the fMRI responses in frontal areas before and after training.
Asterisks indicate rebound indices significantly higher than one.
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bound indices before and after training, showing a significant
interaction between training and condition (vPrCS: F(2,18) � 6.5,
p � 0.01, pIFS: F(3,27) � 4.0, p � 0.01). Additional contrast anal-
ysis revealed that for vPrCS the rebound index for the Very Sim-
ilar condition was significantly higher after than before training
(F(1,9) � 6.9, p � 0.05) and that the opposite was true for the Less
Similar condition (F(1,9) � 6.6, p � 0.05). In pIFS, the same result
was observed for the Less Similar condition (F(1,9) � 4.7, p �
0.05). However, the rebound index for the Very Similar condi-
tion did not differ significantly before and after training (F(1,9) �
1.9, p � 0.19). This response pattern differs substantially from the
responses obtained for occipitotemporal areas. Whereas statisti-
cal analysis of the rebound indices for the occipitotemporal areas
showed similar training effects across conditions, frontal areas
showed differential effects of training across stimulus conditions.

In particular, rebound effects in frontal areas seem to reflect
difficulty in the discrimination task rather than the perceived
differences between stimuli. Before training, observers’ perfor-
mance was high for the Identical and the Different conditions,
while low for stimuli in the Very Similar condition. The most
difficult condition was the Less Similar condition, with per-
formance �75%. After training, the most difficult condition
was the Very Similar condition, with performance �75%, in
contrast to the rest of the conditions, for which observers’
performance was very high (Fig. 3A).

Together, our results suggest that learning facilitates the dis-
crimination of human-like movements and shapes their neural
representations across areas through potentially different mech-
anisms. In particular, we observed: (1) emerging sensitivity to the
differences between human-like movements in general motion-
related areas after training, (2) enhancement of the already
present sensitivity to movement differences in biological motion-
related areas, and (3) recruitment of prefrontal areas when the
discrimination task is most demanding. In addition, we ob-
served generalization of these learning-dependent effects be-
yond movements trained with feedback (the Less Similar
condition) to stimuli that were not trained with feedback
(Very Similar condition).

Experiment 2: pattern specificity of the learning process
The results of experiment 1 indicated learning-dependent
changes across different cortical areas during discrimination

training. In experiment 2, we evaluated, whether these changes
were specific to the trained stimulus space or simply reflected
unspecific improvement due to familiarity with the task. To this
end, we tested for transfer of learning-dependent changes to
stimuli generated from different prototypical movements that
were not presented during training (Fig. 1C).

In particular, we investigated fMRI responses after training
(Post-training) to movement patterns with which the observers
had been trained before the scanning (Trained) and movements
generated from different prototypes, with which the observers
were not trained (Untrained). Since the critical condition in exper-
iment 1 was the Very Similar condition, we tested only the Identical
and the Very Similar conditions for both trained and untrained
stimuli. fMRI-selective adaptation for trained but not untrained
stimuli would suggest stimulus-specific learning-dependent
changes in the representation of movements, while similar effects
for trained and untrained stimuli would suggest transfer of learn-
ing across different movement patterns.

Behavioral performance
Consistent with previous psychophysical results (Jastorff et al.,
2006), the observers’ ability to discriminate between the stimuli
in the Very Similar condition improved for the trained stimuli com-
pared to the untrained ones (Fig. 4A). This was supported by a
significant interaction between stimulus similarity (Identical vs Very
Similar) and stimulus group (trained vs untrained) (F(1,10) � 33.4,
p � 0.001), suggesting stimulus-specific learning effects.

fMRI data: general motion-related areas
fMRI responses in general motion-related areas (Fig. 4B) showed
learning effects specific to the trained human-like movements as
indicated by a significant interaction between stimulus simi-
larity and stimulus group in hMT/V5� (F(1,10) � 5.1, p �
0.05) and a significant main effect of stimulus group in area
KO/V3b (F(1,10) � 5.0, p � 0.05). Detailed statistics are re-
ported in supplemental Table S3, available at www.jneurosci.
org as supplemental material.

This finding was supported by the rebound indices plotted in
Figure 4C. Rebound indices for the trained stimuli were signifi-
cantly higher than one (hMT/V5�: t(10) � 4.9, p � 0.001; KO/
V3b: t(10) � 3.2, p � 0.01). In contrast, rebound indices for the
untrained stimuli did not differ significantly from one (hMT/
V5�: t(10) � �0.3, p � 0.80; KO/V3b: t(10) � 1.0, p � 0.34).
Moreover, direct comparison of the rebound indices, showed
significantly higher indices for trained compared to untrained
stimuli (hMT/V5�: t(10) � 2.7, p � 0.05; KO/V3b: t(10) � 2.3,
p � 0.05).

fMRI data: biological motion-related areas
Similar to the results for the general motion-related regions,
pSTS and FBA did not show transfer of learning-dependent ef-
fects to the untrained stimuli (Fig. 4D). A repeated-measures
ANOVA revealed a significant main effect of stimulus similarity
(pSTS: F(1,10) � 32.3, p � 0.001, FBA: F(1,10) � 10.5, p � 0.001)
and stimulus group (pSTS: F(1,10) � 5.4, p � 0.05, FBA: F(1,10) �
6.3, p � 0.05).

Similarly, rebound indices (Fig. 4E) for the Very Similar con-
dition were significantly higher than one for both trained and
untrained stimuli. However, comparing the rebound indices be-
tween the trained and the untrained stimuli directly, showed a
significantly higher rebound index for trained compared to un-
trained stimuli in pSTS (t(10) � 2.4, p � 0.05) and a similar trend
in FBA (t(10) � 2.0, p � 0.07). These results are in agreement with
the findings from experiment 1 showing that fMRI-selective ad-

Table 1. Statistical analysis of the rebound indices of Experiment 1

Before training After training

Area Condition t value p value t value p value

hMT/V5� Very Similar 0.2 �0.82 4.5 <0.01
Less Similar 1.7 �0.12 2.7 <0.05
Different 1.8 �0.11 2.5 <0.05

KO Very Similar 0.8 �0.45 4.6 <0.01
Less Similar 1.3 �0.23 2.7 <0.05
Different 1.2 �0.26 3.1 <0.05

pSTS Very Similar 2.5 <0.05 3.6 <0.01
Less Similar 4.9 <0.01 2.4 <0.05
Different 2.6 <0.05 3.1 <0.05

FBA Very Similar 2.4 <0.05 3.9 <0.01
Less Similar 3.3 <0.01 2.9 <0.05
Different 2.5 <0.05 4.0 <0.01

vPrCS Very Similar 1.1 �0.30 4.1 <0.01
Less Similar 2.5 <0.05 0.1 �0.98
Different 1.2 �0.26 1.4 �0.20

pIFS Very Similar 1.7 �0.11 4.2 <0.01
Less Similar 2.6 <0.05 0.3 �0.79
Different 0.9 �0.37 1.6 �0.14

Bold font marks rebound indices significantly larger than 1.
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aptation for very similar movements was present before training
and further enhanced after training. Importantly, this learning-
dependent enhancement in neural sensitivity was specific to the
perceived differences between trained movements.

fMRI data: frontal areas
Learning-dependent changes in fMRI-selective adaptation
were specific to trained stimuli also in frontal areas. An
ANOVA comparing fMRI responses (Fig. 4 F) showed a main
effect of stimulus similarity (vPrCS: F(1,10) � 6.7, p � 0.05,
pIFS: F(1,10) � 5.5, p � 0.05).

However, statistical analysis of the rebound indices (Fig. 4G)
indicated rebound indices significantly higher than one only for
the trained (vPrCS: t(10) � 3.7, p � 0.01; pIFS: t(10) � 2.8, p �
0.05), but not for the untrained stimuli (vPrCS: t(10) � 1.4, p �
0.19; pIFS: t(10) � 1.5, p � 0.17). Moreover, rebound indices were
significantly higher for trained than untrained stimuli in vPrCS
(t(10) � 2.4, p � 0.05) but not in pIFS (t(10) � 1.3, p � 0.23),
consistent with the results in experiment 1.

In summary, the results of experiment 2 complement the re-
sults of experiment 1 highlighting that learning-dependent
changes in fMRI-selective adaptation across areas are stimulus-
specific. Generalization may occur between stimuli from the

same stimulus space (as in experiment 1), but not between stim-
uli generated from different stimulus spaces (i.e., spaces based on
different sets of prototypes).

Experiment 3: learning novel artificial complex movements
Experiments 1 and 2 showed that discrimination learning of
novel stimuli compatible with human movements, leads to
changes in fMRI sensitivity to the perceived differences between
movements across cortical areas. Previous studies have suggested
that biological motion-related areas show an enhanced activation
for human-like movements compared to other complex motion
patterns (Pyles et al., 2007). In experiment 3 we tested whether
areas involved in the processing of human movements are re-
cruited for the learning of motion trajectories that have similar
complexity but are not compatible with human movements.

In particular, we used articulated artificial motion stimuli that
did not resemble human or animal bodies (Fig. 1B) (see Materi-
als and Methods for details). These stimuli were constructed by
animating artificial skeleton models with sinusoidal joint angle
motion. The skeletons were chosen to be highly dissimilar from
naturally occurring body structures, and were thus not consis-
tently interpreted as humans or animals (Jastorff et al., 2006). The
joint trajectories of these artificial skeletons were motion-
morphed in the same way as the human trajectories to construct
similar morph spaces and control for similarity across stimuli. As
in experiment 2, observers were tested with the Identical and the
Very Similar conditions on trained and untrained stimuli. How-
ever, participants were scanned both before and after training.

Behavioral performance
As illustrated in Figure 5A, before training, observers showed
similar performance for the trained and the untrained stimuli.
That is, there was no significant main effect of stimulus group:
F(1,8) � 0.90, p � 0.37 or interaction: F(1,8) � 0.1, p � 0.97
between stimulus group and training. After training however, per-
formance for the trained stimuli increased significantly compared to
the untrained ones (contrast analysis: F(1,8) � 24.3, p � 0.01). This
indicates stimulus-specific learning of the artificial stimuli, similar to
the results obtained for the natural human-like stimuli.

fMRI data: general motion-related areas
Similar to the activations for the human-like stimuli, fMRI-
selective adaptation specific to the trained movements was ob-
served after, but not before training, in motion-related areas.
That is, significantly stronger fMRI responses for the Very Similar
compared to Identical condition were observed, when the partic-
ipants were tested with trained compared to untrained stimuli, as
indicated by a significant interaction of stimulus group and train-
ing in hMT/V5� (F(1,8) � 4.9, p � 0.05) as well as in KO/V3B
(F(1,8) � 4.7, p � 0.05) after training (Fig. 5B). Detailed statistics
can be found in supplemental Table S4, available at www.
jneurosci.org as supplemental material.

Rebound indices shown in Figure 5C support this finding.
Rebound indices were significantly higher than one after training
and only for the trained stimuli (hMT/V5�: t(8) � 5.3, p � 0.01;
KO/V3B: t(8) � 3.6, p � 0.01). Moreover, a repeated-measures
ANOVA comparing rebound indices across scanning sessions
(Pre- and Post-training) showed a significant interaction be-
tween stimulus group and stimulus similarity in hMT/V5�
(F(1,8) � 5.7, p � 0.05) and a similar trend in KO/V3B (F(1,8) �
4.8, p � 0.06). Thus, in motion-related areas, neural sensitivity
to the differences between artificial movement patterns emerged
only after training, and this learning was specific to the trained
stimuli.
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Figure 4. Results of experiment 2: Learning specificity versus generalization. A, Psychophys-
ical data (% different) during the scanning session after training (Post-training) for the four
conditions. B–G, Average fMRI response and rebound indices across subjects in general motion-
related areas (B, C), biological motion-related areas (D, E) and frontal areas (F, G) for the trained
and the untrained stimuli after training. Error bars represent SEM and asterisks indicate rebound
indices significantly higher than one.
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fMRI data: biological motion-related areas
Figure 5D shows fMRI responses for the biological motion-
related areas. In contrast to experiments 1 and 2, these areas
showed fMRI-selective adaptation effects only after but not
before training. This observation is supported by a significant
main effect of stimulus similarity after but not before training
in pSTS (F(1,8) � 8.1, p � 0.05; F(1,8) � 1.9, p � 0.21) and a
similar trend in FBA (F(1,8) � 4.5, p � 0.06; F(1,8) � 0.8,
p � 0.39).

Moreover, rebound indices (Fig. 5E) were significantly higher
than one after training and only for the trained stimuli (pSTS: t(8) �
2.9, p � 0.05; FBA: t(8) � 2.8, p � 0.05) but not for the untrained
stimuli (pSTS: t(8) � 1.4, p � 0.18; FBA: t(8) � 0.8, p � 0.43).
Similar to the general motion-related areas, repeated-measures
ANOVAs across scanning sessions showed a significant interac-
tion in the FBA (F(1,8) � 6.1, p � 0.05) and a similar trend in pSTS
(F(1,8) � 4.8, p � 0.06), indicating stimulus-specific changes after
training.

fMRI data: frontal areas
Figure 5F shows fMRI responses for vPrCS and pIFS. Before
training, we did not obtain any significant difference in fMRI
signal between conditions. After training however, we obtained a
significant main effect of stimulus similarity in both frontal areas
(vPrCS: F(1,8) � 8.5, p � 0.05, pIFS: F(1,8) � 6.0, p � 0.05).

However, statistical analysis of the rebound indices (Fig. 5G)
suggested that frontal areas were affected to a lesser extend by
training compared to occipitotemporal areas. Although rebound
indices were significantly higher than one after training for the
trained stimuli (vPrCS: t(8) � 2.8, p � 0.05; pIFS: t(8) � 3.1, p �
0.05), the interaction between stimulus conditions and scanning
sessions was not significant (vPrCS: F(1,8) � 0.3, p � 0.61; pIFS:
F(1,8) � 0.2, p � 0.65).

In summary, the results obtained for the novel artificial mo-
tion stimuli differ in two aspects from the results obtained for the
natural human-like stimuli. First, for biological motion-related
areas, the differences between conditions were significant both
before and after training for natural stimuli but only after train-
ing for artificial stimuli. Similarly, significant recovery from ad-
aptation was observed after training for artificial stimuli, but was
already present before training for natural stimuli. This suggests
that biological motion-related areas do not differentiate between
very similar artificial stimuli before training, but that they be-
come sensitive to the perceived differences between these move-
ment trajectories after training. To quantify the difference
between natural and artificial stimuli before training statistically,
we conducted an ANOVA comparing fMRI responses before
training for the Identical and the Very Similar conditions be-
tween experiments 1 and 3. This ANOVA did not result in a
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Figure 5. Results of experiment 3: Learning of artificial complex movements. A, Psychophysical data (% different) during scanning before (Pretraining) and after (Post-training) training. B–G,
Average fMRI response and rebound indices across subjects in general motion-related areas (B, C), biological motion-related areas (D, E) and frontal areas (F, G) for the trained and the untrained
stimuli, separately for the two scanning sessions. Error bars represent SEM and Asterisks indicate rebound indices significantly higher than one.
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significant interaction between stimulus type (natural and artifi-
cial) and stimulus similarity (Identical and Very Similar) in pSTS
and FBA (pSTS: F(1,34) � 1.9, p � 0.18; FBA: F(1,34) � 2.6, p �
0.11). However, this result is difficult to interpret as different
observers participated across experiments and the experiments
also differed with respect to the conditions tested.

Second, even though frontal areas showed significant recovery
from adaptation for the trained artificial stimuli, we did not ob-
tain a significant interaction across scanning sessions. Further-
more, rebound indices for the trained stimuli were not
significantly higher after than before training (vPrCS: F(1,8) � 1.5,
p � 0.17; pIFS: F(1,8) � 0.7, p � 0.48). This result is different from
the results obtained for the natural stimuli as in the vPrCS, the
rebound indices for the Very Similar condition were significantly
higher after than before training (experiment 1: F(1,9) � 6.9, p �
0.05). To test this difference statistically, we compared fMRI sig-
nals across experiments 1 and 3 after training using a factorial
ANOVA. This ANOVA showed a trend toward a significant in-
teraction between stimulus type (natural and artificial) and stim-
ulus similarity (Identical and Very Similar) in vPrCS (F(1,34) �
3.7, p � 0.06). However, the limitations discussed above in com-
paring the results between the two experiments also apply to this
finding. Together, these results suggest an efficient visual learning
mechanism that operates in a very similar way for stimuli with
and without relevance for human motor execution.

Relation between fMRI signal and behavioral performance
To further quantify the relationship between the behavioral and
fMRI learning effects, we conducted three additional analyses.
First, we analyzed the trials of experiment 1 for which the subjects
answered incorrectly. For this analysis we concentrated on the
Very Similar condition, because this condition yielded the most
incorrect trials. Next, we compared the activation for incorrect
trials with the activation for correct trials (plotted in Fig. 3). Note
that the stimuli for correct and incorrect trials were physically
identical. We reasoned that if fMRI responses reflect the behav-
ioral judgment of the observers rather than the physical stimulus
similarity, the signal for incorrect trials (i.e., when the observers
could not discriminate different stimuli), should be lower com-
pared to trials for which observers perceived the difference be-
tween the stimuli. Yet this result would be only obtained in areas
that are involved in the discrimination process.

Figure 6 shows that this prediction was supported by the data.
Plotted are the fMRI responses before and after training for the
Very Similar condition (natural stimuli), separately for the trials,
for which subjects answered correctly (white bars, identical to
Fig. 3) and the trials, for which subjects incorrectly perceived the
stimuli as being identical (black bars). Repeated-measures ANOVAs
with the factors response (identical and different) and training
(prescan and postscan) showed a significant main effect of re-
sponse across all ROIs (hMT/V5�: F(1,9) � 8.4, p � 0.05; KO/
V3B: F(1,9) � 5.5, p � 0.05; pSTS: F(1,9) � 10.2, p � 0.05; FBA:
F(1,9) � 13.9, p � 0.01; vPrCS: F(1,9) � 6.8, p � 0.05; pIFS: F(1,9) �
8.1, p � 0.05). This result suggests that even though the stimuli
were physically identical, the fMRI signal was modulated based
on the perception of the subjects. This modulation was signifi-
cant in biological motion-related areas already before training
(contrast analysis: pSTS: F(1,9) � 6.0, p � 0.05; FBA: F(1,9) � 10.3,
p � 0.05) and became significant in motion-related areas and
frontal areas after training (contrast analysis: hMT/V5�: F(1,9) �
15.9, p � 0.01; KO/V3B: F(1,9) � 12.1, p � 0.01; vPrCS: F(1,9) �
5.4, p � 0.01; pIFS: F(1,9) � 6.2, p � 0.05). The result of this
independent analysis confirms our interpretation of the findings

of experiment 1. That is, biological motion-related areas are in-
volved in the discrimination between natural human-like stimuli
before training, while general motion-related areas are recruited
after training. In addition, this result establishes a direct link
between behavioral judgments and fMRI signal changes.

In a second analysis (Fig. 7), we focused on the individual
improvement in performance for each subject between pre- and
postscan. We computed the difference in correct responses for
the Very Similar condition before and after training for experi-
ments 1 and 3. We grouped subjects with higher versus lower
performance enhancement. Hence each group contained five

Figure 6. Relation between behavioral response and fMRI signal. Average fMRI response
across subjects (�SEM) in the different ROIs for the Very Similar condition. White bars indicate
the fMRI response for trials where subjects answered correctly (identical to light gray bars in Fig.
3) and black bars show the response for trials where subjects answered incorrectly. Note that the
stimuli presented in the two cases are physically identical. Asterisks indicate significant differ-
ences in fMRI signals between the two cases within one scanning session.

A
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Figure 7. Relation between behavioral improvement and selectivity changes. A, B, Ratio of
the rebound indices before and after training, separately for two groups of subjects for experi-
ment 1 (A) and experiment 3 (B). The first group (dark gray bars) contains subjects with a lower
performance increase after training and the second group (light gray bars) contains subjects
with higher performance increase after training (�SEM).
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subjects for experiment 1 and four subjects for experiment 3
(here the subject with the median performance increase was ex-
cluded because only nine subjects participated). Subsequently,
we computed the ratio between the rebound indices before and
after training (rebound index after training/rebound index be-
fore training) for each subject independently (Fig. 7). In all areas,
the mean ratios for the group with higher performance enhance-
ment exceeded the mean ratios for the group with the lower
performance enhancement. This effect was observed for both
human-like and artificial movements. An ANOVA showed a sig-
nificant main effect of performance enhancement for the natural
(F(1,48) � 4.4, p � 0.05) and artificial stimuli (F(1,36) � 5.6, p �
0.05). The main effect of ROI and the interaction between ROI
and performance enhancement were not significant (natural:
ROI F(1,48) � 1.6, p � 0.15 interaction F(1,48) � 0.4, p � 0.88;
artificial: ROI F(1,36) � 0.5, p � 0.79; interaction F(1,36) � 0.8, p �
0.55). This analysis showed that increases in neural sensitivity to
the differences between stimuli were significantly higher for ob-
servers, who showed stronger behavioral training effects. These
results provide an additional link between behavioral improve-
ment and learning-dependent changes in fMRI signals.

Third, we performed a regression analysis for the individual
subjects’ psychophysical and fMRI data of experiment 1 (supple-
mental Fig. S5, available at www.jneurosci.org as supplemental
material). This analysis concentrated on occipitotemporal areas,
as these areas showed, in contrast to the frontal areas, a significant
main effect of training for the rebound indices (supplemental
Table S2, available at www.jneurosci.org as supplemental mate-
rial). Before training, a significant correlation between behavioral
performance and fMRI responses was observed only in biological
motion but not general motion-related areas (pSTS: r � 0.41, p �
0.05; FBA: r � 0.38, p � 0.05; hMT/V5�: r � 0.24, p � 0.16;
KO/V3B: r � 0.20, p � 0.24). However, after training the corre-
lations were significant across all occipitotemporal areas (pSTS:
r � 0.51, p � 0.01; FBA: r � 0.58, p � 0.01; hMT/V5�: r � 0.51,
p � 0.01; KO/V3B: r � 0.45, p � 0.01). This analysis provides
additional evidence for a link between behavioral improvement
and experience-dependent fMRI changes. Moreover, it supports
our findings showing differential processing between biological
motion-related areas and general motion-related areas before
training.

Learning of complex movements in retinotopic visual cortex
We further examined whether early retinotopic areas (V1 and
V2) might be engaged in the learning of complex articulated
movements. We tested fMRI responses for human-like and arti-
ficial movements in experiments 2 and 3 that contained compa-
rable conditions (trained vs untrained stimuli). For experiment 2
(supplemental Fig. S6A, available at www.jneurosci.org as sup-
plemental material), neither area V1, nor area V2 showed signif-
icant main effects, or a significant interaction (supplemental
Table S3, available at www.jneurosci.org as supplemental mate-
rial). Likewise, the rebound indices did not differ significantly
from one (supplemental Fig. S6B, available at www.jneurosci.org
as supplemental material). The same results were obtained for the
novel artificial stimuli used in experiment 3 (supplemental Fig.
S7C–F; supplemental Table S4, available at www.jneurosci.org as
supplemental material). The lack of fMRI-selective adaptation
for very similar human and artificial movements in V1 and V2
suggests that our findings in higher visual areas were due to learn-
ing differences in the global structure rather than the local fea-
tures of the movements. Furthermore, this finding suggests that
learning-dependent changes in neural sensitivity in higher visual

areas could not be simply attributed to adaptation of input re-
sponses from the primary visual cortex. Moreover, the lack of
adaptation in these areas makes it unlikely that our results could
be simply explained by general alertness or arousal that would
affect signals not only in higher areas but also in early visual
cortex (Kastner and Ungerleider, 2000; Ress et al., 2000).

Learning-related plasticity changes outside the defined
regions of interest
Our main analyses concentrated on regions of interest that where
localized independently for each subject to gain maximal sensi-
tivity. However, to test for the possibility that learning-
dependent plasticity might occur within areas not included in our
ROIs, we performed two whole brain fixed effects GLM analyses.
The first one focused on experiment 1 and combined all scans
(pre- and post-training) from all subjects within a single model.
Contrasting the fMRI signal for the Identical condition with the
fMRI signals for all the other conditions (Very Similar, Less Sim-
ilar, and Dissimilar) confirmed that adaptation effects were pre-
dominantly confined to the areas already included in our ROI
analysis (supplemental Fig. S7A, available at www.jneurosci.org
as supplemental material). Moreover, it indicated that recovery
from adaptation seemed to be more pronounced in the right
hemisphere, in agreement with several studies showing more
consistent activation of the right hemisphere for biological move-
ments (Grossman et al., 2000; Peuskens et al., 2005; Peelen et al.,
2006; Pyles et al., 2007; Jastorff and Orban, 2009).

The second analysis focused on the learning effects for the
synthetic stimuli in experiment 3. Pyles et al. (2007) obtained
stronger responses for movements of Creatures (bodies built
from rod-like shape primitives linked by rigid and nonrigid
joints) compared to human movements in an area located in the
inferior occipital sulcus. This led to the hypothesis that this area
might be involved in the representation of novel and dynamic
objects. It seemed possible that areas outside our localized ROIs
showed learning-induced activity changes for our artificial stim-
uli. To test this possibility, we conducted a fixed effects analysis
combining the data from the post-training scans from all subjects
of experiment 3, searching for regions showing a significant in-
teraction between condition and training. That is, regions show-
ing stronger recovery from adaptation for the trained than
untrained stimuli after training. However, this analysis did not
reveal any significant activation beyond the network of ROIs in-
vestigated in our study (supplemental Fig. S7B, available at www.
jneurosci.org as supplemental material). The results of both
whole brain analyses confirmed that learning-dependent activity
changes were primarily confined to the areas included in our ROI
analyses.

Reaction times and eye movements
To control for the possibility that differences in fMRI responses
across the conditions were not due to differences in general alert-
ness or differential attentional allocation, we analyzed reaction
times during scanning (supplemental Fig. S8, available at www.
jneurosci.org as supplemental material). We obtained no significant
differences in reaction times across conditions in experiment 1 (Pre-
training: F(3,27) � 2.56; p � 0.07; Post-training: F(3,27) � 1.42; p �
0.26), experiment 2 (Post-training: F(1,10) � 3.34; p � 0.12) or
experiment 3 (Pretraining: F(1,8) � 3.22; p � 0.11; Post-training:
F(1,8) � 1; p � 0.82). In experiment 3, significantly faster reaction
times were observed for the trained compared to the untrained
stimuli in the post-training scan (F(1,8) � 9.07; p � 0.02). These
results make it unlikely that differential attentional allocation
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could account for the observed pattern of fMRI responses. In
contrast to our fMRI results, an attentional load explanation
would predict higher fMRI responses when the discrimination
task was hardest as difficult conditions require prolonged, fo-
cused attention resulting in higher fMRI responses (Ress et al.,
2000). We observed the opposite effect: fMRI responses were
similar for conditions in which the discrimination was easiest and
subjects responded fastest (different condition in experiment 1,
supplemental Fig. S8, available at www.jneurosci.org as supple-
mental material). Further, the quick succession of randomly in-
terleaved trials ensured that the observers could not attend
selectively to particular conditions. Moreover, it is unlikely that
the observed fMRI learning effects were due to the fact that the
subjects were more attentive after than before training for the
trained compared to the untrained movements, as the task was
more demanding before training and for the untrained stimuli.
Reaction times in these difficult discrimination conditions were
the slowest rather than very fast, as it would be expected if the
observers had given up and were simply guessing in these condi-
tions. These psychophysical data indicate that observers were en-
gaged in the task rather than responding randomly both before
and after training.

Eye movement recordings showed that the subjects were able
to fixate for long periods of time and any saccades did not differ
systematically in their number, amplitude or duration across
conditions before and after training. Moreover, we did not ob-
serve a significant difference in the number of saccades across
scanning sessions. The relevant statistics are presented in supple-
mental Figure S9, available at www.jneurosci.org as supplemental
material.

Across-trial adaptation
Throughout all experiments, every trial started with the presen-
tation of a center stimulus. Therefore, within a full training or
scanning session, the center stimuli were presented more often
than the off-center and the prototype stimuli (Fig. 1C). Although
this design may lead to priming effects for the center stimuli, it is
unlikely that this possibility would confound our results, as Ganel
et al. (2006) have shown that priming and adaptation effects are
additive and not interactive. By comparing activation for identi-
cal with different trials, which were either primed in preceding
sessions or presented for the first time, they could show that the
net amount of adaptation for the identical trials was equal, inde-
pendently of whether the stimuli were primed or not. The only
difference in activation between primed and nonprimed stimuli was
that overall activation for primed stimuli was reduced. As this overall
reduction does not affect the interaction between training and stim-
ulus condition that we defined as critical for identifying changes in
adaptation related to discrimination training, priming could not af-
fect the interpretation of our findings.

Discussion
Our findings reveal localized changes in fMRI activation as a
result of learning novel complex motion patterns. Most impor-
tantly, we found similar learning effects for natural human-like
and artificial movements of similar complexity across multiple
areas involved in action processing. Improvement of observers’
performance for the discrimination of movements after training
was associated with three types of activity changes that were stim-
ulus-specific: (1) Emerging sensitivity to movement differences
in general motion-related areas (hMT/V5� and KO/V3B); (2)
increased sensitivity after training with human-like movements
and emerging sensitivity for novel artificial stimuli in biological

motion-selective areas (pSTS and FBA); (3) changes reflecting
task-difficulty in frontal areas related to learning to discriminate
between human-like movements.

General motion-related areas
Our results reveal that experience-dependent plasticity is not
only observed across areas that are known to be involved in the
processing of biological motion, but also in areas involved in the
processing of simpler motion patterns. Sensitivity for the differ-
ences between the stimuli emerged for natural as well as for arti-
ficial stimuli after training. Our results suggest that these areas
contribute to the discrimination of complex motion patterns and
may optimize their neural representations in the context of dis-
crimination learning. This is consistent with studies indicating a
role of hMT/V5� in the learning of global motion configurations
(Zohary et al., 1994; Vaina et al., 1998). Moreover, work in neural
modeling and computer vision shows that the performance of
hierarchical models of motion and object recognition can be sub-
stantially improved when the properties of mid-level feature de-
tectors are optimized by learning (Wersing and Körner, 2003;
Jhuang et al., 2007; Serre et al., 2007; Ullman, 2007).

General motion-related areas predominantly extract local
stimulus features and might be less invariant for local stimulus
changes. This might explain why these areas do not show selec-
tivity for novel human-like movements before training, as such
features might show larger variations between stimuli of the same
stimulus class (generated from the same prototypes).

Biological motion-related areas
Interestingly, biological motion-related areas exhibited differ-
ences between the learning of different classes of complex move-
ments. In particular, before training, these areas showed a small
but significant sensitivity to differences between similar human-
like movements but not artificial movements. One explanation
for this difference might be that pre-existing representations for
human movements show generalization to novel human-like
stimuli. Similar mechanisms have been implicated in the repre-
sentation of novel object categories based on learned example
views (Edelman et al., 1999). On the contrary, such generaliza-
tion might not be possible for novel artificial patterns, as their
general appearance deviates strongly from already existing repre-
sentations. The observed enhanced specificity for natural move-
ments after training could reflect an increased sensitivity to the
differences between stimulus features of neural populations al-
ready involved in their discrimination before training (Schoups et
al., 2001; Baker et al., 2002; Sigala and Logothetis, 2002; Freedman et
al., 2003).

Although biological motion-related areas do not show sensi-
tivity to differences between novel artificial stimuli before train-
ing, they show enhanced sensitivity after training. Jastorff and
Orban (2009) showed that activation in pSTS depends on the
biological kinematics of the individual dots present in point-light
displays rather than configural information. According to their
study, even scrambled versions of point-light walkers, preserving
the inherent biological kinematics, elicited significantly stronger
activation in pSTS compared to presentations of a full body trans-
lating. The trajectories of the individual points in our artificial
stimuli were coarsely matched in frequency and amplitude with
natural human movements and moved in accordance with the
two-thirds power law (Lacquaniti et al., 1983; Viviani and Stuc-
chi, 1992). Therefore, it is possible that the same neural machin-
ery involved in the processing of human kinematics is recruited
for the learning of novel artificial movements.
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Pyles et al. (2007) reported lower overall activation in the
pSTS for the presentation of “Creatures” (moving artificial artic-
ulated shapes) compared to the presentation of human move-
ments and suggested specialized neural processing for human
movements in pSTS. However, the Creature movement was not
explicitly matched with human kinematics and their experiment
did not involve a training phase, allowing for the possibility that
enhanced activation in pSTS might be observed after extensive
training.

While neural populations within pSTS might develop sensi-
tivity for differences in movement kinematics, neural popula-
tions in FBA might develop sensitivity for the differences in body
structure between the stimuli. Pyles et al. (2007) reported similar
activation in the FBA for the presentation of humans and crea-
tures when presented as stick figures, but weaker activation for
creatures, when presented as point-light displays. This finding,
together with the finding that subjects had more difficulty to
detect point-light creatures in noise compared to human point-
light walkers indicates that subjects were unable to use prior
knowledge about body structure to facilitate recognition. In our
study, observers might have learned a “body representation” for
the artificial stimuli during training, which could explain in-
creased sensitivity to the differences between artificial move-
ments in FBA.

Frontal areas
The localized frontal areas seem to exhibit a different response
pattern compared to the occipital and temporal areas. General
and biological motion-related areas showed fMRI-selective adap-
tation effects for all conditions where different stimuli were pre-
sented, independent of the similarity of the stimuli. In contrast,
frontal areas showed significant release from adaptation only for
specific conditions. This effect was more prominent in vPrCS
than pIFS and was related to task difficulty as indicated by the
behavioral performance of the observers. Although significant
recovery from adaptation was also observed after training for
artificial movements, the interaction between scanning session
and stimulus similarity was not significant (supplemental Table
S4, available at www.jneurosci.org as supplemental material), in-
dicating that training with artificial stimuli affected frontal areas
to a lesser extend compared to natural stimuli.

Recruitment of frontal areas for conditions where discrim-
ination is most demanding is consistent with studies showing
significant higher fMRI activation in ventral precentral sulcus
and posterior IFS for point-light stimuli when subjects per-
formed a one-back task compared to passive observation (Jastorff
and Orban, 2009). Thus, our results in frontal areas may reflect a
consequence of the learning-induced changes in occipital and
temporal areas.

Comparison between human-like and artificial movements
Comparison of the results between natural and artificial stimuli
revealed two main differences in fMRI-selective adaptation: Lack
of sensitivity before training to differences between artificial
stimuli in biological motion-related areas and no significant
training effects for artificial stimuli in frontal areas. However,
statistical comparisons across experiments 1 and 3 did not indi-
cate that these differences were significant. This null result is
difficult to interpret because the experiments tested different
conditions and the number and identity of the participants dif-
fered. Future experiments, testing both stimulus groups in the
same experiment are needed to directly test the difference in re-

sponses between natural and artificial stimuli within biological
motion-related and frontal areas.

Top-down influences
As subjects were involved in a discrimination task during the
scanning sessions, we cannot completely rule out the possibility
that top-down signals might have contributed to the effects dis-
cussed. However we believe that the diversity of effects we obtained
across experiments and ROIs argue against a pure top-down expla-
nation for our findings. Moreover, without the behavioral data of the
subjects from inside the scanner, the direct link between behavioral
improvements and changes in fMRI selective adaptation could not
have been established.

Conclusions
Our study advances our understanding of experience-based plas-
ticity mechanisms involved in the learning of novel complex bi-
ological movements in several respects. First, our experiments
investigated the role of visual learning in the discrimination of
novel biological movements that mediate recognition of individ-
ual actions rather than detection in random noise backgrounds
(Grossman et al., 2004), a process that engages scene segmenta-
tion processes. Such learning entails analysis of the distinctive
features of movements that are critical for the discrimination
between different motion patterns. Second, by using complex
artificial movements that were matched for low-level and biolog-
ical movement features with human movements, we were able to
show that areas involved in the processing of human movements
become involved in the processing of artificial movements in
contrast with previous suggestions (Pyles et al., 2007). Third, by
combining spatiotemporal morphing techniques with an fMRI
adaptation paradigm as an index of discriminability, we were able
to trace how changes in behavioral performance are reflected in
changes of sensitivity of neural populations in several brain areas
involved in the processing of action stimuli.

In sum, our results provide important new insights into the
recognition of complex movements and action patterns. Our
findings provide evidence for a fast and efficient visual learning
process for complex articulated motion patterns that seems to be
independent of the compatibility of theses movements with hu-
man kinematics or human body structure. This suggests that the
processing of biological motion might be a special instance of a
more general function of these areas. Future combined fMRI and
neurophysiological studies are necessary to investigate the spe-
cific neural plasticity mechanisms at the level of single neurons
and their interactions within and across cortical areas involved in
the visual analysis of movements and the planning of actions.
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